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1. INTRODUCTION 

QR-factorization with column pivoting (QR-CP) is a version of the usual QR-factorization that 
was proposed in [l] to handle rank-deficient least squares problems. The method is also used 
to detect rank-deficiency or near rank-deficiency, although it is not entirely reliable for this 
purpose [2]. Therefore, various modifications have been proposed to obtain “rank-revealing” 
versions, see [3,4]. Another related use occurs in subset selection or variable selection [2,5], a 
problem that arises in regression analysis in which a subset of columns of a given matrix is to 
be selected to form a well-conditioned submatrix. The purpose of this note is to derive a simple 
performance bound for this last use of the method, to characterize the few cases in which the 
bound is exact, and to show that the bound is asymptotically sharp in the limit of large matrices. 

2. A PERFORMANCE BOUND 

Let A = (a~,... ,an) = (aij)~~i~~,l~j~~ be a given m x n matrix with columns aj. The 
algorithm as proposed in [I] chooses a sequence of columns aj, , aj2, . . . , uJL such that each newly 
chosen column is “as linearly independent” from the previous ones as possible. Here k is the 
exact rank of A or what is decided to be the numerical rank of A. In some version of QR-CP, the 
number k is determined along with the sequence (ji,jz, . . ); here I assume that k < min(m, n) 

is given. Then the selection method proceeds as follows. All vector norms below are Euclidean 
norms. 

0. Set J = 8, w3 = llajj12 for j E (1,. ,n}. 
1. For T = l,..., k, 

(a) find j, = arg max{wJ : j 4 J}; 
(b) replace J with J U {jr}; 
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(c) for j $ J, replace wj with (]oj - E’Taj]12, where P, is the orthogonal projector onto 
the subspace spanned by {ej,, . . . , ajp}. 

Step l(c) is equivalent to the following step. 

l(c') For j $ J, replace Wj with ]]aj]]2 - (ajTaj,.)2]]aj,.]]-2. 

For definiteness, we assume that ties in Step l(a) are broken by choosing the smallest j,. It is 
then easy to see that the order and the outcome of the selection algorithm remain unchanged if A 
is replaced by &A, where Q is orthogonal. After relabeling the columns, we can therefore assume 
that j, = T, T = l,..., k and that the submatrix (al,. . . , ah) is upper triangular with positive 
entries. Indeed, the usual implementation of QR-CP computes precisely such a permutation 
together with the matrix Q (in factored form) and overwrites A with QA [2]. We therefore have 

I&j = 0, (l<j I: Ic, j < i Lm), (1.4 
m 

0.b) 
l-i 

From now on it will be assumed that Ic = m < 72. If (1.a) and (1.b) hold for A, we say that A 
satisfies the standard assumptions. Let J c (1,. . . , n}, we then write AJ for the submatrix 
of A that consists of the columns of A whose indices are in J (in their natural order). We also 
write A[jl = (~1, . . . ) aj). 

PROPOSITION 1. Suppose A satisfies the standard assumptions. Then for j = 2,3, . . . , m 

det (ALjAijl) = ma {det (ArAj) : Aj = (AU_1],a,), j < T < TI} . 

The proof follows from the observation that if Aj = (Ab_11, a,,), then 

det (ArAj) = det (A&_,IA~-I~) . ec.& _< det (Ai_,IAU-11) . u;j = det (AGIAijl) . 

l=j 

Therefore, QR-CP is the greedy algorithm for maximizing 1 det(AJ)] among all J c (1,. . . , n} 
with I JI = m. It is clear that a submatrix AJ with large determinant can still be poorly 
conditioned; this is why modifications of the column pivoting strategy above have been developed 
to detect near rank-deficiency. 

The question now arises whether this determinant can be bounded below a priori in terms 
of the original A if J is chosen by QR-CP. It turns out that this is indeed possible, if A has 
orthonormal rows. 

THEOREM 2. Assume that A has orthonormai rows and that the m-element subset J c { 1,. . . , n} 
is selected by QR-CP. Then 

I det(&)I 2 ----$-. 

Jo m 
(2) 

PROOF. Note that QA still has orthonormal rows for any orthogonal Q and that this property 
also is unchanged if the columns of A are permuted. Thus, we may assume that A satisfies 
the standard assumptions. Since trace(AAT) = m, it follows that ~~=, ]]aj]]2 = m. Since the 
norm of al is maximal, we obtain ali 1 m/n. If the first T columns and rows of A are deleted, 
the resulting (m - T) x (n - T) matrix still has orthonormal rows and satisfies the standard 
assumptions; thus also a2 r+l,r+l 2 (m - r)/(n - r). Therefore 

det (ADA;) 
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By the Cauchy-Binet formula [6], 

1 = det (AA’) = c det (AJ-4:) 
.I 

where the sum extends over all (z) subsets J c (1,. . , n} with m elements. Thus, Theorem 2 
says that QR-CP leads to a choice .7 that is a least as good as an average choice for the purpose 
of maximizing det(AJA:). If the matrix A is arbitrary. it can be factored as A = LB, where L3 
has orthonormal rows. Applying now QR-CP to B and noting that AJ = LBJ and det(AAT) = 

det(LLT), we obtain a selection J such that also / det,(AJ)I > 1 det(A)//JC:,); i.e., QR-CP 
applied to any right orthonormal factor B of A results in a selection that is at least as good as 
the average. It does not matter which right orthonormal factor is used since they are all related 
by left-multiplication with an orthogonal matrix, which does not affect the course of QR-CP. 
Applying QR-CP to an orthonormal factor of A and not to -4 itself is suggested in 121 for the 
purpose of subset :selection. 

3. SH.ARPNESS OF THE PERFORMANCE BOUND 

Let us now ask The question whether the bound of Theorem 2 is sharp. If m = 2 and n > 2 is 
odd, then the following 2 x n matrix A satisfies the standard assumptions and has orthonormal 
rows: set ali = *J‘%$, a 21 = 0, arj = J(n - 2)/n(n - 1) and aQJ = (-l)j dm for 
j = 2..., n. Then 1 det(A~2~)l = dm. Thus the bound is attained in this case. There is 
essentially only one other situation where this happens. 

THEOREM 3. Let A satisfy the standard assumptions. Assume that A has orthonormal rows and 

that m > 2. Then 1 det(Ai,]l = l/m ‘f * d i dn only if n = 711 + 1. In this case. 

(1 < i 5 771). (3.a) 

d 1 
a,j = cLj 

(m - i + 2)(m - i -t 1) ’ 
(1 5 i < 711, i < j 5 m + l)? (3.b) 

with E%~ E (-1, l}. 

PROOF. Suppose that det(Al,lA&l) = l/(*?,!~). By th e argument used in the proof of Theorem 2, 
we have for 1 5 i 5 m. i < j 5 n 

aK = ca:, = 
m-7+1 

1=2 n-i+l’ 

Thus (3.a) is true. It follows by induction that 

J n - m 
ai = Eij 

(n - i + l)(n - i) ’ 
(1 I i I 712, i < j 2 n) (4 

with ei3 f (-1, l}. NOW the orthogonality of rows # 1 and # m - 1 of A implies that 

and therefore 

This is only possible if n = m + 1, and then (4) implies (3.b) 
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Suppose on the other hand that n = m + 1. We define aij by (3.a),(3b.), with 

Ei,m+l = 1, (1 _< i I m) and cij = -1, (i<j<m-l,l<i< m) 

Then A satisfies the standard assumptions, and direct computations show that A has orthonormal 
rows and that det(Ai,lAL]) = l/(m + 1) = l/(z). 

Any matrix A that satisfies the assumptions of this theorem has m + 1 columns of equal norm 

(lajll = (m + l)- l/2 . Deleting any of these columns results in a square matrix with determinant 
(m + 1)-‘12, and it is not hard to see that all these matrices have the same set of singular values 

(1,. . ., 1, (m + 1)-‘/2}. Thus all m-element subsets J C (1,. . . , n} are essentially equally good 
selections, and this is why QR-CP must have an “average” performance. On the other hand, 
for the 2 x n matrices of the beginning of the section, it is easy to see that for n > 3, any 
selection J = {j, k} with j, k 2 2 and j + k odd results in 1 det(AJ)j = 21/(n - 2)/n(n - 1)2 > 

dw = I deWp])l. 

4. ASYMPTOTIC SHARPNESS 

We now look at the question whether there are situations in which QR-CP picks an “average” 
choice, although better choices are available. The class of 2 x n matrices from the last section 
furnishes such an example. The following construction results in a wider class of matrices for 
which this happens. 

Let m > 1 be given. Choose a number L 2 m such that an L x L Hadamard matrix HL exists, 
that is a matrix with all entries from {-l, l} such that LplH~Hl = I, the identity matrix. This 
is always possible; e.g., one can choose any L = 2l 2 m. For T 1 1, set N = N,. = m - 1 + rL. 
Define numbers ci, di > 0 for 1 < i 5 m by 

d? = (N -m + 2)i-’ - (N - m)(N - m + l)i-2 
2 (N - m + 2)i-1 1 

1 
c:=N_m+l 2 

cl _ d?) = (N - m)(N - m + l)i-3 
(N-m+2)i-1 ’ 

(i 2 3, Cl = 1. 

Then define the m x N matrix C with columns cj and entries cij by 

dm_i+lbij, (1 < i 5 m, 1 5 j < m - l), 
Cij = 

Cm-i+lhik, (1 5 i 5 m, m <j 5 N) where k =j -m- 1 mod L. 

Here 6,j is Kronecker’s delta, and the entries of HL are hik. Thus the first m - 1 columns of C 
are a diagonal matrix with diagonal entries dm_i+l, and the last rL columns of C are r identical 
blocks of the form diag(cm, cm--l, . . . , q)fi~, where fin consists of the first m rows of HL. 

THEOREM 4. The matrix C satisfies the standard assumptions, and CCT = I. As N -+ 00, 

(5) 

PROOF. The assertions that C satisfies the standard assumptions and has orthonormal rows fol- 
low by direct calculations from the construction. In particular, c$_k+I,m_k+I = di > ~~=, cf = 

c:“=,-,+I d c? for k 2 2. The limiting behavior of di and ci follows by an application of 1’Hopital’s 
rule. The assertion about the determinant of C[,] is implied by 
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For the matrix C, the choice J = {l,... ,m} usually does not produce a submatrix with 
maximal determinant. This is clear if m = L. In this case, the choice j = {N - m + 1,. . , N} 
results in Cj = diag(c,, ~~-1,. . . , ~1). HL. Thus JNCj -+ H,r_ and N”” det(Cj) -+ mm/‘, but 

Nm/’ det(CL,l) -+ m. Also in this case, the condition number of Cj converges to the condition 
number of HL, which is 1, and all singular values of N l12Cj are approximately Jm. On the 
other hand, the largest and smallest singular values of C, = limN_+03 N1/‘C[,l turn out to be 
O(Jm) and 0((logm)-‘/2). Thus the condition number of Cl,+ is approximately &Ki@X. 
QR-factorization with column pivoting results in a poor choice for such matrices. 
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