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The brain surfaces including both cortical and subcortical structures including hip-

pocampus have been analyzed for more than a decade using publicly available software

packages such as FreeSurfer (Dale & Fischl 1999) and SurfStat (Worsley et al. 2009, Chung

et al. 2010). Zhang et al. (2022) proposes an elastic shape metric based method for perform-

ing longitudinal shape analysis on brain subcortical structures. However, the demonstrated

applications are limited to global summary measures such as the total surface area and prin-

ciple component (PC) scores significantly limiting the impact of the study. For analyzing

total surface area, we do not even need to align structures using LESA. PC scores loose

richer vertex-based local information and it is unclear what parts of the hippocampus are

responsible for longitudinal change. A more effective approach is to perform local shape

analysis using the deformation-based morphometry (DBM) and tensor-based morphometry

(TBM) after obtaining deformation in LESA (Ashburner et al. 1998, 2000, Thompson et al.

2000). Considering elastic methods put severe constraints on the Jacobian determinant of

image deformation (Chung et al. 2001), it is not clear LESA can be effectively used in local

shape analysis. We contrast shape analysis done in Zhang et al. (2022) against DBM and

TBM in a longitudinal hippocampus study (Chung et al. 2011).

The deformation-based morphometry (DBM) utilizes the deformation field obtained
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Figure 1: Hippocampus longitudinal study of 124 children showing localized growth pattern

difference between high-income (above $75000) and low-income (below $35000) families

(Chung et al. 2011). The F -statistics map on testing the interaction between income

and age while controlling for sex in a mixed-effects model is computed in SurfStat. The

arrows are the average displacement differences between high and low income families. The

posterior region is enlarging while the midbody and the anterior parts of right hippocampus

are shrinking in low-income families (corrected p-value < 0.03). The developmental pattern

is the opposite for high-income families.

through nonlinear image registration (Ashburner et al. 1998, Chung et al. 2001). In DBM,

it is possible to detect local shape differences within the hippocampus and identify exactly
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what subregion of hippocampus is responsible for the most growth (Figure 1). Given

surface M, the deformation is given as a 3D vector field d(x) at vertex x ∈ M. The

deformation can be represented in the Lagrangian coordinate system as d(x) = x + U(x),

where U = (U1, U2, U3) is the displacement in the elastic deformation theory and measures

a relative movement of vertex x (Chung et al. 2001). The longitudinal change over time t

can be then modeled as ∂U
∂t
(x, t) = L(U) + Σ1/2(x)ϵ(x). If the change is assumed to follow

a diffusive behavior, then L is the Laplacian. If the morphological changes follow a fluid

dynamics model or elastic deformation, L becomes the Navier-Stokes or elastic operator

(Chung et al. 2001). Σ is the symmetric positive definitive covariance matrix allowing

correlations between components of the deformations. The error vector field ϵ is assumed

to be zero mean and unit standard deviation possibly Gaussian (Worsley et al. 1996).

In contrast to DBM, TBM quantifies the differential qualities called the displacement

tensor ∂U
∂x

= (∂Ui

∂xj
) (Thompson et al. 2000, Chung et al. 2001). Suppose surface M is param-

eterized by x = X(v) with parameters v = (v1, v2) ∈ R2. The partial derivatives Xi = ∂X/

∂vi forms the basis in the tangent space. The Riemannian metric tensor g = (gij) is then

given by the inner product gij = ⟨Xi, Xj⟩, which measures the amount of the deviation from

the flat Euclidean plane. Unlike analyzing the total surface area
∫
X−1(M)

√
det g du as in

Zhang et al. (2022), we can analyze the local area element
√
det g at the vertex resolution,

the generalization of the Jacobian determinant, often used in TBM (Chung et al. 2003).

Often DBM and TBM provide complimentary local shape information (Chung et al. 2001).

Since Zhang et al. (2022) only analyzed single summary measure per surface, it does not

have multiple comparisons. The multiple comparisons across all the vertices is traditionally

handled through the random field theory (Worsley et al. 1996). The random field theory

is implemented in most brain imaging tools such as SPM (Ashburner et al. 1998) and
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SurfStat (https://laplcebeltrami.github.io/SurfStat) (Worsley et al. 2009, Chung

et al. 2010). SurfStat is the most widely used MATLAB package for building both fixed-

and mixed-effects models for brain surface data. Mixed-effect model parameters are esti-

mated using the restricted maximum likelihood (REML). SurfStat utilizes a model formula

approach similar to R and we can simply set up a mixed-effect model used in Figure 1 as

lm = 1+ Sex + Age + Group + Age*Group + random(Subject) + I;

making variable Subject into a random effect. Identity matrix I is added to allow for

independent noise in every subject. Then the corrected corrected p-value of test statistic

T is reported as P
(
supx∈M T (x) ≥ y

)
. Figure 1 displays the output of SurfStat.
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