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Abstract We present a unified heat kernel smoothing framework for modeling 3D
anatomical surface data extracted from medical images. Due to image acquisition
and preprocessing noises, it is expected the medical imaging data is noisy. The
surface data of the anatomical structures is regressed using the weighted linear
combination of Laplace-Beltrami (LB) eigenfunctions to smooth out noisy data and
perform statistical analysis. The method is applied in characterizing the 3D growth
pattern of human hyoid bone between ages 0 and 20 obtained from CT images. We
detected a significant age effect on localized parts of the hyoid bone.

Keywords Heat kernel smoothing · Hyoid bone growth · Random field theory ·
Laplace Beltrami eigenfunctions · Diffusion on manifolds

1 Introduction

For normally developing children, age and sex could be major factors that affect the
structure and function of growing hyoid bone. As in other developmental studies
[22, 55, 56], we expect highly localized complex growth pattern to emerge between
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ages 0 and 20 in the hyoid bone. Growth is expected to extend laterally with respect
to the surface of the bone. However, it is unclear what specific parts of the hyoid
bone are growing. This provides a biological motivation for a need to develop a
local surface-based morphometric technique beyond simple volumetric techniques
that cannot detect localized subtle anatomical changes along the surface of the hyoid
bone composting of three segments—a central hyoid body with two greater cornua
(horns) [11, 21].

The end results of existing surface-based morphometric studies in medical
imaging are statistical parametric maps (SPM) that show the statistical significance
of growth at each surface mesh vertex [22, 48, 64]. In order to obtain stable and
robust SPM, various signal smoothing and filtering methods have been proposed.
Among them, diffusion equations, kernel smoothing, and wavelet-based approaches
are probably the most popular. Diffusion equations have been widely used in image
processing as a form of noise reduction starting with Perona and Malik in 1990s
[46]. Although numerous techniques have been developed for performing diffusion
along surfaces [2, 21, 22, 43, 51–53], many approaches are nonparametric and
requires the finite element or finite difference schemes which are known to suffer
various numerical instabilities [16, 18].

Recently, few regression models are proposed on manifolds. In [40], Laplace-
Beltrami operator based functional principal component analysis was proposed. In
[25], Fréchet mean based regression model was proposed on manifolds. Kernel
smoothing based models have been also proposed for surface and manifolds data
[6, 17, 18]. The kernel methods basically smooth data as the weighted average of
neighboring mesh vertices using mostly a Gaussian kernel and its iterative applica-
tion is supposed to approximate the diffusion process. Recently, wavelets have been
popularized for surface and graph data [33, 36, 38]. Spherical wavelets have been
used on brain surface data that has been mapped onto a sphere [8, 44]. Since wavelet
basis functions have local support in both space and scale, the wavelet coefficients
from the scale-space decomposition using the spherical wavelets provide shape
features that describe local shape variation at a variety of scales and spatial locations.
However, spherical wavelets have an intrinsic problem that they require to establish
a smooth mapping from the surface to a unit sphere, which introduces a serious
metric distortion. The spherical mapping such as conformal mapping introduces
serious metric distortion which usually compounds SPM [28, 34]. Furthermore, such
basis functions defined on a sphere seem to be suboptimal than those directly defined
on anatomical surfaces in detecting locations or scales of shape variations. To
remedy the limitation of the spherical wavelets, the spectral graph wavelet transform
defined on a graph has been applied to arbitrary surface meshes by treating surface
meshes as graphs [3, 29, 38]. The wavelet transform is a powerful tool decomposing
a signal or function into a collection of components localized at both location
and scale. Although all three methods (diffusion-, kernel- and wavelet-based) look
different from each other, it is possible to develop a unified framework that relates
all of them in a coherent mathematical framework [16].

Starting with a symmetric positive definite kernel, we propose a unified kernel
smoothing framework within the Hilbert space theory [23]. The proposed kernel
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smoothing works for any symmetric positive definite kernel, which behaves like
weights between two functional data. We show how this facilitates a coherent
statistical inference for functional signals defined on an arbitrary manifold. The
focus of this paper is on the development of the proposed kernel smoothing on
manifolds.

The structure of this paper is as follows. First, we present a unified bivariate
kernel smoothing that is related to diffusion-like equations on manifolds. The
proposed kernel regression inherits various mathematical and statistical properties
of diffusion-like equations. Then, we show the relationship between the ker-
nel smoothing and recently popular spectral graph wavelets for manifolds. The
proposed kernel smoothing is shown to be equivalent to the wavelet transform.
This mathematical equivalence levitates a need for constructing wavelets using a
complicated computational machinery as often done in previous diffusion wavelet
constructions [3, 29, 36, 38]. A unified statistical inference framework is then
developed for the kernel method via Worsley’s random field theory [54, 63]. This
levitates the need for using time consuming nonparametric procedures such as false
discovery rates (FDR) [7, 27] or permutation tests [9, 15, 20, 31] that do not have
explicate control over the scale and smoothness of models. Finally, we illustrate how
the kernel smoothing procedure can be used to localize the disconnected hyoid bone
growth pattern in human.

2 Preliminary

Let us illustrate two statistical problems in the Euclidean space that motivate the
development of the proposed kernel smoothing on manifolds. Consider measure-
ments fi sampled at point pi ∈ R

d . The measurements are usually modeled as

fi = h(pi) + εi

with mean zero noise εi and unknown mean function h that has to be estimated.
In the traditional kernel regression framework [6, 24, 45], the mean function h is
estimated in the weighted least squares fashion:

̂h(p) =
k

∑

j=1

G(p − pi)fi,

where G is given by Nadaraya-Waton type of normalized kernels. In the local
polynomial regression framework [24], h is estimated as

̂h(p) = arg min
β0,··· ,βk

n
∑

i=1

G(p − pi)

∣

∣

∣fi −
k

∑

j=0

βj (p − pi)
j
∣

∣

∣

2
. (1)
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In many related local polynomial or kernel regression frameworks, kernel G and
polynomial basis {pj } are translated by the amount of pi in fitting the data locally. In
this fashion, at each data point pi , exactly the same shape of kernel and distance can
be used. However, one immediately encounters a difficulty of directly generalizing
the Euclidean formulation (1) to an arbitrary surface since it is unclear how to
translate the kernel and basis in a coherent fashion. To remedy this problem, many
recent kernel regression frameworks on manifolds use bivariate kernel G(p, q) and
bypass the problem of translating a univariate kernel [6]. By simply changing the
second argument, it has the effect of translating the kernel.

A similar problem is also encountered in wavelets in the Euclidean space.
Consider wavelet basis Wt,q(p) obtained from a mother wavelet W with scale
parameter t and translation parameter q:

Wt,q(p) = 1

t
W

(p − q

t

)

. (2)

Scaling a function on a surface is trivial. But the difficulty arises when one tries
to define a mother wavelet and translate it on a surface. It is not straightforward
to generalize the Euclidean formulation (2) to an arbitrary manifold. If one tries
to modify the existing spherical wavelets to an arbitrary surface [8, 44], one also
encounters the lack of regular grids on the surface. The recent work based on the
spectral graph wavelet transform bypass this problem by also taking a bivariate
kernel as a mother wavelet [3, 29, 38, 42]. To remedy these two different but related
problems, we propose to use a bivariate kernel and bypass the problem of translating
a univariate kernel. By simply changing the second argument, it has the effect of
translating the kernel.

3 Methods

In many anatomical surface studies in medical imaging, measurements are sampled
densely at each mesh vertex so it is more practical to model the measurements
as smooth functions. Consider a functional measurement f defined on a manifold
M ⊂ R

d . We assume the following additive model:

f (p) = h(p) + ε(p), (3)

where h is the unknown signal to be estimated and ε is a zero-mean random
field, possibly Gaussian. The manifold M can be a single connected component
or multiple disjoint components as our hyoid bone application (Fig. 1). We further
assume f ∈ L2(M ), the space of square integrable functions on M with the inner
product
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Fig. 1 CT image showing the location of the hyoid bone (left), and 3D model (right) showing the
relative location of the hyoid bone (red) with respect to the mandible (gray) and vocal tract (green)

〈f, g〉 =
∫

M
f (p)g(p) dμ(p),

where μ is the Lebesgue measure. μ(M ) will measure the volume of M in d-
dimension [11, 16]. Define a self-adjoint operator L satisfying

〈g1,L g2〉 = 〈L g1, g2〉

for all g1, g2 ∈ L2(M ). Then L induces the eigenvalues λj and eigenfunctions ψj

on M (Fig. 2):

Lψj = λjψj . (4)

Without loss of generality, we can order the eigenvalues

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · .

We can show that the eigenfunctions ψj form an orthonormal basis in L2(M ). We
will consider a smooth symmetric positive definite kernel of the form

K(p, q) =
∞
∑

j=0

τjψj (p)ψj (q) (5)

for some τj in this paper. The constants τj are identified as follows. Apply the kernel
convolution on the eigenfunction ψj :

K ∗ ψj (p) =
∫

M
K(p, q)ψj (q) dμ(q). (6)
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Fig. 2 Laplace-Beltrami eigenfunctions ψj of various degrees (j = 0, 1, 5, 20, 100, 500) on the
template. The first eigenfunction is constant in each component. As the degree increases, the spatial
frequency increases

Substituting (5) into (6), we have

K ∗ ψj (p) = τjψj (p)

indicating τj and ψj must be the eigenvalues and eigenfunctions of the con-
volution (6). Note ψj are eigenfunctions of self-adjoint operator L and kernel
convolution at the same time.

Example 1 For τj = e−λt , we have heat kernel

K(p, q) =
∞
∑

j=0

e−λtψj (p)ψj (q), (7)

where t is the bandwidth of kernel. The heat kernel has been often used in numerous
studies but without much theoretical justification [16, 32, 37, 49]. For this study, we
will denote the heat kernel as Ht(p, q) to explicitly show that the spread of the
kernel is determined by diffusion time t [17, 18].
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3.1 Kernel Smoothing on Manifolds

Consider subspace Hk ⊂ L2(M ) spanned by the orthonormal basis {ψj }, i.e.,

Hk = {
k

∑

j=0

βjψj (p) : βj ∈ R}.

Then the least squares estimation (LSE) of h in Hk is given by the shortest distance
from f to Hk [14, 16]:

̂h(p) = arg min
h∈Hk

∫

M

∣

∣f (p) − h(p)
∣

∣

2
dμ(p) =

k
∑

j=0

fjψj (p), (8)

where fj = 〈f,ψj 〉 are the Fourier coefficients. Figure 3 shows an example of LSE
with L as the Laplace-Beltrami operator and k = 1000. This is a special case of
Fourier series expansion that tends to suffer the Gibbs phenomenon, i.e., ringing
artifact [13, 26]. The Gibbs phenomenon can be effectively removed if the Fourier
series expansion converges fast enough as the number of basis functions goes to
infinity. By weighting the Fourier coefficients exponentially smaller, we can make
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Fig. 3 Heat kernel smoothing using different bandwidth between 0.1 and 1000. As the bandwidth
increases, the kernel regression becomes inversely proportional to the square root of the surface
area
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the representation converges faster; this can be achieved by additionally weighting
the squared residuals in Eq. (8) with some weights. Thus, we propose to estimate h

by minimizing the weighted distance to the space Hk:

̂h(p) = arg min
h∈Hk

∫

M

∫

M
K(p, q)

∣

∣

∣f (q) − h(p)

∣

∣

∣

2
dμ(q) dμ(p). (9)

Without loss of generality, we will assume the kernel to be a probability distribution

∫

M
K(p, q) dμ(q) = 1

for all p ∈ M . The solution of (9) has the following analytic expression.

Theorem 1

̂h(p) = arg min
h∈Hk

∫

M

∫

M
K(p, q)

∣

∣

∣f (q) − h(p)

∣

∣

∣

2
dμ(q) dμ(p) =

k
∑

j=0

τjfjψj ,

where fj = 〈f,ψj 〉 are Fourier coefficients.

Proof Any function h ∈ Hk can be expressed as

h(p) =
k

∑

j=0

βjψj (p). (10)

Then by plugging (10) into the inner integral I (p), it becomes

I (p) =
∫

M
K(p, q)

∣

∣

∣f (q) −
k

∑

j=0

βjψ(p)

∣

∣

∣

2
dμ(q).

Simplifying the expression, we obtain

I (p) =
k

∑

j=0

k
∑

j ′=0

ψj (p)ψj ′(p)βjβj ′ − 2K ∗ f (p)

k
∑

j=0

ψj (p)βj + K ∗ f 2(p).

(11)

The kernel can be written as

K(p, q) =
∞
∑

j ′=0

τj ′ψj ′(p)ψj ′(q). (12)

The convolution is then written as
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K ∗ f (p) =
∞
∑

j ′=0

τj ′fj ′ψj ′(p).

Since I is an unconstrained positive semidefinite quadratic program (QP) in
βj , there is no unique global minimizer of I without additional linear constraints.
Integrating I further with respect to dμ(p), we collapses (11) to a positive definite
QP, which yields a unique global minimizer:

∫

M
I (p) dμ(p) =

k
∑

j=0

β2
j − 2

k
∑

j=0

τjfjβj + const.

The minimum of the above integral is obtained when all the partial derivatives with
respect to βj vanish, i.e.

∫

M

∂I

∂βj

dμ(p) = 2βj − 2τjfj = 0

for all j . Hence
∑k

j=0 τjfjψj must be the unique minimizer. 
�
Theorem 1 generalizes the weighted spherical harmonic (SPHARM) represen-

tation on a unit sphere to an arbitrary manifold [14]. Theorem 1 implies that the
kernel regression can be performed by simply computing the Fourier coefficients
fj = 〈f,ψj 〉 without doing any numerical optimization. The numerically difficult
optimization problem is then reduced to the problem of computing Fourier coef-
ficients. If the kernel K is the Dirac-delta function, the kernel regression simply
collapses to the least squares estimation (LSE) which results in the standard Fourier
series, i.e.

̂h(p) = arg min
h∈Hk

∫

M

∣

∣

∣f (q) − h(q)

∣

∣

∣

2
dμ(q) =

k
∑

j=0

fjψj .

It can be also shown that as k → ∞, the kernel regression

̂h =
k

∑

j=0

τjfjψj

converges to convolution K ∗ f establishing the connection to the manifold-based
kernel smoothing framework [5, 18]. Hence, asymptotically the proposed kernel
regression should inherit many statistical properties of the usual kernel smoothing.
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3.2 Properties of Kernel Smoothing

Kernel smoothing can be shown to be related to the following diffusion-like Cauchy
problem [13, 14].

Theorem 2 For an arbitrary self-adjoint differential operator L , the unique
solution of the following initial value problem

∂g(p, t)

∂t
+ L g(p, t) = 0, g(p, t = 0) = f (p) (13)

is given by

g(p, t) =
∞
∑

j=0

e−λj tfjψj (p). (14)

Proof For each fixed t , g(p, t) can be written as

g(p, t) =
∞
∑

j=0

cj (t)ψj (p). (15)

Then

L g(p, t) =
∞
∑

j=0

cj (t)λjψj (p). (16)

Substituting (15) and (16) into (13), we obtain

∂cj (t)

∂t
+ λj cj (t) = 0 (17)

for all j . The solution of equation (17) is given by cj (t) = bj e
−λj t . So we have a

solution

g(p, t) =
∞
∑

j=0

bj e
−λj tψj (p).

At t = 0, we have

g(p, 0) =
∞
∑

j=0

bjψj (p) = f (p).

The coefficients bj must be the Fourier coefficients, i.e.,
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bj = 〈f,ψj 〉 = fj .


�
For a particular choice of kernel K with τj = e−λj t , the proposed kernel

regression ̂h = ∑k
j=0 τjfjψj should converge to the solution of the diffusion-like

equation.

Example 2 If L is the Laplace-Beltrami operator, (13) becomes an isotropic
diffusion equation as a special case and we are then dealing with heat kernel

Ht(p, q) =
∞
∑

j=0

e−λj tψj (p)ψj (q),

which is often explored mathematical objects in various areas [5, 18].

In order to construct wavelets on an arbitrary graph and mesh, diffusion wavelet
transform has been proposed recently [3, 29, 38]. The diffusion wavelet construction
has been fairly involving so far. However, its mathematical structure is related to
the proposed kernel smoothing. For scale function g that satisfies the admissibility
conditions [3, 29, 36, 38], diffusion wavelet Wt,p(p) at position p and scale t is
given by

Wt,q(p) =
k

∑

j=0

g(λj t)ψj (p)ψj (q).

If we let τj = g(λj t), the diffusion wavelet transform is given by

〈Wt,p, f 〉 =
∫

M
Wt,q(p)f (p) dμ(p) =

k
∑

j=0

τjfjψj (q),

which is the exactly kernel smoothing we introduced. Hence, the diffusion wavelet
transform can be simply obtained by doing the kernel smoothing with specific scale
function g [38]. If we let g(λj t) = e−λj t , we have

Wt,p(q) = Ht(p, q),

which is a heat kernel. The bandwidth t of heat kernel controls resolution while the
translation is done by shifting one argument in the kernel. Thus, although heat kernel
smoothing is not exactly diffusion wavelet, it shares the same algebraic formalism
and behaves similarly. Although the kernel smoothing is constructed using global
basis functions ψj , the kernel regression at each point p coincides with the diffusion
wavelet transform at that point. Hence, just like wavelets, the kernel smoothing will
have the localization property of wavelets.
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Fig. 4 The Gibbs phenomenon on a hat shaped simulated surface showing the ringing effect on the
SPHARM expansion (top) and the reduced effect on the heat kernel smoothing (bottom) [12, 13].
7225 basis functions were used for the both cases and the bandwidth t = 0.001 is used for heat
kernel smoothing

Another important property of heat kernel smoothing is the ability to reduce the
Gibbs phenomenon, which often occurs when we tried to represent signals with
rapid changes [12–14]. Example 3 illustrates how heat kernel smoothing can be use
in reducing ringing artifacts in a 3D step function.

Example 3 A hat-shaped step function is simulated in 3D as z = 1 for x2 + y2 < 1
and z = 0 for 1 ≤ x2 + y2 ≤ 2 (Fig. 4). Then the step function is reconstructed
using the SPHARM expansion via LSE (top) and kernel regression (bottom). In the
both cases, up to 7225 basis functions were used. For the kernel regression, the heat
kernel with bandwidth t = 0.0001 is used. LSE clearly shows the visible Gibbs
phenomenon, i.e., ringing artifact [13, 26] compared to the kernel regression.

3.3 Numerical Implementation

In this study, the Laplace-Beltrami operator is chosen as the self-adjoint operators
L of choice. The eigenfunctions of the Laplace-Beltrami operator on an arbitrary
curved surface is analytically unknown. So it is necessary to discretize (4) using the
Cotan formulation as a generalized eigenvalue problem [19, 47, 66]:

Cψ = λAψ, (18)
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where C is the stiffness matrix, A is the mass matrix and ψ = (ψ(p1), · · · , ψ(pn))
′

is the eigenfunction evaluated at n mesh vertices. Once we obtained the basis
functions ψj , the corresponding LB-eigenfunction expansion coefficients βj are
estimated as

βj = f′Aψj ,

where f = (f (p1), · · · , f (pn))
′ and ψj = (ψj (p1), · · · , ψj (pn))

′ [66]. Figure 2
shows few representative LB-eigenfunctions on the hyoid surface. For heat kernel
smoothing, we used the bandwidth t = 5 and 500 LB-eigenfunctions on the surface
of the hyoid bone. The number of eigenfunctions used is more than sufficient
to guarantee relative error less than 0.3% in our data. The MATLAB code for
computing the eigenfunctions and performing heat kernel smoothing is available
at http://www.stat.wisc.edu/~mchung/mandible.

3.4 Statistical Inference

We are interested in determining the significance of functional signals on manifolds.
We borrow the statistical parametric mapping (SPM) framework for analyzing and
visualizing statistical tests on surfaces that is often used in brain image analysis
[2, 17, 39, 57, 62, 65]. Since test statistics are constructed over all mesh vertices
on the surfaces, the multiple comparisons correction is needed. For continuous
functional data, the random field theory is often used [54, 62, 63]. The random
field theory assumes the measurements to be a smooth Gaussian random field. Heat
kernel smoothing will make the data more smooth and Gaussian and increase the
signal-to-noise ratio [17].

Consider a functional measurements f1, · · · , fn on manifold M . In the simplest
statistical setting, the measurements can be modeled as

fi(p) = h(p) + εi(p),

where h is an unknown group level signal and εi is a zero-mean Gaussian random
field [63]. At each fixed point p, we are assuming εi ∼ N(0, σ 2).

We are interested in determining the significance of h, i.e.

H0 : h(p) = 0 for all p ∈ M vs. H1 : h(p) > 0 for some p ∈ M . (19)

Note that any point p0 that gives h(p0) > 0 is considered as signal. The hypoth-
sis (19) is an infinite dimensional multiple comparisons problem for continuously
indexed hypotheses over the manifold M . The underlying group level signal h is
estimated using the proposed heat kernel smoothing. Subsequently, a test statistic
is given by a T-field T (p) or a F-field, which is simply given by the square of the
T-field [62, 63].

http://www.stat.wisc.edu/~mchung/mandible
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Under H0, the type-I error of testing hypotheses (19) is given by

α = P(T (p) > z for some p ∈ M )

= 1 − P(T (p) ≤ z for all p ∈ M )

= 1 − P
(

sup
p∈M

T (p) ≤ z
)

= P
(

sup
p∈M

T (p) > z
)

for observed threshold z, which is the maximum T (p) in the whole region M . Note
we are taking the sup operator over all M . For sufficiently high threshold z, the
multiple comparisons corrected type-I error of testing hypothesis (19) is given by

P
(

sup
p∈M

T (p) > z
)

=
d

∑

j=0

μj (M )ρj (z),

where μd(M ) is the j -th Minkowski functional or intrinsic volume of M and ρj

is the j -th Euler characteristic (EC) density of T-field [1, 54, 59, 63]. Since the
hyoid bone is compact with no boundary but has three disconnected components,
the Minkowski functionals are simply

μ2(M ) = area(M )/2

μ1(M ) = 0

μ0(M ) = χ(M ) = 3 × 2.

The term μ1 is zero since there is no boundary and μ0 is simply the Euler
characteristic of the template surface. Note that the Euler characteristic of a closed
surface with no hole or handle is 2 and there are three such surfaces. The EC-
densities of the T-field with ν degrees of freedom is given by

ρ0(z) = 1 − P(Tν ≤ z),

ρ1(z) = 1√
2t2

· 1

2π

(

1 + z2

ν
)−(ν−1)/2,

ρ2(z) = 1

2t2
· 1

(2π)3/2

Γ (ν+1
2 )

( ν
2 )1/2Γ (ν

2 )
z
(

1 + z2

ν

)−(ν−1)/2
.
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Fig. 5 The type-I error plot over bandwidth t of kernel smoothing for testing the difference
between the groups I and III on the middle hyoid bone. As the bandwidth increases, the multiple
comparisons corrected type-I error decreases. The bandwidth 5 is chosen for the study. The choice
of the bandwidth around 5 does not change the over-all type-I error much

The EC-density of the F-field is similarly given in [54, 63]. The EC-density has
the kernel bandwidth t in the formulation so the inference is done at a particular
smoothing scale. Figure 5 shows the type-I error plot over different bandwidth t of
the kernel regression in our application. As the bandwidth t goes to zero, the type-
I error increases. When t = 0, the kernel regression collapse to the usual Fourier
series expansion. Note that the LB-eigenfunction expansion with 500 eigenfunctions
is close to the original data without any smoothing. Hence, the proposed kernel
smoothing can be viewed as having substantially smaller type-I error compared
to the LB-eigenfunction expansion and the original data demonstrating a better
statistical performance. The type-II error and the statistical power can be similarly
computed.

Theorem 3 The statistical power P of testing the hypotheses

H0 : h(p) = 0 for all p ∈ M vs. H1 : h(p) = cσ > 0 for some p ∈ M .

using the T random field T (p) is given by

P(n) ≈ 1 − exp
[

−
d

∑

j=0

μj (M1)ρj (t
∗
α − c

√
n)

]

,
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Fig. 6 Schematic of the
hypothesis testing in
Theorem 3 when H1 is true.
Since the hyoid bone is
composed of three structures
(hyoid body and two greater
horns), we can have multiple
disconnected M1, where
c > 0

where t∗α is the α-quantile given by

α = P
(

sup
p∈M

T (p) > t∗α
)

.

Proof In the region M0 = M /M1 corresponding to H0,

f i(p) ∼ N(0, σ 2).

In the region M1 corresponding to H1,

f i(p) ∼ N(cσ, σ 2).

Figure 6 illustrates this setting, where M1 can be disconnected sets. Consider the
test statistic

T (p) = f̄ (p)

S(p)/
√

n
, (20)

where f̄ and S are the sample mean and standard deviation of the measurements
f i, · · · , f n. In M0, T (p) is a T random field with n − 1 degrees of freedom [1]. In
M1, T (p) can be written as

T (p) = T ′(p) + cσ

S(p)/
√

n
,
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where T ′(p) a T random field with n − 1 degrees of freedom. Since σ is usually
estimated using the standard deviation, approximately, we have S(p) = σ and the
test statistic becomes T (p) = T ′(p) + c

√
n in M1. At each fixed p, T (p) is no

longer a T random field but a non-central T random field [30]. Subsequently the
power P at the α-level is given by

P(n) = P
(

sup
p∈M1

T (p) > t∗α
)

(21)

= P
(

sup
p∈M1

T ′(p) > t∗α − c
√

n
)

, (22)

where t∗α is the α-quantile of supp∈M T (p) under H0, i.e.

α = P
(

sup
p∈M

T (p) > t∗α
)

.

Although (22) is intractable to directly compute, we can approximate (22) using the
expected Euler characteristic (EC) [59, 61]. The power (22) can be written as

P(n) =
d

∑

j=0

μj (M1)ρj (t
∗
α − c

√
n),

where μd(M ) is the j -th Minkowski functional or intrinsic volume of M and
ρj is the j -th EC-density of T-field [1, 54, 59, 60]. The expansion only works
for sufficiently large t∗α − c

√
n. The rate of the convergence is given in terms

of probability as O((t∗α)−1/2) [58]. For small thresholds, the power may not be
bounded between 0 and 1. Thus, it is necessary to use the exponential transform
to bound the power [30]. For small P(n), using the Taylor expansion, we can write
exp

[−P(n)
] ≈ 1−P(n). Equivalently, it is written as P(n) ≈ 1−exp

[−P(n)
]

.

This transformation guarantees the power estimation to be bounded between 0 and
1 [30]. Subsequently, the power is given by

P(n) = 1 − exp
[

−
d

∑

j=0

μj (M1)ρj (t
∗
α − c

√
n)

]

. (23)

Figure 7 displays the power P(n) over the sample size n for effect sizes c =
0.1, 0.2, 0.5 based on (23). The actual surface of the hyoid bone is taken as M
and 10% of surface area is taken as the signal region M1.


�
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Fig. 7 Statistical power over the sample size under the multiple comparisons. c is the effect size
using formula (23). The surface of the hyoid bone is taken as M and 10% of surface area is taken
as the signal region M1

3.5 Validation

The proposed method is validated against the iterated kernel smoothing [17, 18],
which smooth data as weighted average of neighboring mesh vertices using a
Gaussian kernel and its iterative application is supposed to approximate the diffusion
process. The iterated Gaussian kernel smoothing was also used as the baseline
method in [40]. We performed two simulations with small and large signal to
noise ratio (SNR) settings on a T-junction surface with three different curvatures:
convex, concave and almost flat regions (Fig. 8). Surface smoothing methods
perform differently under different curvatures. Three signal regions of different
sizes (colored red in Fig. 8) were taken as the ground truth at these regions and 60
independent functional measurements on the surface were simulated as |N(0, γ 2)|,
the absolute value of normal distribution with mean 0 and variance γ 2, at each mesh
vertex. Value 1 was then added to the regions in 30 of the measurements, which
served as group II, while the other 30 measurements were taken as group I. Group
I has distribution |N(0, γ 2)| while group II has distribution |N(1, γ 2)| in the signal
regions. Larger variance γ 2 corresponds to smaller SNR.

In Study I, γ 2 = 22 was used to simulate smaller SNR. Figure 8 shows the
simulation results. For iterated kernel smoothing [17, 18], we used bandwidth t =
0.5 and 100 iterations (second column). The expansion with 1000 LB eigenfunction
is used to smooth data, which is equivalent to heat kernel smoothing with zero
bandwidth (third column). For heat kernel smoothing, bandwidth t = 0.5 and 1000
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Fig. 8 Simulation study on a T-junction shaped surface where three regions of different sizes
are taken as the ground truth (colored red in group II - ground truth). 60 independent functional
measurements on the T-junction were simulated as |N(0, γ 2)| at each mesh vertex. Value 1 was
added to the ground truth region in 30 measurements, which served as group II while the other
30 measurements were taken as group I. T-statistics are shown for these simulations (original) and
three techniques with bandwidth 0.5. Heat kernel smoothing performed the best in detecting the
ground truth regions

eigenfunctions were used (fourth column). We then performed a two sample t-
test with the random field theory corrected threshold of 4.90 to detect the group
difference at α = 0.05 level. The noise added raw data were able to correctly
identify only 3% of signal regions but also detected 3% of non-signal regions as
signal. Iterated kernel smoothing also was able to identify only 3% of signal regions
as signal but also detected 3% of non-signal regions as signal. The LB eigenfunction
expansion were able to correctly identify 25% of signal regions but did not detect
any signal in non-signal regions as signal. In comparison, heat kernel correctly
identified 94% of the signal regions and incorrectly identified 0.4% of non-signal
regions as signal. The proposed heat kernel smoothing performed very well in the
small SNR setting.

In Study II, γ 2 = 1 was used to simulate functional measurements with
substantially larger SNR. The same parameters were used as in Study I. The noise
added raw data was able to correctly identify 88% of signal regions and did not
detect any signal in non-signal regions as signal. Iterated kernel smoothing was able
to correctly identify 91% of signal regions and did not detect any signal in non-
signal regions as signal. LB eigenfunction expansion was able to correctly identify
only 94% of signal regions and did not detect any signal in non-signal regions as
signal. In comparison, heat kernel correctly identified 97% of the signal regions and
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incorrectly identified 1.5% of non-signal regions as signal. Although all the methods
performed well in small SNR setting, the proposed heat kernel smoothing performed
the best.

4 Application

4.1 CT Imaging Data and Preprocessing

This study consists of high resolution CT images of 70 typically developing
individuals ages between 0 and 20 years (mean age 8.0 ± 11.3 years). CT scans were
converted to DICOM format and Analyze 8.1 software package (AnalyzeDirect,
Inc., Overland Park, KS) was then used in segmenting binary hyoid bone images by
a trained individual rater in the native space by simple image intensity thresholding
and careful manual editing [10, 16]. A nonlinear image registration using the
diffeomorphic shape and intensity averaging technique with cross-correlation as
similarity metric was performed through Advanced Normalization Tools (ANTS)
[4]. Some individual may have larger hyoid than others so it was necessary
to remove the global size differences in local shape modeling. From the affine
transformed individual hyoid surfaces, we performed the diffeomorphic nonlinear
image registration to the template. A study-specific template was constructed as
follows. We chose a 12 year old female identified as F155 as the initial template
and aligned the remaining 69 hyoids to this template affinely to remove the overall
size variability. F155 was carefully chosen among all other segmentation results by
visual inspection to have no segmentation artifacts. Further, it was constantly used as
a reference template in previous studies [49, 50]. By averaging the inverse deforma-
tion fields from the initial template to individual hyoid, we obtained the yet another
final template. Since the final template is the average of all other surfaces, the final
localized growth pattern is not much influenced by the choice of the initial template.

Image acquisition error, discretization error, and image preprocessing noises in
segmentation and registration often result in noisy deformation fields. The proposed
heat kernel smoothing was applied to the displacement vector fields to smooth
out high frequency noises. 70 individuals are binned into three age groups: ages
between 0 and 6 years (group I), between 7 and 12 years (group II), and between
13 and 19 years (group III). There are 26, 14 and 30 individuals in group I, II
and III respectively. The main biological hypothesis of interest is if there is any
localized hyoid bone growth spurts between these specific age groups. The age range
is chosen based on prior bone growth studies [35], where similar age binning is used
in modeling the growth of mandible, which is located in the close proximity to the
hyoid bone.
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Fig. 9 Left: Hyoid F155 which forms an initial template MI . All other hyoids are affine registered
to F155. Middle: The superimposition of affine registered hyoids showing local misalignments.
Diffeomorphic registration is then performed to register misaligned affine transformed hyoids.
Right: The average of deformation with respect to F155 provides the final population average
template MF where statistical parametric maps will be constructed

4.2 Results

Figure 9 shows the initial and final templates. The isosurface of the final template
volume is extracted using the marching cubes algorithm [41]. The displacement
from the template to an individual surface is obtained at each mesh vertex. Figure 10
shows the mean displacement differences between the groups I and II (top) and
II and III (bottom). Each row shows the group differences of the displacement:
group II–group I (first row) and group III–group II (second row). The arrows are
the growth direction given by the mean displacement differences and colors indicate
their lengths in mm. We are interested in localizing the regions of hyoid bone growth
between the age groups.

Since the length measurement provides a much easier biological interpretation,
we used the length of displacement vector as a response variable among many other
possible features. Since the length on the template surface is expected to be noisy
due to image acquisition, segmentation and image registration errors, it is necessary
perform the proposed kernel regression and subsequently reduce the type-I error
and obtain more stable SPM. Figure 3 shows an example of kernel smoothing
on our data. The kernel smoothing increases the signal-to-noise ratio (SNR) and
improves the smoothness and Gaussianness of data. Subsequently, the heat kernel
smoothing of the displacement length is taken as the response variable. We have
chosen t = 5 as the bandwidth for the study since the bandwidth 5 is where the
type-I error starts to flatten out in Fig. 5. Note that the LB-eigenfunction expansion
with 500 eigenfunctions is close to the original data (relative error of less than 0.3%).
Hence, performing the proposed kernel regression before the statistical analysis can
substantially smaller type-I error demonstrating its effectiveness.
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Fig. 10 Hyoid bones are binned into three age groups: group I (ages 0 and 6), group II (ages 7 and
12) and group III (ages 13 and 19) and the mean displacements between the groups are visualized.
Each row shows the mean group differences of the displacement: group II–group I (first row) and
group III–group II (second row). The arrows are the mean displacement differences and colors
indicate their lengths in mm

After the displacement lengths are smoothed, we constructed the F-field, or
equivalently the T-field square, for testing the length difference between the age
groups I and II, II and III, and I and III showing the regions of growth spurts
between different age range (Fig. 11). Since test statistics are constructed over all
mesh vertices on the hyoid bone, multiple comparisons were account for using the
random field theory [62, 63].

For testing the differences between the groups I and II, II and III, and I and III,
they are based on F-field with 1 and 38, 1 and 42, and 1 and 54 degrees of freedom
respectively. The result is displayed in Fig. 11, where the significant results were
only found between the groups II and III (middle), and I and III (bottom) at α = 0.1
level. Between the groups I and II, we obtained maximum F -statistic value of 4.58
(left hyoid), which is not significant enough. Between the groups II and III, we the
maximum F-statistic value of 9.36 (right hyoid), which corresponds to the p-value
of 0.13 (corrected). Between the groups I and III, we obtained the maximum F -
statistic value of 10.55 (middle hyoid), which corresponds to the p-value of 0.074
(corrected). The multiple comparisons were done over the whole hyoid bone. If
we perform the multiple comparisons for each of the three components of the hyoid
bone, we can boost the signal a bit. For instance, restricted to the middle hyoid bone,
the maximum F -statistic value of 10.55 will correspond to the p-value of 0.028.
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Fig. 11 F-statistic maps on hyoid showing age effect between the groups. The significant growth
regions (red) are identified only between groups II and III, and I and III. The growth is highly
localized near the regions that connect the disconnected hyoid bones

5 Conclusions

We have developed a new kernel regression framework on a manifold that unifies
bivariate kernel regression, heat diffusion and wavelets in a single coherent math-
ematical framework. The kernel regression is robust both globally and locally in
that it uses global basis functions to perform regression but locally related to the
diffusion wavelet transform. The proposed framework is demonstrated to reduce the
type-I error in modeling shape variations compared to the usual LB-eigenfunction
expansion. The method is then used in developing a statistical inference procedure
for functional signals on manifolds.
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