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Abstract
This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops

the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters

via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to

approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain

image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies

(OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that

the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a

similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The

LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings

suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn

spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators

(graph Laplacian and LB operator).

Keywords Graph convolutional neural network � Signals on surfaces � Chebyshev polynomial � Hermite polynomial �
Laguerre polynomial � Laplace–Beltrami operator.

1 Introduction

Graph convolutional neural networks (graph-CNNs) are

deep learning techniques that apply to graph-structured

data. Graph-structured data are in general complex, which

imposes significant challenges on existing convolutional

neural network algorithms. Graphs are irregular and have a

variable number of unordered vertices with different

topology at each vertex. This makes important algebraic

operations such as convolutions and pooling challenging to

apply to the graph domain. Hence, existing research on

graph-CNN has been focused on defining convolution and

pooling operations.

There are two types of approaches for defining convo-

lution on a graph: one through the spatial domain and the

other through the spectral domain [8, 57]. Existing spatial

approaches, such as diffusion-convolutional neural net-

works (DCNNs) [2], PATCHY-SAN [18, 44], gated graph

sequential neural networks [37], DeepWalk [46], message-

passing neural network (MPNN) [21], develop convolution

in different ways to process the vertices on a graph whose

neighborhood has different sizes and connections. An

alternative approach is to take into account of the geometry

of a graph and to map individual patches of a graph to a

representation that is more amenable to classical convo-

lution, including 2D polar coordinate representation [41],

local windowed spectral representation [5], anisotropic

variants of heat kernel diffusion filters [6, 7], Gaussian

mixture model kernels [43].
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On the other hand, several graph-CNN methods called

‘‘spectral graph-CNN’’ defines convolution in the spectral

domain[9, 14, 23, 32, 35, 51, 56]. The advantage of spectral

graph-CNN methods lies in the analytic formulation of the

convolution operation. Based on the spectral graph theory,

Bruna et al. [9] proposed convolution on graph-structured

data in the spectral domain via the graph Fourier transform.

However, the eigendecomposition of the graph Laplacian

for building the graph Fourier transform is computationally

intensive when a graph is large. Moreover, spectral filters

in [9] are non-localized in the spatial domain. Defferrard

et al. [14] addressed these problems by proposing Cheby-

shev polynomials to parametrize spectral filters such that

the resulting convolution is approximated by the polyno-

mials of the graph Laplacian. Kipf and Welling [32]

adopted the first-order polynomial filter and stacked more

spectral convolutional layers to replace higher-order poly-

nomial expansions. In [14, 51], it is shown that the k-order

Chebyshev polynomial approximation of graph Laplacian

filters performs the k-ring filtering operation.

In this study, we revisited the spectral graph-CNN based

on the graph Laplacian [14, 51] and developed the

Laplace–Beltrami CNN (LB-CNN) , where spectral filters

are designed via the Laplace–Beltrami (LB) operator on a

graph. We studied the LB operator because it can charac-

terize the underlying geometry of graphs. This may be

particularly important for studying human organs since the

geometry of human organs reflects their intrinsic and

complex anatomy, as well as physiological functions. For

instance, the cerebral cortex is composed of ridges (gyri)

and valleys (sulci). Due to the way gyri and sulci are

curved, the cortex is thicker in gyri but thinner in sulci.

Hence, it is preferred to represent brain images in a way

that the underlying geometrical information is encoded.

One can express the cerebral cortex as a surface embedded

in the 3D Euclidean space. Existing literature has demon-

strated that such representation incorporates useful geom-

etry information of the brain into machine learning for

disease diagnosis [1, 19, 49, 55]. When spectral filters are

designed based on the LB operator, we expect that the

convolution with these filters incorporates the geometry of

the underlying graph. Hence, we call these filters as LB

spectral filters.

Next, we investigated whether the proposed LB-CNN is

superior to the graph-CNN [14, 51] because the LB oper-

ator incorporates the intrinsic geometry of a graph but not

the graph Laplacian [47]. We further explored the feasi-

bility of polynomials to approximate LB spectral filters in

the LB-CNN as used in the graph-CNN [14, 51]. Beyond

Chebyshev polynomials used in the graph-CNN [14, 51],

Laguerre and Hermite polynomials were explored in this

study since these polynomials have potentials to

approximate the heat kernel convolution on a graph as

shown in [26, 52].

In this paper, we first reviewed the relevant work of the

graph-CNN. In the method section, we introduced the

design of LB spectral filters, their parameterization using

Chebyshev, Laguerre, Hermite polynomials, and spatial

localization. We then discussed the architecture of the LB-

CNN while introducing rectified linear unit (ReLU), graph

coarsening and pooling, and an update of the LB-operator.

In the result section, we first illustrated the spatial local-

ization of the LB spectral filters. Finally, we employed the

brain image data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) and Open Access Series of

Imaging Studies (OASIS)-3 cohort, and demonstrated the

use of the proposed LB-CNN and its classification accuracy

and robustness. We compared the computational time and

classification performance of the LB-CNN with the spec-

tral graph-CNN [14, 51] when Chebyshev, Laguerre, and

Hermite polynomials were used. We employed the trained

LB-CNN from the ADNI dataset to the OASIS dataset to

examine the robustness of the LB-CNN.

Therefore, the contributions of this study are but not

limited to

• providing the approximation of LB spectral filters using

Chebyshev, Laguerre, Hermite polynomials and their

implementation in the LB-CNN;

• updating the LB operator for pooling in the LB-CNN;

• incorporating larget datasets for experiments;

• demonstrating the feasibility of using the LB operator

and different polynomials for graph-CNNs.

2 Related work

The most relevant work to this study is the spectral graph-

CNN [9, 14, 23, 32, 35, 51, 56]. Similar to classical CNN,

it comprises of three components, convolution on a graph,

rectified linear unit (ReLU), and pooling. We now review

the convolution operation in the spectral graph-CNN.

Denote a graph as G ¼ fV ;Eg defined by vertex set V

and edge set E with the weight of edge connecting vertex i

and j being wij. Then, the graph Laplacian associated with

G is defined as

D ¼ D�W

where W ¼ ðWijÞ is the weighted adjacency matrix and

D ¼ ðDijÞ is the diagonal degree matrix with Dii ¼
P

j Wij.

Assume that d has the eigendecomposition D ¼ UKUT,

where K ¼ ðkjÞ is a diagonal matrix consisting of the

eigenvalues and U ¼ ½w0;w1; . . .� is the Fourier basis

consisting of the eigenvectors [14]. Then, the convolution
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of a graph signal f and a spectral filter g with spectrum gðkÞ
on the graph can be written as

h ¼ gðDÞf ¼ UgðKÞUTf :

This formulation inspires the spectral convolutional layer

in the spectral graph-CNN introduced by Bruna et al. [9].

However, the computation of the eigendecomposition of D
is costly. The forward and inverse graph Fourier transforms

(U and UT) in each spectral filter are a lack of fast com-

putation and cause a computational bottleneck in the graph-

CNN, especially when graphs are large scale. Moreover,

the spectral filters, where gðkÞ are designed as linear

combinations of cubic B-spline basis, may not spatially

localized [15, 23].

3 Methods

In this section, we will introduce the LB-CNN and its three

major components, including convolution, rectified linear

unit (ReLU), and pooling. We will first describe LB

spectral filters in the convolutional layer. In particular, we

will introduce the polynomial approximation of the LB

spectral filters to overcome challenges on (1) computa-

tional time; (2) spatial localization. We then define a

pooling operation via coarsening a graph and updating the

LB operator.

3.1 Laplace–Beltrami spectral filters

3.1.1 Polynomial approximation of LB spectral filters

Consider the Laplace–Beltrami (LB) operator D on surface

M. Let wj be the jth eigenfunction of the LB-operator with

eigenvalue kj

Dwj ¼ kjwj ; ð1Þ

where 0 ¼ k0 � k1 � k2 � � � �. A signal f(x) on the surface

M can be represented as a linear combination of the LB

eigenfunctions

f ðxÞ ¼
X1

j¼0

cjwjðxÞ ; ð2Þ

where cj is the jth coefficient associated with the eigen-

function wjðxÞ.
We now consider an LB spectral filter g on M with

spectrum gðkÞ as:

gðx; yÞ ¼
X1

j¼0

gðkjÞwjðxÞwjðyÞ: ð3Þ

Based on Eq. (2), the convolution of a signal f with the

filter g can be written as:

hðxÞ ¼ g � f ðxÞ ¼
X1

j¼0

gðkjÞcjwjðxÞ: ð4Þ

As suggested in [12, 14, 22, 31, 52, 53], the filter spectrum

gðkÞ in Eq. (4) can be approximated as the expansion of

Chebyshev polynomials, Tk, k ¼ 0; 1; 2; . . .;K � 1, such

that

gðkÞ ¼
XK�1

k¼0

hkTkðkÞ : ð5Þ

hk is the kth expansion coefficient associated with the kth

Chebyshev polynomial. Tk is the Chebyshev polynomial of

the form TkðkÞ ¼ cosðk cos�1 kÞ. The left panel on Fig. 1

shows the shape of the kth Chebyshev polynomial up to

order 6. We can rewrite the convolution in Eq. (4) as

hðxÞ ¼ g � f ðxÞ ¼
XK�1

k¼0

hkTkðDÞf ðxÞ: ð6Þ

Likewise, gðkÞ in Eq. (4) can also be approximated using

other polynomials, such as Laguerre or Hermite polyno-

mials [45]. Tk in Eq. (6) can be replaced by Laguerre, Lk, or

Hermite, Hk, polynomials, where

LkðkÞ ¼
Xk

l¼0

k

l

� �
ð�kÞl

l!
;

HkðkÞ ¼ k!
Xbk=2c

l¼0

ð�1Þlð2kÞk�2l

l!ðk � 2lÞ! ;

ð7Þ

In this paper, we adopt the following normalized definition

of Hermite polynomials:

�HkðkÞ ¼
1
ffiffiffiffiffiffiffiffi
2kk!

p HkðkÞ ð8Þ

where the inner product of �Hk with itself is independent of

k. The last two panels of Fig. 1 show the shapes of

Laguerre and Hermite polynomials up to order 6,

respectively.

3.1.2 Numerical implementation of LB spectral filters
via polynomial approximations

We now discretize the surface M as a triangulated mesh,

G ¼ fV ;Eg, with a set of triangles and vertices vi. For the

implementation of the LB spectral filters, we adopt the

discretization scheme of the LB operator in [52]. The ijth

element of the LB-operator on G can be computed as:
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Dij ¼ Cij=Ai; ð9Þ

where Ai is estimated by the Voronoi area of nonobtuse

triangles [42] and the Heron’s area of obtuse triangles

containing vi [42, 52]. The off-diagonal entries are defined

as Cij ¼ �ðcot hij þ cot/ijÞ=2 if vi and vj form an edge,

otherwise Cij ¼ 0. The diagonal entries Cii are computed as

Cii ¼ �
P

j Cij. Other cotan discretizations of the LB

operator are discussed in [10, 11, 48]. When the number of

vertices on M is large, the computation of the LB eigen-

functions can be costly [25].

For the sake of simplicity, we denote the kth order

polynomial as Pk, where Pk can represent Chebyshev,

Laguerre, or Hermite polynomial. We take the advantage

of the recurrence relation of these polynomials (Table 1)

and compute LB spectral filters recursively as follows.

1. compute D based on Eq. (9) for the triangulated mesh

G;

2. compute the maximum eigenvalue kmax of D. For the

standardization across surface meshes, we normalize D

as eD ¼ 2D
kmax

� I such that the eigenvalues are mapped

from ½0; kmax� to ½�1; 1� for Chebyshev polynomials

[14, 26]. I is an identity matrix. For Laguerre and

Hermite polynomials, we normalize D as eD ¼ 2D
kmax

,

which maps the eigenvalues from ½0; kmax� to [0, 2];

3. for a signal f(x), compute PkðeDÞf ðxÞ recursively by

Pkþ1ðeDÞf ¼ Ak
eD PkðeDÞf þ BkPkðeDÞf þ CkPk�1ðeDÞf ;

ð10Þ

with the initial conditions P�1ðeDÞf ðxÞ ¼ 0 and

P0ðeDÞf ðxÞ ¼ f ðxÞ. The recurrence relations of different

polynomials are given in Table 1.

Step 3 is repeated from k ¼ 0 till k ¼ K � 2.

3.1.3 Localization of spectral filters based on polynomial
approximations

Analogue to the spatial localization property of Chebyshev

polynomial approximation of graph Laplacian spectral fil-

ters [14], we can show that Chebyshev, Laguerre, or Her-

mite polynomial approximation of LB spectral filters also

have this localization property. We consider the dis-

cretization of D given in Eq. (9). Consider two vertices vi
and vj on G. We can define the shortest distance between vi
and vj, denoted by dGði; jÞ, as the minimum number of

edges on the path connecting vi and vj. Hence,

ðDKÞi;j ¼ 0 if dGði; jÞ[K; ð11Þ

where DK denotes the K-th power of the LB operator D
[52]. In other words, the coverage of ðDKÞi;j is localized in

the ball with radius k from the central vertex.

PkðDÞ can be represented in terms of D0;D; . . .;Dk and is

k-localized ðPkðDÞÞi;j ¼ 0 if dGði; jÞ[ k according to

Eq. (11). The spectral filter g composed of P0ðDÞ, P1ðDÞ,
..., PK�1ðDÞ is a spatially localized filter with localization

property given by

Fig. 1 Chebyshev, Laguerre and

Hermite polynomials of order

from 1 to 6. The eigenvalues

were scaled and shifted to

½�1; 1� for Chebyshev

polynomials and to [0, 2] for

Laguerre and Hermite

polynomials, where kmax is the

maximum eigenvalue of the LB-

operator

Table 1 The recurrence relation

of Chebyshev, Laguerre and

Hermite polynomials in spectral

filtering

Method Recurrence relations

Chebysheva
Tkþ1ðeDÞf ¼ ð2 � dk0ÞeD TkðeDÞf � Tk�1ðeDÞf

Laguerre
Lkþ1ðeDÞf ¼ �eD LkðeDÞfþð2kþ1ÞLkðeDÞf�kLk�1ðeDÞf

kþ1

Hermite �Hkþ1ðeDÞf ¼
ffiffiffiffiffiffi

2
kþ1

q
eD �HkðeDÞf �

ffiffiffiffiffiffi
k

kþ1

q
�Hk�1ðeDÞf

a dk0 is Kronecker delta
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gðDÞð Þi;j¼ 0 if dGði; jÞ[K � 1: ð12Þ

In practice, we can also show the spatial localization of

filter g composed of P0ðDÞ, P1ðDÞ, ..., PK�1ðDÞ by applying

g to an impulse signal fj with 1 at vertex vj and 0 at the

others. Then, the filter output is given by

gðx; vjÞ ¼
PK�1

k¼0 hkPkðDÞfjðxÞ. When x ¼ vi satisfying

dGði; jÞ[K � 1, since ðPkðDÞÞi;j ¼ 0, we have

gðvi; vjÞ ¼
XK�1

k¼0

hk PkðDÞfjðxÞ
� �

i
¼

XK�1

k¼0

hk PkðDÞð Þij¼ 0:

ð13Þ

3.2 Rectified linear unit

Similar to classical CNN, a rectified linear unit (ReLU) in

the LB-CNN can be represented by many nonlinear acti-

vation functions. The activation function is a map from R

to R, which does not involve any geometrical property of a

triangulated mesh. In our proposed LB-CNN on a mesh, we

adopt the well-known ReLU:

rðzÞ ¼ maxf0; zg; z 2 R:

3.3 Mesh coarsening and pooling

For the LB-CNN, the pooling layer involves mesh coars-

ening, pooling of signals, and an update of the LB operator.

First, we adopt the Graclus multilevel clustering algorithm

[16] to coarsen a graph based on the graph Laplacian. This

algorithm is built on the METIS [30] to cluster similar

vertices together from a given graph by a greedy algorithm.

At each coarsening level, two neighboring vertices with

maximum local normalized cut are matched until all ver-

tices are explored [50].

In our case, the discrete LB-operator D in Eq. (9) is

used. The local normalized cut on a mesh is computed by

�Dijð1=Dii þ 1=DjjÞ. The coarsening process is repeated

until the coarsest level is achieved. After coarsening, a

balanced binary tree is generated where each node has

either one (i.e., singleton) or two child nodes. Fake nodes

are added to pair with those singleton. The weights of the

edges involving fake nodes are set as 0. Then, the pooling

on this binary tree can be efficiently implemented as a

simple 1-dimensional pooling of size 2. For the update of

the LB operator for a coarsen mesh, when two matched

vertices are merged as a new vertex together at a coarser

level, the weight of the new vertex is defined as the sum of

the weights of the edges involving the two vertices. By

doing so, each coarsened mesh has its updated D.

3.4 LB-CNN architecture

We are now well equipped with all the components for a

LB-CNN network. The LB-CNN network is composed of

total Lþ 1 connected stages. The first L stages are the

stages for feature extraction. Each stage contains three

sequentially concatenated layers: (1) a convolutional layer

with multiple LB spectral filters; (2) a ReLU layer; (3) a

pooling layer with stride 2 or higher that uses average

pooling. In the last stage, a fully connected layer followed

by a softmax function is employed to make a decision, and

the output layer contains classification labels.

Figure 2 illustrates one of LB-CNN architectures that

are analogous to classical CNN for image data defined on

equi-spaced grids. In this example, the i-th convolution

layer is composed of 2iþ2 LB spectral filters that can be

approximated using Chebyshev, Laguerre, and Hermite

polynomials, an ReLU, and an average pooling with

pooling size 2maxf5�i;1g and stride being the same as the

pooling size. In the fully connected layer, there are 128

hidden nodes, and an l2-norm regularization with weight of

5 � 10�4 is applied to prevent overfitting.

All the networks can be trained by the back propagation

algorithm with 30 epochs, mini-batch size of 32, initial

learning rate of 10�3, learning rate decay of 0.05 for every

20 epochs, momentum of 0.9 and no dropout.

All the network models were implemented and trained

using Python 3.7 (www.python.org) and TensorFlow

1.13.1 (www.tensorflow.org) library on NIVIDIA Tesla

V100-SXM2 GPU with 32GB RAM and Intel Xeon Gold

5118 CPU with 2.30GHz.

3.5 Evaluation metrics

In this study, we quatify the classification performance

using four metrics: accuracy (ACC), sensitivity (SEN)

specificity (SPE), and geometric mean (GMean). These

metrics are defined as:

ACC ¼ TP þ TN

TP þ TN þ FN þ FP
;

SEN ¼ TP

TP þ FN
;

SPE ¼ TN

TN þ FP
;

GMean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEN � SPE

p
;

where TP, TN, FN, and FP are the true positive, true

negative, false negative and false positive, respectively.
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3.6 Datasets and MRI processing

We utilized the structural T1-weighted MRI from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)-2

cohort (http://adni.loni.ucla.edu) and the Open Access

Series of Imaging Studies (OASIS)-3 cohort (www.oasis-

brains.org). This study aimed to illustrate the use of the

LB-CNN and spectral graph-CNN via the HC/AD classi-

fication since it has been well studied using T1-weighted

image data (e.g., [3, 13, 24, 27, 34, 38, 39, 53]). Hence, this

study only involved subjects with HC or AD scans. Each

subject may have multiple MRI scans due to multiple

visits. We included all T1-weighted images with good

quality after processing but excluded scans without clinical

label, age, or gender information.

ADNI-2 cohort We included 653 subjects aged from 55

to 95 years from the ADNI-2 cohort (400 HC subjects ; 261

AD subjects). There were 8 subjects who fell into both

diagnostic groups due to the conversion from HC to AD.

There were total 1122 scans for HC and 587 scans for AD.

OASIS-3 cohort The OASIS-3 dataset included 1014

subjects aged from 42 to 97 years (776 HC subjects; 267

AD subjects). There were 29 subjects who fell into both

diagnostic groups due to the conversion from HC to AD.

There was a total of 1925 scans (1603 for HC; 322 for AD).

Structural MRI Preprocessing The structural T1-

weighted images from both cohorts were segmented using

FreeSurfer (version 5.3.0) [20]. The white and pial cortical

surfaces were generated at the boundary between white and

gray matter and the boundary of gray matter and CSF,

respectively. Cortical thickness was computed as the dis-

tance between the white and pial cortical surfaces. It rep-

resents the depth of the cortical ribbon. We represented

cortical thickness on the mean surface, the average

between the white and pial cortical surfaces. We employed

large deformation diffeomorphic metric mapping

(LDDMM) [17, 58] to align individual cortical surfaces to

the atlas and transferred the cortical thickness of each

subject to the atlas. The cortical atlas surface was repre-

sented as a triangulated mesh with 655,360 triangles and

327,684 vertices. At each surface vertex, a spline regres-

sion implemented by piecewise step functions [29] was

performed to regress out the effects of age and gender. The

residuals from the regression were used in the below

spectral graph-CNN and LB-CNN.

4 Results

4.1 Spatial localization of the LB spectral filters
via polynomial approximations

Figure 3 shows the localization property of spectral filters

using the Chebyshev, Laguerre and Hermite polynomials.

Fig. 2 An example of LB-CNN

architectures for the

classification of health controls

(HC) and Alzheimer’s Disease

(AD) patients. The cortical

surface is represented as a

triangulated mesh with 655,360

triangles and 327,684 vertices
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The input signal is 1 at only one vertex and 0 at all other

vertices of the hippocampus. The PkðDÞ is strictly localized

in a ball of radius k, i.e., k rings from the central vertex.

Figure 4

The first panel on Fig. 4 considers a signal having 1 on a

small patch and 0 on the rest of a hippocampus surface

mesh with 1184 vertices and 2364 triangles. Figure 4

shows the convolutions of this signal with spectral filters

g ¼ Tk, Lk or �Hk for k ¼ 1; 4; 7; 10. The spectral filters

designed by different polynomials show different impacts

on the signal in the spatial domain. These findings sug-

gested that the spectral LB filters generated by different

polynomials covers a larger spatial area when the order of

the polynomials, k, increases.

4.2 Comparison of spectral graph-CNN and LB-
CNN

We aimed to compare the computational cost and classi-

fication accuracy of the spectral graph-CNN [14, 53] and

LB-CNN on the cortical thickness of the HC and the AD

patients, while Chebyshev, Laguerre and Hermite polyno-

mials were used to approximate spectral filters (Table 2).

In our experiments, the architecture of the spectral

graph-CNN and LB-CNN was the same as shown in Fig. 2

except the number of layers. Ten-fold cross-validation was

applied to the dataset (HC: n ¼ 1122; AD: n ¼ 587). One

fold of real data was left out for testing. The remaining nine

folds were further separated into training (75%) and vali-

dation (25%) sets randomly. To prevent potential data

leakage in the ten-fold cross-validation, we constructed

Fig. 3 The first panel shows the signal with 1 at one vertex and 0 at the other vertices of the hippocampus. The rest of panels show the spatial

localization of spectral filters using Chebyshev Tk , Laguerre Lk and Hermite �Hk polynomials for k ¼ 1; 2; . . .; 5

Fig. 4 The first panel shows the

input signal, where 1 is on a red

region and 0 on the rest of the

hippocampus. The rest of panels

show the signals after filtering

via LB spectral filters, g ¼ Tk,
Lk and �Hk for k ¼ 1; 4; 7; 10,

where Tk , Lk and �Hk are the

Chebyshev, Laguerre, and

Hermite polynomials,

respectively
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non-overlap training, validation, and testing sets with

respect to subjects instead of MRI scans. This ensured that

the scans from the same subjects were in the same set. The

above data splitting was done for the HC and AD groups

separately so that the ratio of the number of subjects in the

two groups was similar in all sets.

4.2.1 Computational cost

The computation cost of the LB-CNN was similar to that of

the spectral graph-CNN since they only differred in the

edge weights between vertices. The computation of the LB-

operator or the graph operator only took 1.2 seconds for the

brain surface mesh with 655,360 triangles and 327,684

vertices. Table 3 shows the mean and standard deviation of

the training time over the ten-fold cross-validation for each

network with 3 convolutional layers and six-order poly-

nomial approximation. Two-sample t-tests showed no sig-

nificant differences in the computation cost between the

LB-CNN and spectral graph-CNN (p ¼ 0:79 for Cheby-

shev, p ¼ 0:46 for Laguerre, and p ¼ 0:75 for Hermite

polynomials).

Next, we compared the computational cost of the LB-

CNN with 3 convolutional layers using different polyno-

mial approximations. Figure 5 shows the training time of

the LB-CNNs using the Chebyshev, Laguerre and Hermite

approximation of order K ¼ 2, 4, 6 and 8. Regardless of

which polynomial was used, the training time increased as

K increased since more trainable parameters were needed

to characterize the spectral filters. Given K, the three

polynomial approximation methods had similar computa-

tion cost (p[ 0:56).

4.2.2 Classification performance

To compare classification performance of the spectral

graph-CNN and LB-CNN on HC and AD, a number of

convolutional layers and polynomial approximation order

were tuned for each CNN independently to achieve the best

classification accuracy and geometric mean (GMean) on

the validation set. The spectral graph-CNNs with Cheby-

shev, Laguerre and Hermite approximations, respectively,

required 4 convolutional layers with polynomial order of

K ¼ 6, 5 layers with K ¼ 7, and 3 layers with K ¼ 7. The

LB-CNNs with Chebyshev and Laguerre approximations

needed 5 layers with K ¼ 7, while the LB-CNN with

Hermite approximation required 4 layers with K ¼ 7.

Table 2 lists the accuracy, sensitivity, specificity and

Gmean of all these CNNs in classifying AD and HC.

Two-sample t-test found no significant difference in

classification accuracy between the spectral graph-CNN

and LB-CNN. For instance, when Chebyshev polynomials

were used to approximate the spectral filters, the spectral

graph-CNN classification accuracy was 89:9%, while the

Table 2 Classification

performance of the spectral

graph-CNN and LB-CNN with

Chebyshev, Laguerre, and

Hermite polynomial

approximations

Spectral CNN Polynomial Layer K ACC (%) SEN (%) SPE (%) GMean (%)

Graph Chebyshev 4 6 89:8 � 0:4 90:1 � 0:9 89:6 � 0:6 89:9 � 0:4

Laguerre 5 7 90:0 � 0:5 91:7 � 1:1 89:2 � 0:6 90:4 � 0:6

Hermite 3 7 87:1 � 0:5 86:6 � 1:6 87:4 � 0:9 87:0 � 0:7

LB Chebyshev 5 7 90:9 � 0:6 91:3 � 0:1 90:7 � 0:5 91:0 � 0:7

Laguerre 5 7 91:0 � 0:4 91:2 � 0:9 90:9 � 0:8 91:1 � 0:4

Hermite 4 7 88:2 � 0:6 87:5 � 0:6 88:4 � 1:1 88:0 � 0:4

ACC, accuracy; SEN, sensitivity; SPE, specificity; GMean, geometric mean

Table 3 Computational cost of the LB-CNN and spectral graph-CNN

with 3 convolutional layers and six-order polynomial approximation

CNN Chebyshev Laguerre Hermite

Graph (s) 34406 � 1941 34961 � 1217 33625 � 1310

LB (s) 34169 � 2051 34305 � 2494 33908 � 2385

The average and standard deviation of the training time are listed over

the tenfold cross-validation

Fig. 5 Computational cost of the LB-CNN using Chebyshev (blue),

Laguerre (green) and Hermite (yellow) approximations of different

order K. The ten-fold cross-validation was repeated for 10 times. The

average and standard deviation of the training time are shown (color

figure online)
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LB-CNN classification accuracy was 90:9%

(p ¼ 5:4 � 10�5). Likewise, there were no group differ-

ences in classification accuracy between the spectral graph-

CNN and LB-CNN when Laguerre and Hermite polyno-

mial approximations were used (Laguerre: p ¼ 3:5 � 10�4;

Hermite:p ¼ 9:5 � 10�4). Hence, the LB-CNN slightly

improved the classification performance compared to the

spectral graph-CNN.

As for the comparisons among the three different

polynomials, the classification performance of the Laguerre

approximation was comparable to the Chebyshev approx-

imation (graph-CNN: p ¼ 0:27; LB-CNN: p ¼ 0:81).

However, the classification performance of both Cheby-

shev and Laguerre polynomial approximations was greater

than that of the Hermite polynomial approximation (all

p\5:4 � 10�10). In [26], Hermite polynomial approxima-

tion shows slower convergence to heat kernel, compared to

Chebyshev and Laguerre polynomial approximations.

4.3 LB-CNN robustness

We employed transfer learning technique and applied the

LB-CNN and graph-CNN models trained on the ADNI-2

dataset to the OASIS-3 dataset to demonstrate the robust-

ness of the proposed models. In details, the network model

setting and hyperparameters were exactly the same as used

in the experiments of the ADNI-2 data classification as

stated in Table 2. We applied the same data splitting

strategy to the OASIS-3 dataset for ten-fold cross-valida-

tion in this experiement. The last layer of the network

models that performed the best (the highest Gmean and

accuracy) on the ADNI-2 validation dataset was fine-tuned

on the training set of the OASIS-3 dataset. Then, the per-

formance of the fine-tuned models was evaluated on the

testing set of the OASIS-3 dataset. Table 4 lists the clas-

sification performance evaluated via ten-fold cross-valida-

tion. These results suggested the same conclusion, that is,

the LB-CNN had the classification accuracy comparable

with that of the spectral graph-CNN (Chebyshev:

p ¼ 0:058; Laguerre: p ¼ 0:073; Hermite:p ¼ 0:058).

Moreover, the Chebyshev and Laguerre approximation

showed comparable accuracy (graph-CNN: p ¼ 0:87; LB-

CNN: p ¼ 0:81) and were slightly better than the Hermite

approximation (all p\4:8 � 10�4).

Compared to the ADNI-2 dataset, the OASIS-3 dataset

showed a lower classification accuracy rate. This may

partly because the AD patients in the OASIS-3 dataset had

lower clinical dementia rating scale sum of boxes (CDR-

SB) scores than those in the ADNI-2 dataset. Figure 6

showed the cumulative distribution fuction of the CDR-SB

score of the AD patients in the ADNI-2 dataset (CDR-SB

¼ 5:7 � 2:8) and OASIS-3 dataset (CDR-SB ¼ 4:6 � 3:0).

The Kolmogorov-Smirnov test showed a significant dif-

ference in the cumulative distribution functions (CDFs)

between the two datasets (p ¼ 2:3 � 10�11), suggesting

that the AD patients in the ADNI-2 dataset may be more

demented than those in the OASIS-3 dataset.

5 Conclusions

In this study, we revisited the spectral graph-CNN [14, 51]

and developed the LB-CNN by replacing the graph

Laplacian by the LB operator. We also employed Cheby-

shev, Laguerre, and Hermite polynomials to approximate

the LB spectral filters in the LB-CNN and spectral graph-

CNN. Based on cortical thickness of the ADNI and OASIS

datasets, the classification accuracy of the LB-CNN and

spectral graph-CNN [14, 51] was comparable. The three

polynomials had the similar computational cost and

showed comparable classification accuracy in the LB-CNN

or spectral graph-CNN [14, 51]. Our findings suggest that

even though the shapes of the three polynomials are dif-

ferent, deep learning architecture allows to learn spectral

filters such that the classification performance is not

dependent on the type of the polynomials or the operators

(graph Laplacian and LB operator).

Table 4 Classification

performance of the spectral

graph-CNN and LB-CNN on the

OASIS-3 dataset

Spectral CNN Polynomial Layer K ACC (%) SEN (%) SPE (%) Gmean (%)

Graph Chebyshev 4 6 80:2 � 0:9 75:1 � 2:5 81:3 � 1:4 78:1 � 1:0

Laguerre 5 7 80:3 � 0:7 75:3 � 2:1 81:4 � 0:9 78:3 � 1:0

Hermite 3 7 78:5 � 0:9 70:9 � 1:9 80:0 � 1:1 75:3 � 1:1

LB Chebyshev 5 7 81:0 � 0:6 76:9 � 1:8 81:8 � 0:8 79:3 � 0:8

Laguerre 5 7 80:9 � 0:7 76:9 � 1:3 81:7 � 0:8 79:3 � 0:7

Hermite 4 7 79:3 � 0:8 70:7 � 2:2 81:0 � 1:0 75:6 � 1:1

Note that the spectral graph-CNN and LB-CNN were trained on the ADNI-2 dataset and fine-tuned based

on the OASIS-3 dataset

ACC, accuracy; SEN, sensitivity; SPE, specificity; GMean, geometric mean
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Our study showed the feasibility of employing the LB

operator in the graph-CNN. Our findings did not strongly

suggest that the LB operator might improve the classifi-

cation accuracy of the graph-CNN compared to the graph

Laplacian operator. The graph Laplacian is characterized

by graph connectivity, while the LB operator is charac-

terized not only by graph connectivity, but also by local

angles and areas related to the geometry of a graph. Even

though the LB operator may have an advantage in

smoothing a signal on a graph [48], signals processed after

many layers of spectral filters generated using the graph

Laplacian and LB operators may not be different. This is

partly because of many layers of linear and nonlinear

operations. Hence, the performance of the LB-CNN and

spectral graph-CNN is relatively comparable.

Our study suggested the comparable computational time

and classification performance among Chebyshev,

Laguerre, and Hermite polynomial approximations of the

LB spectral filters in the graph-CNN. The spectral filters

represented by these polynomials in this study are cate-

gorized as finite impulse response (FIR) graph filters [28].

Recently, infinite impulse response (IIR) graph filters [28]

with rational frequency response have received much

attention. Compared to a FIR filter, an IIR filter combines a

FIR filter with feedback from previous filter outputs.

Autoregressive moving average (ARMA) filters [4, 40],

Cayley filter [36], personalized PageRank [33], and feed-

back-looped filters [54] have been used in graph-CNNs.

Such kind of rational filters requires a matrix inversion to

compute the denominator, which is computationally

expensive for large graphs and inefficient for neural net-

works. Our research provides a possibility to parameterize

IIR filters as shown in this paper and to improve compu-

tational cost.

Funding This research/project is supported by the National Science

Foundation MDS-2010778, National Institute of Health R01

EB022856, EB02875, and National Research Foundation, Singapore

under its AI Singapore Programme (AISG Award No: AISG-GC-

2019-002). Additional funding is provided by the Singapore Ministry

of Education (Academic research fund Tier 1; NUHSRO/2017/052/

T1-SRP-Partnership/01), NUS Institute of Data Science. This

research was also supported by the A*STAR Computational Resource

Centre through the use of its high-performance computing facilities.

Availability of data and material Data used in preparation of this

article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (http://adni.loni.ucla.edu).

Code availability https://bieqa.github.io/deeplearning.html.

Declaration

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Apostolova LG, Dinov ID, Dutton RA, Hayashi KM, Toga AW,

Cummings JL, Thompson PM (2006) 3D comparison of hip-

pocampal atrophy in amnestic mild cognitive impairment and

alzheimer’s disease. Brain 129:2867–2873

2. Atwood J, Towsley D (2015) Diffusion-convolutional neural

networks. arXiv preprint arXiv:151102136

3. Basaia S, Agosta F, Wagner L, Canu E, Magnani G, Santangelo

R, Filippi M, Initiative ADN, et al. (2019) Automated classifi-

cation of alzheimer’s disease and mild cognitive impairment

using a single MRI and deep neural networks. NeuroImage Clin

21:101645

4. Bianchi FM, Grattarola D, Alippi C, Livi L (2019) Graph neural

networks with convolutional arma filters. arXiv preprint arXiv:

190101343

5. Boscaini D, Masci J, Melzi S, Bronstein MM, Castellani U,

Vandergheynst P (2015) Learning class-specific descriptors for

deformable shapes using localized spectral convolutional net-

works. Comput Graph Forum 34(5):13–23

6. Boscaini D, Masci J, Rodoia E, Bronstein M (2016a) Learning

shape correspondence with anisotropic convolutional neural

networks. In: NIPS’16 Proceedings of the 30th international

conference on neural information processing systems, ACM,

pp 3197–3205

7. Boscaini D, Masci J, Rodola E, Bronstein MM, Cremers D

(2016b) Anisotropic diffusion descriptors. Comput Graph Forum

35(2):431–441

8. Bronstein M, Bruna J, LeCun Y, Szlam A, Vandergheynst P

(2017) Geometric deep learning: going beyond Euclidean data.

IEEE Signal Process Mag 34(4):18–42

9. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral net-

works and locally connected networks on graphs. arXiv preprint

arXiv:13126203

10. Chung M, Taylor J (2004) Diffusion smoothing on brain surface

via finite element method. Proc IEEE Int Symp Biomed Imaging

(ISBI) 1:432–435

11. Chung M, Qiu A, Seo S, Vorperian H (2015) Unified heat kernel

regression for diffusion, kernel smoothing and wavelets on

manifolds and its application to mandible growth modeling in CT

images. Med Image Anal 22:63–76

Fig. 6 The cumulative distribution functions (CDFs) of clinical

dementia rating scale sum of boxes (CDR-SB) scores among the AD

patients in the ADNI-2 (blue) and OASIS-3 (red) datasets (color

figure online)

Neural Computing and Applications

123

http://adni.loni.ucla.edu
https://bieqa.github.io/deeplearning.html
http://arxiv.org/abs/151102136
http://arxiv.org/abs/190101343
http://arxiv.org/abs/190101343
http://arxiv.org/abs/13126203


12. Coifman RR, Maggioni M (2006) Diffusion wavelets. Appl

Comput Harmonic Anal 21(1):53–94

13. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S,

Habert MO, Chupin M, Benali H, Colliot O (2011) Automatic

classification of patients with Alzheimer’s disease from structural

MRI: a comparison of ten methods using the ADNI database.

Neuroimage 56(2):766–781

14. Defferrard M, Bresson X, Vandergheynst P (2016a) Convolu-

tional neural networks on graphs with fast localized spectral fil-

tering. In: Proceedings of the 30th international conference on

neural information processing systems, NIPS, pp 3844–3852

15. Defferrard M, Bresson X, Vandergheynst P (2016b) Convolu-

tional neural networks on graphs with fast localized spectral fil-

tering. In: NIPS’16 Proceedings of the 30th international

conference on neural information processing systems, ACM,

pp 3844–3852

16. Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without

eigenvectors a multilevel approach. IEEE Trans Pattern Anal

Mach Intell 29(11):1944–1957

17. Du J, Younes L, Qiu A (2011) Whole brain diffeomorphic metric

mapping via integration of sulcal and gyral curves, cortical sur-

faces, and images. NeuroImage 56(1):162–173

18. Duvenaud DK, Maclaurin D, Aguilera-Iparraguirre J, Gomez-

Bombarelli R, Hirzel T, Aspuru-Guzik A, Adams RP (2015)

Convolutional networks on graphs for learning molecular fin-

gerprints. arXiv preprint arXiv:150909292

19. Fan Y, Gur R, Gur R, Wu X, Shen D, Calkins M, Davatzikos C

(2008) Unaffected family members and schizophrenia patients

share brain structure patterns: a high-dimensional pattern classi-

fication study. Biol Psychiatry 63(1):118–124

20. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove

C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S et al

(2002) Whole brain segmentation: automated labeling of neu-

roanatomical structures in the human brain. Neuron

33(3):341–355

21. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017)

Neural message passing for quantum chemistry. arXiv preprint

arXiv:170401212

22. Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets

on graphs via spectral graph theory. Appl Comput Harmonic

Anal 30(2):129–150

23. Henaff M, Bruna J, LeCun Y (2015) Deep convolutional net-

works on graph-structured data. arXiv preprint arXiv:150605163

24. Hosseini-Asl E, Keynton R, El-Baz A (2016) Alzheimer’s disease

diagnostics by adaptation of 3d convolutional network. In: 2016

IEEE international conference on image processing (ICIP). IEEE,

pp 126–130

25. Huang SG, Lyu I, Qiu A, Chung M (2019) Fast polynomial

approximation of heat diffusion on manifolds and its application

to brain sulcal and gyral graph pattern analysis. IEEE Transac-

tions on Medical Imaging, pp under 2nd review. arXiv:1911.

02721

26. Huang SG, Lyu I, Qiu A, Chung MK (2020) Fast polynomial

approximation of heat kernel convolution on manifolds and its

application to brain sulcal and gyral graph pattern analysis. IEEE

Trans Med Imaging 39(6):2201–2212

27. Islam J, Zhang Y (2018) Brain mri analysis for alzheimer’s dis-

ease diagnosis using an ensemble system of deep convolutional

neural networks. Brain Inform 5(2):2

28. Isufi E, Loukas A, Simonetto A, Leus G (2017) Filtering random

graph processes over random time-varying graphs. IEEE Trans

Signal Process 65(16):4406–4421

29. James G, Witten D, Hastie T, Tibshirani R (2013) An introduc-

tion to statistical learning, vol 112. Springer, Berlin

30. Karypis G, Kumar V (1998) A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM J Sci Comput

20(1):359–392

31. Kim WH, Pachauri D, Hatt C, Chung MK, Johnson S, Singh V

(2012) Wavelet based multi-scale shape features on arbitrary

surfaces for cortical thickness discrimination. In: Advances in

neural information processing systems, pp 1241–1249

32. Kipf TN, Welling M (2016) Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:160902907

33. Klicpera J, Bojchevski A, Günnemann S (2018) Predict then
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