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SynopsisSynopsis
We present a new integrative framework for analyzing paired images using hyper-networks.  The method is appl ied to twinWe present a new integrative framework for analyzing paired images using hyper-networks.  The method is appl ied to twin
fMRI study in characteriz ing the amount of heritabi l i ty in the functional  network.fMRI study in characteriz ing the amount of heritabi l i ty in the functional  network.

IntroductionIntroduction
There are many studies related to paired brain images: longitudinal studies with two repeat scans , multimodal imaging studies , twin studies .
Paired images are usually analyzed by relating voxel measurements that anatomically match across two images. We present a new framework that
can integrate paired images in a holistic fashion by pairing every possible combination of voxels. This is achieved using a hyper-network that can
connect multiple networks into one larger hyper-network. Although hyper-networks are often used in machine learning , the concept has not been
widely used in brain imaging. Jie constructed hyper-networks from the resting-state fMRI in classifying MCI from AD . Bezerianos constructed hyper-
networks from the coupling of EEG activity of pilots and copilots operating an aircraft . In this study, the method is applied in relating twin images
and determining the heritability of a fMRI network.

MethodsMethods
Sparse hyper-connectivity: Consider a collection of paired images  Let  and  be the
vectors of images. We set up a hyper-network by relating the paired image vectors at different voxels  and :

for zero-mean noise vector e e (Figure-1). The parameters  are the weights of the hyper-edges. It is likely that we have significantly more
number of voxels ( ) than the number of images ( ), so we estimate the parameters using sparse regression :

Sparse cross-correlations: For this study, we consider a simpler model

Without loss of generality, we can enter and scale  and  such that

Then we have

which is the sparse cross-correlation  (Figure-2).

Topological inference: The hyper-network is binarized by assigning value 1 to any nonzero hyper-edge weight and 0 otherwise. The resulting binary
graph denoted as  induces a graph filtration , a collection of nested graphs:

where

are the sorted hyper-edge weights.
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Let  be a monotonic graph function such as the number of connected components and the size of the largest component (Figure-3). Given two
hyper-networks  and corresponding graph filtrations , we test the null hypothesis of the equivalence of the two monotonic
functions:

The test statistic

is used to compute the p-value using

ApplicationApplication
Data: We applied the method to the problem of determining the heritability of a fMRI network at the network level. The study consists of 11
monozygotic (MZ) and 9 same-sex dizygotic (DZ) twin pairs of 3T fMRI acquired in Intera-Achiava Phillips MRI scanners with a state-of-the-art 32
channel SENSE head coil. BOLD functional images were acquired with a gradient echoplanar sequence, with 38 axial-oblique slices (3 mm thick), TR
2000ms, TE 25ms, flip angle=90. Subjects completed monetary incentive delay task  involving $0, 1 and 5 rewards. The interest is in knowing the
extent of the genetic influence on the functional network of these participants while anticipating the high reward as measured by delays in hitting
the response button. After fitting a GLM at each voxel, we obtained the contrast maps testing the significance of activity in the delay period for $5
trials relative to $0 reward . The paired contrast maps are  and  in the model (Figure-1).

Heritability index (HI) determines the amount of variations due to genetic influence in a population and estimated using Falconer's formula.
Extending Falcorner’s formula, HI matrix on the hyper-edges is given by

the twice difference in the sparse cross-correlations in MZ- and DZ-twins. The diagonal entries are the node-level HI at each vertex (Figure-2). The
statistical significance of HI is determined using statistic .

ResultsResults
Figure-2 shows the estimated HI at the network level. For the number of clusters and for the size of largest cluster, -values are less than 0.00002
and 0.00001 respectively indicating very strong significance of HI in the functional network. This is the first study of determining HI of a large-scale
fMRI network where every voxel is a network node.

ConclusionConclusion
In this study, we presented the hyper-network analysis framework for analyzing paired images. Although the method is applied in twin fMRI data,
the method can be also applied to other paired image studies such as longitudinal and multimodal studies.
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FiguresFigures

Figure-1:Figure-1: The schematic of hyper-network construction on the paired image vectors. The second pair of images  at voxel  is modeled as a linear
combination of the first pair of images  at all other voxels. The estimated parameter  gives the weights for the hyper-edges.

Figure-2:  Figure-2:  Estimated hyper-networks at three different sparse parameters 0.5, 0.7 and 0.9 for MZ- and DZ-twins. As the sparse parameter increases,
we have more sparse connections. HGI measures heritability index at the nodes and along the hyper-edges.

Figure-3:Figure-3: The monotonic feature functions on the estimated hyper-networks of twin fMRI. The number of connected components, i.e., disjoint
clusters, (left) and the size of largest cluster (right) are plotted over the sparse parameter. Overall, MZ-twins have smaller number of clusters but
larger cluster size.
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