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Abstract: Finding underlying relationships among multiple imaging modalities in a coherent fashion is
one of the challenging problems in multimodal analysis. In this study, we propose a novel approach
based on multidimensional persistence. In the extension of the previous threshold-free method of per-
sistent homology, we visualize and discriminate the topological change of integrated brain networks
by varying not only threshold but also mixing ratio between two different imaging modalities. The
multidimensional persistence is implemented by a new bimodal integration method called 1D projec-
tion. When the mixing ratio is predefined, it constructs an integrated edge weight matrix by projecting
two different connectivity information onto the one dimensional shared space. We applied the pro-
posed methods to PET and MRI data from 23 attention deficit hyperactivity disorder (ADHD) children,
21 autism spectrum disorder (ASD), and 10 pediatric control subjects. From the results, we found that
the brain networks of ASD, ADHD children and controls differ, with ASD and ADHD showing
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asymmetrical changes of connected structures between metabolic and morphological connectivities.
The difference of connected structure between ASD and the controls was mainly observed in the meta-
bolic connectivity. However, ADHD showed the maximum difference when two connectivity informa-
tion were integrated with the ratio 0.6. These results provide a multidimensional homological
understanding of disease-related PET and MRI networks that disclose the network association with
ASD and ADHD. Hum Brain Mapp 38:1387–1402, 2017. VC 2016 Wiley Periodicals, Inc.

Key words: brain connectivity; multimodal brain image analysis; FDG-PET; T1-weighted MRI; persis-
tent homology; autism spectrum disorder; attention deficit hyperactivity disorder
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INTRODUCTION

Noninvasive brain imaging techniques such as fluoro-
deoxyglucose (FDG) positron emission tomography (PET)
and T1-weighted magnetic resonance imaging (MRI) dis-
close different characteristics of the human brain. PET
reveals regional brain metabolism and MRI the brain mor-
phology [Bassett et al., 2008; Gong et al., 2009; He et al.,
2007; Phelps et al., 1998]. The inter-subject and inter-
regional correlation of brain metabolic uptake between
brain regions on FDG PET or brain morphology on MRI
gives ways to model the brain metabolic or morphologic
networks, respectively [Bernhardt et al., 2011; Chen et al.,
2008; Chung et al., 2013; He et al., 2007; Hosseini et al.,
2012; Huang et al., 2010; Lee et al., 2008; Toussaint et al.,
2012]. We refer to these correlation networks based on
FDG PET as metabolic networks and those based on T1
MRI as morphological networks, both of which differ from
the functional network on functional MRI or structural
network on diffusion tensor imaging (DTI). The remaining
challenge is to find a way to integrate the networks
acquired from the two different imaging modalities of PET
and MRI.

The simplest way to integrate two different weighted
networks is to find common significant connections by
performing a parallel statistical analysis of each modality
[Honey et al., 2009; van den Heuvel et al., 2009]. This
approach works when one compares each modality within
a group or between groups; however, it is difficult to find
discordant connections caused by common hidden brain

states. Another approach is to construct integrated net-
works using multimodal imaging data by weighting ana-
tomical connectivity to a functional one [Bowman et al.,
2012; Hosseini and Kesler, 2013]. These methods are disad-
vantageous because it is necessary to determine the proper
threshold a priori for each network as well as to choose
the mixing ratio of the two in an appropriate way. Bow-
man et al. (2012) tried to minimize the proposed objective
function related with clustering performance, whereas
Hosseini et al. (2013) showed the changes of topological
measures of the integrated networks at all network densi-
ties [Bowman et al., 2012; Hosseini and Kesler, 2013].

In this paper, we propose a new analytical framework
based on multidimensional persistent homology that com-
bines networks of two different imaging modalities. We
first observed all the changes of topological structure of
multimodal integrated networks with various mixing
ratios of two modalities without fixing thresholds. Then,
we looked for the integrated network having a mixing
ratio with the most significant discrimination between the
disease group and the controls after performing a 1D pro-
jection. The proposed method is a multimodal approach
that extends the concept of graph filtration to multiple
dimensions [Lee et al., 2012].

We previously proposed the concept of graph filtration
based on persistent homology to solve the thresholding
problem of unimodal network analysis [Lee et al., 2012].
The multidimensional persistent homology allows two or
more thresholds for multimodalities, whereas we vary a
single threshold in one dimensional persistent homological
analysis [Carlsson and Zomorodian, 2009]. The multifiltra-
tion method based on bidimensional persistent homology
allowed integration of two different weighted networks
into the bisequence of binary networks as the thresholds
are varied simultaneously. Here we estimated the number
of connected components, called the zeroth Betti number
b0: It is a fundamental topological quantity in determining
the shape of network and distinguishing networks in
Algebraic Topology. We also visualized their changes dur-
ing multifiltration on the b0-plot.

In the bisequence of binary networks, we could extract
the sequence of binary networks along a projection line
with specific mixing ratio between metabolic and morpho-
logical networks. This procedure is a 1D projection of

Abbreviations

ADHD Attention deficit hyperactivity disorder
ADOS Autism Diagnostic Observation Schedule
ASD Autism spectrum disorder
AUC Area under curve
DD Distance–distance
DTI Diffusion tensor imaging
FDG Fluorodeoxyglucose
GH Gromov-Hausdorff
MRI Magnetic resonance imaging
PET Positron emission tomography
ROI Regions of interest
SLM Single linkage matrix
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multifiltration. Along the projection line of the sequences
of networks, we reorder the edges, reestimate their
weights, and construct a new integrated multimodal net-
work. The change in the connected structure of the inte-
grated network could then be represented in an algebraic
form, known as a single linkage matrix (SLM). A group
comparison of the b0-plot was performed by using a sym-
metry index and Kolmogorov-Smirnov-like (KS-like) test
and deriving a one dimensionally projected SLM using
Gromov-Hausdorff (GH) distance, both of which were
based on permutation methods [Chung et al., 2013; Lee
et al., 2012].

Our main contributions over the previous publications
including our own work [Lee et al., 2012] are as follows:

1. We devise a multivariate extension of univariate per-
sistent homology and its application to multimodal
brain network analyses of PET and MRI;

2. We develop a new visualization tool, the b0-plot, for
showing the changes of the integrated connected
structures of metabolic to morphological correlation
networks with various mixing ratios; and

3. We extract the integrated network of metabolic and
morphological networks at a certain mixing ratio, dis-
criminating the disease group from the controls by
using a 1D projection and its representation as a
SLM.

In experiments, we demonstrated the performance of b0-
plot and effectiveness of 1D projection using a simulated
study with the ground truth. We applied the proposed
method, multifiltration, to real datasets consisting of FDG
PET and T1 MRI images of 23 attention deficit hyperactivi-
ty disorder (ADHD), 21 autism spectrum disorder (ASD)
children and 10 pediatric control subjects. The multifiltra-
tion is expected to provide a new finding to differentiate
between ADHD and ASD, which are brain disorders shar-
ing with similar symptoms.

MATERIALS AND METHODS

Subjects and Image Preprocessing

We used FDG PET and MRI data sets: 23 ADHD chil-
dren (mean age 5 8.1 61.6 years), 21 ASD children (mean
age 5 6.0 61.6 years) and 10 control subjects (mean
age 5 9.5 62.6 years). Both ADHD and ASD are neurode-
velopmental disorders in children and adolescents. They
have numerous overlapping impairments in developmen-
tal and cognitive domains. The ADHD children were diag-
nosed by DSM-IV diagnostic criteria, Korean version of
ADHD rating scale IV (K-ARS) and Korean version of
Kiddie-Schedule for Affective Disorders and
Schizophrenia-Present and Lifetime version (K-SADS-PL).
The ASD children were diagnosed by the Korean version
of the Autism Diagnostic Interview-Revised (K-ADI-R)

and the Korean version of the Autism Diagnostic Observa-
tion Schedule (ADOS). The control data was obtained
from 10 children who failed to meet the criteria of psychi-
atric disorder or visited for IQ evaluation. This study was
approved by the Institutional Review Board of Seoul
National University College of Medicine. PET images were
obtained by ECAT EXACT 47 PET scanner (Siemens-CTI,
Knoxville, TN). They were preprocessed using the statisti-
cal parametric mapping toolbox (SPM) [Friston et al.,
1995]. The MRI data was segmented by customized pediat-
ric templates in Template-O-Matic toolbox [Wilke et al.,
2008]. All gray matter MRIs were transformed and
smoothed and the Jacobian determinant maps were com-
puted based on VBM8 toolbox for SPM.

Network Construction

The brain was parcellated into 93 regions of interest
(ROIs) based on AAL [Tzourio-Mazoyer et al., 2002]. The
AAL originally consists of 90 cortical and subcortical
regions and 26 cerebellar regions. We used 90 cortical and
subcortical regions as nodes and merged 26 cerebellar
regions into right and left hemispheres and vermis using
the creating ROI option in Marsbar toolbox (http://mars-
bar.sourceforge.net). The mean FDG uptake within 93
ROIs was extracted as a measurement of PET. The mean
Jacobian value within 93 ROIs was extracted as a measure-
ment of MRI using the MarsBar toolbox. The 93 ROIs
serve as nodes, V5 v1; . . . ; vp

� �
(p 5 93).

PET and MRI data have the identical node set V in the
same template space. On each node vi; we have two differ-
ent imaging measurements uP

i 2 Rn31 and uM
i 2 Rn31

obtained from PET and MRI, respectively. The distance
between two nodes vi and vj in the metabolic and morpho-
logical networks is estimated by one minus correlation, xij

512corrðuP
i ; u

P
j Þ and yij512corrðuM

i ; u
M
j Þ; respectively. We

denote the weighted networks for PET and MRI as
PðV;XÞ and MðV;YÞ, where X5½xij�i;j51;...;p 2 Rp3p and Y5

½yij�i;j51;...;p 2 Rp3p are the distance matrices of the PET and
MRI networks, respectively.

Multidimensional Persistence

The persistent homology has been introduced to solve
the thresholding problem of unimodal brain network
analysis [Lee et al., 2012]. Given one weighted network
PðV;XÞ and threshold e a binary network BPðeÞ is
obtained by filtering the weighted network PðV;XÞ by the
threshold e. If the weighted network is repeatedly filtered
for the ordered thresholds emin 5e1 < e2 < . . . < eq5emax

� �
;

it is decomposed into the sequence of binary networks
which satisfy the nested property:

BPðe1Þ � BPðe2Þ � � � � � BPðeqÞ:

This procedure is called a graph filtration [Giusti et al.,
2015; Lee et al., 2011, 2012].

r Integrated Multimodal Network r

r 1389 r

http://marsbar.sourceforge.net
http://marsbar.sourceforge.net


Here we extend this filtration method to the multidi-
mensional version by introducing multidimensional persis-
tence [Carlsson and Zomorodian, 2009]. Suppose that two
weighted networks PðV;XÞ and MðV;YÞ are given. They
share a common node set, but have different distance
matrices between nodes. Two weighted networks are
simultaneously bifiltered at two thresholds x and t via

BP;Mðx; tÞ5BPðxÞ \ BMðtÞ: (1)

The bifiltered binary network BP;Mðx; tÞ is obtained by
connecting edges that satisfy x � x and y � t in BPðxÞ and
BMðtÞ; respectively. If the threshold values are given by
x1 < x2 < . . . < xq and t1 < t2 < . . . < tq; the multifiltra-
tion can be written as

BP;Mðx1; t1Þ ! . . . ! BP;Mðxq; t1Þ

# #

� . .
.

�

# #

BP;Mðx1; tqÞ ! . . . ! BP;Mðxq; tqÞ:

The bifiltration also satisfies the nested property:

BP;Mðxi; tlÞ � BP;Mðxj; tmÞ for xi � xj and tl � tm: (2)

In Algebraic Topology, the Betti number is used to deter-
mine the shape of topological spaces including networks
and to distinguish topological spaces [Adler et al., 2010;
Carlsson et al., 2005; Edelsbrunner and Harer, 2008; Ghrist,
2008]. The zeroth Betti number b0 is the number of CCs
which are subsets of the network, where any nodes are
connected through edges. In this study, we choose b0 as
the topological measure and estimate them from the
obtained bisequence of binary networks during the bifiltra-
tion. The change of b0 during filtration is usually visual-
ized by the barcode [Carlsson and Zomorodian, 2009].
However, since the barcode visualizes the change of CCs
using bars when varying a threshold, it is not proper to
represent the change of b0 with respect to two different
thresholds x and t. Thus, we use b0-plot which visualizes
the change of number of CCs with respect to two thresh-
olds x and t.

The example of bifiltration is shown in Figure 1. Two
networks PðV;XÞ and MðV;YÞ share nodes, but have dif-
ferent distance measures in (a) and (b). Each edge is
encoded into a distance pair ðxij; yijÞ and plotted on the
distance–distance (DD) domain in (c). When two networks

Figure 1.

(a, b) Two networks PðV;XÞ and MðV;YÞ are given with a

node set V and distance matrices X5½xij� and Y5½yij�: (c) The

distance pair ðxij; yijÞ of the edge connecting nodes i and j is plot-

ted on the x (horizontal) axis and y (vertical) axis of the x–y

plane. The color of dot indicates which edge comes from (a)

and (b). (d) The bifiltered binary network BP;Mðx; tÞ is

constructed by connecting edges that satisfy both x � x and y

� t: In this bifiltered network, the number of CCs b0 at (x, t)

is 2. (e) Bisequence of binary networks is obtained by bifiltra-

tion of PðV;XÞ and MðV;YÞ: (f) The number of CCs b0 of (e)

is plotted on the distance(x)-distance(y) plane. This is called b0-

plot. [Color figure can be viewed at wileyonlinelibrary.com]
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are simultaneously bifiltered at the threshold pair (x, t)
only edges in the region x � x & y � t are connected as
shown in (d). The bisequence of binary networks is
obtained by bifiltration at ðx1; t1Þ; . . . ; ðx4; t4Þ in (e). Its b0-
plot is illustrated in (f). The b0 is a decreasing function of
(x, t) with the range from 1 to P.

1D Projection

The filtration is a procedure to add edges in increasing
order of edge weights. When two different kinds of dis-
tance (or edge weight) measures are defined in the net-
work, the order of adding edges depends upon how to
prioritize two measures. Here we change the priority of
two measures by controlling a mixing ratio c between
them and increase a pair of thresholds (x, t) along the line
with mixing ratio

y5ax1b; a5
g

12g
; b5

122g

12g
c

� �
(3)

where c is in [0, 1] and c is a large enough positive con-
stant satisfying x; y 2 ½0; c�: If we choose c 5 0, two thresh-
olds (x, t) are varied along the line y 5 c and the order of
edges is affected only by x because t 5c and
ðx; yÞjx � x & y � cf g5 ðx; yÞjx � xf g: If we choose c 5 1,

the order of edges is affected only by t. The reason why
the equation of the line (3) is somewhat complicated is to
include such uni-filtered cases. If 0< c< 0.5, the procedure
to add edges is more influenced by the change of x under
the condition of t � b: If 0.5< c< 1, it is more influenced
by the change of t under the condition of x � 2b=a: If
c 5 0.5, it is affected equally by x and t.

Suppose that two sequences of thresholds 0 � x1 � . . .

� xq � c and 0 � t1 � . . . � tq � c are given, and xi and ti

satisfy the Eq. (3) with the given c. The filtration along the
line generates a sequence of binary networks as follows:

BP;Mðx0; t0Þ ! BP;Mðx1; t1Þ ! � � � ! BP;Mðxq; tqÞ:

This procedure is called 1D projection and the projected
sequence of bifiltered networks satisfies the persistence
property in Eq. (2). We integrate two different kinds of
measures of edge weight by 1D projection and control the
integration ratio by c. The example of 1D projection is
shown in Figure 2 when c 5 0,< 0.5, 5 0.5,> 0.5, and 5 1

1D projection can be thought as a function p that project
the edge onto the line (3) as follows:

p : ðxij; yijÞ ! ðx
0

ij; y
0

ijÞ5
yij2b

a
; yij

� �
if yij > axij1b;

xij; axij1b
� �

otherwise:

8><
>:

A new edge weight zij on the projected line is the normal-
ized Euclidean distance between x-intercept when c> 0.5
or y-intercept when g � 0:5 and ðx0ij; y

0

ijÞ; that is,

zg;ij5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
02
ij 1ðy0ij2bÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21ðc2bÞ2

q if g < 0:5;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0ij1 b

aÞ
2
1y

02
ij

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 b

aÞ
2
1c2

q otherwise:

8>>>>>>>><
>>>>>>>>:

(4)

The denominator of Eq. (4) is a normalization term to set
the maximum threshold value as 1. In this way, an inte-
grated network with a new edge weight matrix Zg5½zg;ij�
is obtained at each c by reweighing and reordering edges
on the projected line. We can apply the filtration to the
new integrated network and estimate the change of b0 by
varying a new threshold e. The proposed method of multi-
filtration contains all possible edge-sorting procedures
with various mixing ratios c between two kinds of edge
weights.

Figure 2 shows a procedure of 1D projection of the
example in Figure 1. In (a), the edges are projected onto
the lines with c 5 0, 0.4, 0.5, 0.6 and 1 from left to right.
The reordered edges on the projected line are shown in (b)
and new integrated edge weight matrices estimated at var-
ious cs are shown in (c). After the filtration of each edge
weight matrix, the number of CCs b0ðe;gÞ is plotted on
the e2g plane in the left part of (d). The figure in (d) has
the same information of b0 as Figure 1(f), but the former is
plotted on the e2g plane and the latter is on the x – y

plane. The right part in the blue box of (d) shows another
example of DD plot of 10 edges. In this example, two dif-
ferent edge weight measures are highly correlated. In this
case, the b0-plot is more symmetric with respect to c 5 0.5
than one in the left part of (d).

b0-Plot Comparison

Chung et al. (2013) proposed Kolmogorov-Smirnov-like
(KS-like) test statistic, T5 sup e jb1

0ðeÞ2b2
0ðeÞj for testing the

difference between two barcodes b1
0 and b2

0 obtained from
two different groups [Chung et al., 2013]. KS-like test sta-
tistic can also be applied to multidimensional b0-plot com-
parison. In our case, b0 is a function of two thresholds
ðe;gÞ instead of one threshold e:

T5 sup
e;g

jb1
0ðe;gÞ2b2

0ðe; gÞj:

The KS-like test statistic for testing the null hypothesis
that two b0-plots were not different is the maximum of
absolute value of b1

0ðx; tÞ2b2
0ðx; tÞ: Since we are maximiz-

ing over all possible thresholds e and c, the multiple com-
parisons issues are automatically taken care of. The null
distribution is estimated by the permutation method.

We also check the symmetry index of b0-plot on the e2g

plane with respect to c 5 0.5. The symmetry index d is esti-
mated by
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d5
1

0:5

ð1

0

ð0:5

0

jb0ðe;gÞ2b0ðe; 12gÞjdgde:

The more symmetrical the b0-plot is, the closer d is to 0. If
two edge weight matrix are exactly the same, their b0-plot
is symmetric and its d is equal to 0. Although the reverse
is not true, we can compare global connected patterns
between two edge weight matrices using the symmetry
index of their b0-plot. Here, we used the symmetry index
of b0-plot in two ways. First, we integrated two different
modalities, PET and MRI, using b0-plot and compared
global connected patterns between PET and MRI in each
group. Second, we applied the b0-plot method to the inte-
grated edge weight matrices of each pair of groups and
compared global connected patterns between ADHD and
ASD, ADHD and CON, and ASD and CON at various
mixing ratio c.

Single Linkage Matrix and Gromov-Hausdorff

Distance

The single linkage matrix (SLM) D shows the local
change of CCs [Carlsson and M�emoli, 2008, 2010; Lee
et al., 2012]. The element of SLM D5½dij�i;j51;...;p is the mini-
mum threshold value when two nodes vi and vj are con-
nected directly or indirectly by merging into the same CC.
The mathematical definition is given by

D5½dij�5½min
Pij

max
l

xpl;pl11
�;

where Pij5fvi5p0; � � � ; pk5vjg is a path between two nodes
vi and vj [Gower and Ross, 1969]. The minimum is taken
over every possible path Pij between vi and vj. The quanti-
ty dij is called a single linkage distance (SLD).

The Gromov-Hausdoff (GH) distance was used for esti-
mating the difference between two matrices such as edge

Figure 2.

1D projection of the example in Figure 1. (a) The edges are

projected onto the line y 5 ax 1 b in Eq. (3) when g 5 0, 0.4,

0.5, 0.6, and 1 from left to right. (b) Reordered edges along the

projected line. The edge weight (distance) e is recalculated on

the projected line. (c) According to the new edge weights, an

edge weight matrix is reconstructed at each g The

reconstructed matrices at g 5 0 and 1 are exactly the same to

X and Y in Figure 1 (b). (d) The b0-plot on the x–y plane in Fig-

ure 1 (f) is transformed onto the e 2 g plane. As shown in the

right blue box, if two kinds of edge weights are similar, b0-plot

on the e 2 g plane tends to be symmetric with respect to

g 5 0.5. [Color figure can be viewed at wileyonlinelibrary.com]

r Lee et al. r

r 1392 r

http://wileyonlinelibrary.com


weight matrices and SLMs [Carlsson and M�emoli, 2008,
2010; Lee et al., 2012]. The GH distance can be viewed as a
special case of general framework of type-I-error estima-
tion under multiple comparisons [Chung, 2013]. Given
two SLMs D15½d1

ij� and D25½d2
ij� with the same node set V,

their difference is found by the hypothesis test by setting
up a null hypothesis of no difference between two distan-
ces d1

ij and d2
ij, and an alternative hypothesis:

HB
0 : d1

ij5d2
ij v:s: HB

1 : d1
ij 6¼ d2

ij: (5)

This hypothesis is for local difference of the connectivity
d1

ij and d2
ij in two different networks. For the comparison of

global difference between two different networks, the
hypotheses are given by

H0 : d1
ij5d2

ij for all i; j v:s:H1 : d1
ij 6¼ d2

ij for some i; j: (6)

The null hypothesis H0 is the intersection of collection of
hypotheses [Chung, 2013]

H05\
8i;j

HB
0 ði; jÞ:

Then, the type-I error a for testing two sided test under
the multiple comparisons is given by

a5P [
8i;j

Zði; jÞ > hf g
� �

512P \
8i;j

Zði; jÞ � hf g
� �

512P sup
8i;j

Zði; jÞ � h

 !
5P sup

8i;j
Zði; jÞ > h

 !
;

(7)

where Z(i, j) is actually jd1
ij2d2

ijj, i.e., the difference between
SLDs.

The GH distance between two SLMs is defined as

dGHðD1;D2Þ5 sup
8i;j
jd1

ij2d2
ijj

[Carlsson and M�emoli, 2008; Lee et al., 2012, 2011; M�emoli,
2011]. dGH can substitute sup 8i;j Zði; jÞ in Eq. (7). Now, we
can write the type-I error of group differences through GH
distance as

a5P dGHðD1;D2Þ > h
� �

:

The permutation method is performed to test Eq. (6). Two
bimodal datasets of PET and MRI for group 1 and group 2
with sample size n1 and n2 are given. The group labels are
shuffled randomly and two distance matrices X i and Y i of
PET and MRI networks are estimated for the ith group ði5
1; 2Þ: By applying 1D projection with c 5 0, . . ., 1, we
obtain the sequence of edge weight matrices 1

2 X i5Zi
0; . . . ;

Zi
15 1

2 Y i by the Eq. (4) and one of SLMs Di
0; . . . ;Di

1: This
procedure is repeated 5,000 times. Then, we estimate the
null distribution of dGHðD1

g;D
2
gÞ at c 5 0, . . ., 1. Using two

original datasets, we estimate dGHðD1
true;g;D

2
true;gÞ. Then, the

type-I error a with the hypothesis Eq. (6) for global

difference is calculated by the percentile of dGHðD1
true;g;

D2
true;gÞ in the null distribution of dGHðD1

g;D
2
gÞ:

RESULTS

Simulation

This section describes the performance of b0-plot and the
effectiveness of 1D projection using a simulated study with
the ground truth. The simulation was used to test whether
the symmetry index and KS-like test statistic were related to
the known “ground truth” common connections shared by
the bimodal networks. In addition, we showed that the inte-
grated network obtained by the 1D projection represented the
group difference better than each unimodal network when
the simulated bimodal networks had shared connections.

Data simulation

We simulated two bimodal networks of two groups. A
group A had bimodal networks with no shared connec-
tions, and the other group B had bimodal networks with
shared connections. The percentage of shared connections
of group B was varied at 10, . . ., 100%. Each data of two
groups consisted of 20 subjects and 100 nodes [Yoo et al.,
2017]. We sampled the data for the first subject from a nor-
mal distribution of zero mean and 0.3 standard deviation
(s.d.). The data of the remaining 19 subjects was con-
structed by adding the Gaussian noise with zero mean
and 0.1 s.d. to the first sampled data. We then estimated
an edge weight matrix based on one minus correlation of
the sampled data. This procedure was repeated twice and
we assigned the group A to the obtained two edge weight
matrices of bimodal networks that shared no common
edge. The bimodal networks of group B were constructed
by adding the Gaussian noise with zero mean and 0.1 s.d.
to two edge weight matrices of group A. To make com-
mon connections in the bimodal networks of group B, we
selected 10% of edges in one of two edge weight matrices
and replaced them with edge weights in the other matrix.
During the replacement, we added the Gaussian noise
with zero mean and 0.1 s.d. to the replaced edge weights.
We then estimated b0-plots of the bimodal networks of
groups A and B, their symmetry indexes, and KS-like tests
statistic between them. The simulations were performed
1000 times by increasing the percentage of common con-
nections of the group B by 10% up to 100%.

Simulation results of b0-plot

Figure 3a,b illustrate the symmetry index and KS-like
test statistic with respect to the percentage of shared con-
nections. The box plots summarise the results of 1000 sim-
ulations. The symmetry index at 0% in (a) was estimated
from the b0-plot of group A. The symmetry index at
10%,. . ., 100% was estimated from the group B. The KS-
like test statistic estimated the difference between b0-plots
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of groups A and B. From the results, we found that when
the percentage of shared connections increased, the sym-
metry index decreased and KS-like test statistic increased
(P< 0.0001, linear regression analysis). In this way, the

symmetry index and KS-like test statistic are related to the
percentage of shared connections in bimodal networks
and, therefore, we can use the symmetry index and KS-
like test statistic for estimating the difference between two

Figure 3.

Results of simulated data. (a) Symmetry index of b0-plot and (b)

KS-like test statistic between b0-plots with respect to the per-

centage of shared edges. The box plots summarize the results of

1,000 simulations. The green line was obtained by the linear

regression analysis. When the percentage of shared edges

increases, the symmetry index decreases and KS-like test statis-

tic increases (P< 0.0001 linear regression analysis). (c) Differ-

ence between integrated networks of groups A and B at the

mixing ratio 0, 0.1,. . ., 1. The difference between networks

were obtained by GH distance between their SLMs. The group

difference was maximized at the mixing ratio 0.5 (P< 0.0001,

two-sample t-test). (d) b0-plots of integrated networks at the

mixing ratio 0, 0.5, and 1. The line color represents the percent-

age of shared connections in the bimodal networks at 0%,. . .,
100%. The integrated networks at the mixing ratio 0.5 (middle)

was affected by the percentage of shared connections

(P< 0.0001 linear regression analysis of AUC of b0). [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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bimodal networks based on their shared connected
structures.

Simulation results of 1D projection

To demonstrate the effectiveness of 1D projection, we
obtained the sequence of integrated networks from the
bimodal networks of each group. The sequence of integrat-
ed network was estimated at the mixing ratio c 5 0, 0.1,. . .,
1. The difference between integrated networks of groups
A and B was estimated by GH distance of SLMs of inte-
grated network at each mixing ratio. Figure 3c illustrates
the difference between groups with respect to the mixing
ratio when the group B had the bimodal networks that
shared 100% common edges. When c is 0 or 1, it is the
same as the unimodal case. As mentioned in “Data simu-
lation” section, we generated two simulated bimodal net-
works in groups A and B, one of bimodal networks was
similar between the two groups and the other was differ-
ent. Thus, it is natural that the difference at c 5 0 was
smaller than one at c 5 1 in (c). However, the largest dif-
ference between groups was found in the integrated net-
works at c 5 0.5 (P< 0.0001, two-sample t-test).

To find the reason why the maximum difference was
found at the mixing ratio 0.5, we observed the connected
structure of the integrated network at c 5 0.5 by changing
the percentage of common edges from 10% to 100%. Figure
3d shows the change of b0 over the threshold of the integrat-
ed network at c 5 0, 0.5, 1. The line color represents the per-
centage of common connections. Unlike the unimodal
networks at c 5 0 (left) and 1 (right), the integrated network
at c 5 0.5 (middle) was affected by the percentage of

common edges. When the number of common connections
increased, the integrated network at 0.5 was tightly integrat-
ed. To quantify the integration pattern, we estimated the
area under curve (AUC) of b0: The larger the AUC is, the
more loosely integrated the network is. We performed the
linear regression analysis between AUC and the percentage
of shared connections and found the significant relationship
between AUC of b0 and the percentage of shared connec-
tions (P< 0.0001). During the 1D projection, the order of
edges is more affected by the larger one of the two edge
weights since the multifiltration is done by AND operation
in Eq. (1). If the connection information is inconsistent in the
bimodal networks, the integrated edge weights tend to fol-
low larger one. Thus, if the bimodal networks do not have
any relationship, the integrated network will be loosely inte-
grated. This makes the largest difference in the integrated
network at the mixing ratio 0.5 in Figure 3c.

Application

Distance–distance plot

The DD plots of ADHD, ASD and CON are shown in
Figure 4a–c. In each plot, the horizontal and vertical axes
represent the edge weights of PET and MRI, respectively.
Each dot represents an edge and different edges have dif-
ferent colors as shown in (d). The cross-correlations
between distances of PET and MRI in ADHD, ASD and
CON were 0.354, 0.205, and 0.194, respectively. They were
not statistically significant when compared to the cross-
correlation of random networks obtained by the permuta-
tion method. We estimated the distance from dots to the
black line y 5 x and plotted the histogram of distance

Figure 4.

The DD plot of (a) ADHD, (b) ASD and (c) CON. The hori-

zontal and vertical axes represent the distances (1-corr) of

edges on the networks of PET and MRI, respectively. Each dot is

an edge and the color of edge is shown in (d). The abbreviations

F, P, T, S, O, and C represent frontal, parietal, temporal,

subcortical, occipital, and cerebellar regions. R and L represent

right and left hemispheres. The black line represents y 5 x. The

distance from dots to y 5 x is estimated and its histogram is

plotted above each DD plot. [Color figure can be viewed at

wileyonlinelibrary.com]
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above the DD plot. The percentage of edges that have larg-
er distance in metabolic connections than in morphological
connections was 50.4%, 54.5%, and 68.0% for ADHD, ASD
and CON, respectively. The edges of CON (68.0%) were
significantly large with the level 0.001 as compared to
5,000 randomly permuted data.

b0-plot between PET and MRI

We applied the multifiltration method to two distance
matrices of PET and MRI of each group. The b0-plots of
ADHD, ASD and CON are illustrated in Figure 5a–c,
respectively. The horizontal and vertical axes represent the
threshold e and the mixing ratio c between PET and MRI,
respectively. The color of b0-plot is varied depending on
the number of CCs b0 at (e, c).

We did KS-like test to show the difference of b0-plot
between ADHD and ASD, ADHD and CON, and ASD
and CON using the permutation method. The type-I errors
for testing the difference between b0-plots were a 5 0.280
(ADHD vs. ASD), 0.022 (ADHD vs. CON), and 0.006 (ASD
vs. CON). Thus, in the view of multifiltration, ADHD and
CON, and ASD and CON were significantly different with
the level 0.05 but ADHD and ASD were not significantly
different. The symmetry index with respect to c 5 0.5 on
the e 2 c plane was 5.278, 6.393, and 0.500 for ADHD, ASD
and CON. When we tested the symmetry index of ADHD,
ASD and CON with 5000 randomly permuted data, CON
was statistically symmetric with the level 0.005 but ADHD
and ASD were not symmetric. Especially, ASD was more
asymmetric than ADHD.

b0-plot between groups

We estimated the sequence of integrated edge weight
matrices of ADHD, ASD and CON at c 5 0, 0.01, 0.02, . . .,
0.99 and 1. To test the difference between groups, we
applied the b0-plot method to the integrated edge weight
matrices of pairs of groups at each c and estimated the sym-
metry index of b0-plot between ADHD and ASD, ADHD
and CON, and ASD and CON at each c. The results are
shown in Figures 6 and 7. In each figure, the first and third
rows are the sequence of integrated edge weight matrices
obtained by 1D projection. Three b0-plots between ADHD
and CON or ASD and CON at c 5 0, 0.5 and 1 are shown in
the second row. The symmetry index of b0-plots (in the sec-
ond row) is displayed in the blue line at the bottom of the
figure. In the panel, the vertical and horizontal axes repre-
sent the symmetry index and the mixing ratio c of PET and
MRI, respectively. The box plots summarize the results of
5000 randomly permuted data. The red dotted lines indicate
the significance level 0.05 of symmetry index. If the symme-
try index value is larger than the red dotted line on the top,
two groups are different in the view of symmetry of b0-plot.

When we compared ADHD and ASD using the symmetry
index, we could not find any significant difference between
them. The difference between ADHD and CON was found
in the intervals of c 5 [0.6, 1] and the difference between
ASD and CON was found in the intervals of c 5 [0.55, 1]
(P< 0.05). The integrated edge weight matrix in the intervals
of c> 0.5 was mainly affected by the MRI information.
Although the pattern of global integration of ASD and CON
was quiet similar in c 5 [0, 0.5], the metabolic network of
ASD was more tightly integrated than one of CON. On the
other hand, the ASD network had looser integration pattern
than the CON network when the morphological connectivity
mainly affected the integrated edge weight matrix (P< 0.05).

For the multiple comparisons, we calculated the AUC of
symmetry index over the mixing ratio. The larger AUC of
symmetry index is, the more difference two groups have.
The AUCs of symmetry index showed the tendency with the
P-value 0.096 for the test of the difference between ADHD
and CON and 0.101 for the difference between ASD and
CON. The reason for this insignificant difference is because
both ADHD and ASD did not have much difference with the
controls at c 5 [0, 0.4] (when the metabolic connectivity
based on PET mainly dominated in the network integration).

1D projection

We estimated the sequence of edge weight matrices and
SLMs at c 5 0, 0.01, 0.02, . . ., 0.99, and 1. The sequences of
integrated edge weight matrices at c 5 0, 0.4, 0.45, 0.5, 0.55,
0.6, 1 are plotted in the first and third rows of Figures 6
and 7. The sequence of corresponding SLMs are plotted in
Figure 8. We tested the difference of integrated edge
weight matrices between ADHD and ASD, ADHD and
CON, and ASD and CON based on GH distance and per-
mutation method. ADHD and ASD were significantly

Figure 5.

b0-plots between PET and MRI of (a) ADHD, (b) ASD, and (c)

CON on the � 2 g plane. The vertical axis represents a mixing

ratio g and the horizontal axis represents a new threshold �
on the projection line with mixing ratio g The color in b0-plot

in (a,b) is varied according to the zeroth Betti number b0

between 1 and the number of nodes P 5 93. When b0 becomes

larger, the color changes from white to dark red as shown in

the right colorbar. [Color figure can be viewed at wileyonlineli-

brary.com]
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different in the intervals of c 5 [0, 0.46] and ADHD and
CON were significantly different in c 5 0.73, 1 and ASD
and CON were significantly different in c 5 0, 0.19 and
[0.44, 0.48] with the level 0.05 (Bonferonni corrected over
seven mixing ratios). When we tested the difference of
SLMs between groups, ADHD and CON were significantly
different in c 5 [0.54, 0.68] and ASD and CON were signifi-
cantly different in c 5 [0, 0.40] with the level 0.05 (Bonfer-
onni corrected over seven mixing ratios).

Comparison with conventional parametric analysis

When we compared the edge weight matrices between
ADHD, ASD and CON based on the conventional parametric
analysis, i.e., Fisher’s r to z transform and z test, the number
of significantly different connections were shown in Table I
(P< 0.05, Bonferonni corrected). The difference between
ADHD and CON in the metabolic connectivity was found in

two connections: (a) between the orbital part of right inferior
frontal gyrus and left caudate nucleus, and (b) between right
temporal pole and right putamen. ADHD had smaller dis-
tance (larger correlation) than CON in both (a) and (b) con-
nections. The difference between ASD and CON in the
metabolic connectivity was found in 10 connections. ASD had
significantly smaller distances (a) between the orbital part of
right inferior/middle frontal gyrus and caudate nucleus, (b)
between superior frontal gyrus and left fusiform gyrus, (c)
between right lingual gyrus and the dorsolateral part of left
superior frontal gyrus, and (d) between left inferior occipital
gyrus and left supramarginal gyrus. ASD had significantly
larger distances (a) between right paracentral lobule and left
middle temporal gyrus, (b) between left amygdala and left
postcentral gyrus, and (c) between right olfactory cortex and
the triangular part of left inferior frontal gyrus.

In the morphological connectivity, ADHD had smaller
distance than ASD only in between left lingual gyrus and

Figure 6.

ADHD vs. CON. The first and third rows show the sequence of

integrated edge weight matrices of ADHD at g 5 0, 0.4, 0.45, 0.5,

0.55, 0.6, 1 The second row represents the b0-plot between

ADHD and CON at g 5 0, 0.5, 1 The blue solid line in the last

row shows the symmetry index of b0-plot in the second row.

The box plots summarize the results of 5,000 random permuta-

tions and two dotted red lines represent the significance level

0.05 (Bonferonni corrected over seven mixing ratios). In the view

of symmetry index of b0-plot, the whole brain regions of ADHD

network were less integrated than the ones of CON network in

the intervals of g 5 [0.6, 1] with the level 0.05 (Bonferonni cor-

rected over seven mixing ratios). The AUC of symmetry index at

the bottom tended to be large when compared to 5,000 random

permutations (P 5 0.096). The larger AUC of symmetry index is,

the more difference ADHD and CON networks have. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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left middle temporal gyrus. ADHD had 7 larger morpholog-
ical distances than CON (a) between left amygdala and left
globus pallidum, (b) between right paracentral lobule and
hippocampus and left fusiform gyrus, (c) between left inferi-
or temporal gyrus and left inferior parietal gyrus, (d)
between right thalamus and left cuneus, (e) between right
paracentral lobule and left hippocampus, and (f) between
right inferior temporal gyrus and left middle temporal
gyrus. There was no significant difference between ASD and
CON in the morphological connectivity. The difference
between ASD and CON was mainly found in the metabolic
connectivity, while the difference between ADHD and CON
was mainly found in the morphological connectivity.

DISCUSSION

Edge Weights in Respective Metabolic and

Morphological Connectivity Networks

Although the relationship between functional connectivity
based on functional MRI and structural connectivity on DTI

has been reported in the literature [Bowman et al., 2012; Grei-
cius et al., 2009; Skudlarski et al., 2008; van den Heuvel et al.,
2009], the relationship between metabolic and morphological
connectivity based on FDG PET and T1 weighted MRI has
been rarely documented. Previous studies comparing func-
tional and structural brain connectivity disclosed that the
brain regions might be functionally connected through direct
or indirect anatomical connections [Bowman et al., 2012]. If
metabolic connectivity is related closely to functional connec-
tivity and morphological connectivity to structural connec-
tivity, metabolic connections will tend to have larger
distance than morphological connections. In experiments,
the metabolic connectivity in CON showed larger edge
weights than the morphological connectivity (P 5 0.001).
However, such a result was not found in ADHD and ASD.

Comparison With Conventional Parametric

Analysis

In the results of conventional parametric analysis, the
difference between ASD and CON was mainly found in

Figure 7.

ASD vs. CON. In the view of symmetry index of b0-plot, the

brain regions of ASD network were less integrated than the ones

of CON network in g 5 [0.55, 1] with the level 0.05 (Bonferonni

corrected over seven mixing ratios). The AUC of symmetry

index at the bottom tended to be large when compared to 5000

random permutations (P 5 0.101). The larger AUC of symmetry

index is, the more difference ASD and CON networks have.

[Color figure can be viewed at wileyonlinelibrary.com]
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the metabolic connectivity, while the difference between
ADHD and CON was mainly found in the morphological
connectivity. These results were similar to the results of
1D projection at the mixing ratio 0 and 1 in “1D projec-
tion” section. When we tested the group difference of inte-
grated edge weight matrices between ADHD and CON
and between ASD and CON based on GH distance and
permutation method, ADHD and CON were significantly
different in c 5 [0.73, 1] where the morphological connec-
tivity mainly affected the integration and ASD and CON
were significantly different in c 5 0, 0.19 and [0.44, 0.48
where the metabolic connectivity mainly affected the inte-
gration (P< 0.05).

When we compared the groups using SLM, the differ-
ence between ADHD and controls was found in the inter-
val c 5 [0.54, 0.68] in Figure 8 (P< 0.05). It means that the
difference of local connected structure between ADHD
and controls might be hidden both in the metabolic and
morphological networks and it could be extracted by inte-
grating two different network information. We also com-
pared the difference between modalities based on the
symmetry of b0-plot. From the results, the asymmetric

change between the metabolic and morphological connec-
tivity was found both in ADHD and ASD, but not found
in the controls. In this way, our approach provides com-
plementary information of bimodal brain networks. The
standard statistical parametric approach can’t incorporate
the integration of bimodal network analysis. However, the
proposed method could show the integration procedure

Figure 8.

The sequence of integrated single linkage matrices of (a)

ADHD, (b) ASD, and (c) CON. The mixing ratio g is 0 (PET),

0.4, 0.45, 0.5, 0.55, 0.6, and 1 (MRI). The SLMs of ADHD and

CON were significantly different with the level 0.05 in

g 5 [0.54, 0.68] in the blue box (Bonferonni corrected over the

seven mixing ratios). The matrices of ASD and CON were sig-

nificantly different in g 5 [0, 0.40] in the red box (Bonferonni

corrected over the seven mixing ratios). [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE I. Number of significantly different connections

between groups in the unimodal edge weight matrix of

PET and MRI (P < 0.05 Fisher’s r to z transform, z test,

and Bonferonni correction)

ADHD ASD CON

ADHD 0 (PET) 2 (PET)
ASD 1 (MRI) 10 (PET)
CON 7 (MRI) 0 (MRI)

The difference between ASD and CON was mainly found in the
metabolic connectivity in the upper triangular part, while the dif-
ference between ADHD and CON was mainly found in the mor-
phological connectivity in the lower triangular part.
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from one modality to the other and find the maximum dif-
ference between groups during the integration.

Asymmetric Change of ASD in the

Multidimensional b0-Plot

In Figure 5c, the changes of b0-plot during filtration
were almost symmetric between PET and MRI in control
subjects. However, the changes looked asymmetric in ASD
between PET and MRI in Figure 5b as b0 decreased quick-
ly during the filtration in the metabolic connectivity of
FDG PET but slowly in the morphological connectivity of
T1 MRI. Neurodevelopmental disorders such as ASD
involve abnormal functional and structural organizations
rather than neuronal cell death or tissue loss as demon-
strated by histo-pathological examinations in ASD which
showed that neuronal elimination decreased and myelina-
tion increased without neuronal population loss [Aylward
et al., 2002; Courchesne et al., 2001]. This dysmaturation
could have affected morphological connectivity, which we
revealed in this investigation, and would have resulted in
the loose integration of morphological connections
between brain areas in Figure 7. We interpreted this fact
as an indication that the inter-regional connections were
weaker. In ASD, the metabolic connectivity showed the
contrary finding of the tighter integration of metabolic
connections between brain areas, which would represent a
compensatory effort of brain areas to overcome morpho-
logical loose connectivity. In brief, the dysmaturation dif-
ferentially affected the morphological association of gray
matter in brain regions and the functional association of
cerebral metabolic activity.

Connectivities of Difference Between ADHD and

Controls in Local Connected Components

When the global connected structures were compared
by the symmetry index of b0-plot between groups in Fig-
ure 6, it was shown that the information of MRI was more
useful to discriminate ADHD and controls than one of
PET. It seems to be related to the brain maturation delay
in children with ADHD [Shaw et al., 2007; Vaidya, 2012].
SLMs obtained from the integrated edge weight matrices
between ADHD and controls were different in the interval
of c 5 [0.54, 0.68] with the level 0.05. Using the integrated
multimodal network at c 5 0.6 the different single linkage
connections were found (a) between right precentral gyrus
and other brain regions, (b) basal ganglia and paracentral
lobule, temporal pole, amygdala, hippocampus, and occip-
ital and cerebellar regions, and (c) right supramarginal
gyrus in the parietal region and some frontal areas such as
olfactory cortex, gyrus rectus, inferior frontal and superior
frontal regions, (d) left Rolandic operculum in the frontal
lobe and other brain regions, and (e) left Heschl gyrus in
the temporal lobe and other brain regions (P< 0.05 uncor-
rected). The regions (a-c) in ADHD were connected at

larger (single linkage) distances than in CON and regions
(d,e) are opposite (Fig. 2 in the Supporting Information).
The previous structural MRI studies showed that the chil-
dren with ADHD have structural abnormalities in basal
ganglia structures and cerebellar lobules [Shaw et al., 2007;
Vaidya, 2012]. The resting-state functional connectivity
studies have also shown that the frontal-striatal-cerebellar
networks are weaker in children with ADHD [Cao et al.,
2006].

Connectivities of Difference Between ASD and

Controls in Local Connected Components

In the b0-plot, the ASD network had a little tight integra-
tion in the metabolic connectivity, but loose integration in
the morphological connectivity. Our experiments had a
tendency that the reduced local connections in ASD were
mainly observed in the metabolic connectivity, but the
increased local connections were in the metabolic connec-
tivity. For example, the reduced connectivity in PET was
found (a) between the occipital region and frontal and
parietal regions, (b) in the visual cortex, (c) between left
angular gyrus in the parietal regions and other brain
regions, (d) between thalamus, amygdala, and hippocam-
pus, (e) between thalamus and cerebellum, and (f)
between left temporal pole and some frontal areas (gyrus
rectus, middle frontal and superior frontal gyrus) and
anterior cingulate cortex (P< 0.05 uncorrected). On the
contrary, the increased connectivity in MRI was mainly
found (a) between some fronto-parietal regions, (b) basal
ganglia and middle and inferior temporal gyrus, and (c)
left inferior frontal gyrus and other brain regions (P< 0.05
uncorrected). These results are shown in the Figure 3 in
the Supporting Information. The abnormality of the left
perisylvian network for language could influence on lan-
guage impairment and be the cause of the socio-
communication deficit of ASD [De Foss�e et al., 2004; Just
et al., 2004; Knaus et al., 2010; Palau-Baduell et al., 2005].
The abnormal global processing along the dorsal visual
pathway was reported in autism as being related to “weak
central coherence,” which complied with “reduced connec-
tivity in the visual cortex” [Pellicano et al., 2005]. The
abnormalities of cerebello-thalamic circuitry and fronto-
parietal connections were also reported in autism [Min-
shew and Keller, 2010; Takarae et al., 2007].

Limitations

When the 93 ROIs was defined based on AAL, we
merged cerebellar regions into three larger regions in spite
of the loss of the spatial specificity. We found that brain
PET coverage was less complete in the inferior part of cer-
ebellum. In that case, we needed to approximate them by
averaging. The other reason is the research interests [Col-
lin et al., 2011]. Since we wanted to concentrate more on
the connectivity of cerebral regions, we merged the
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cerebellar regions in each hemisphere and vermis using
the creating ROI option in Marsbar toolbox.

The KS-like test statistic for testing the difference of b0-plot
and the GH distance for testing the difference of connectivity
matrices are maximizing over all possible thresholds e and
mixing ratios c and over connections, respectively. Thus
there is no need for multiple comparisons in the first place.
However, when we compared each symmetry index and
each SLM in Figures 6–8, the P-value should have been cor-
rected for the multiple comparisons over the number of mix-
ing ratio. Since the mixing ratio is a continuous variable, the
corrected P-value is varied depending on how many the
mixing ratios are chosen. To solve this problem, we applied
the AUC-based method which estimates the area under the
symmetry index curve in Figures 6 and 7 and the obtained
results showed only trends of the group differences between
ADHD and CON and between ASD and CON in “b0-plot
between groups” Section. This may be due to the small sam-
ple size, especially 10 pediatric controls data using PET. To
improve the statistical power, we need to confirm the meth-
od in large sample data in the future.

The number of connected components b0 that we mainly
considered here is the most fundamental topological mea-
sure defined in Algebraic Topology. The b0-curve shows
how disconnected sub-networks are integrated into the fully
connected network when the threshold increases, but it does
not consider how the sub-networks are densely or sparsely
connected. The number of holes in the network is the next
topological measure we can use. It is the first Betti number
b1 in Algebraic Topology. The holes are generated in a con-
nected component and the sparser network tends to have
more holes. Therefore, if we extend the proposed method to
include the zeroth and first Betti number in the future, we
can measure the integration of the whole brain regions as
well as the sparsity of connected regions. We can also
extend the linear relationship between two modalities to the
nonlinear relationship by choosing a monotonically increas-
ing nonlinear function between two modalities.

CONCLUSIONS

By extending the previous filtration method to a multi-
modal analysis, we can observe the change of topological
shape of multimodal brain connectivity by varying two dif-
ferent thresholds simultaneously. We can take a quick look
at the relationship between multiple imaging modalities
using the multidimensional b0-plot and find the group differ-
ence in it. Whereas the controls showed relatively symmetric
changes of connected structures between PET and MRI in
the b0-plot during multidimensional filtration, ASD showed
the more rapid changes of number of CCs at smaller thresh-
old in metabolic connectivity, but the slower changes over a
long range of the thresholds during filtration in morphologi-
cal connectivity. Although we used the number of connected
networks as a topological measure here, we suggest that the
b0-plot can be applied to the other graph theoretic measures

such as small-worldness and betweenness centrality when
the goal is to see their change when two different modalities
are integrated. By using a 1D projection, we can integrate
multimodal networks of PET and MRI at various mixing
ratios and observe the change in topology of the integrated
network in which PET and MRI information is mixed. From
the integrated network, we found that ADHD had increased
morphological connectivity, and ASD also had increased
morphological connectivity, but decreased metabolic connec-
tivity. These results provide a multidimensional and multi-
scale homological understanding of disease-related
metabolic and morphological networks.
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