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ABSTRACT
Brain networks constructed from diffusion and functional
magnetic resonance imaging (dMRI and fMRI) are typically
investigated through graph theoretic models. It has recently
been noted that the complexity of brain connectivity may not
be sufficiently captured by single-scale models and multi-
scale models are needed. Persistent homology (PH) is an
algorithm that extracts multi-scale features in brain networks
that cannot be easily decoded by standard network analysis.
It summarizes topological structures in a network through
multi-scale descriptors such as persistence diagram (PD).
Various statistical inference procedures have been developed
for PDs. In this study, we propose a novel spectral permuta-
tion test on PDs by permuting Fourier coefficients from heat
kernel estimation of the PDs. The method is applied to test
if the connectivity of diffusion and resting-state functional
networks within two types of post-stroke aphasia undergo
changes across baseline and first treatment visits.

Index Terms— Persistent Homology, Persistence Dia-
gram, Topological Inference, Permutation Test.

1. INTRODUCTION

Brain network modeling based on diffusion and functional
magnetic resonance imaging (dMRI and fMRI) is an effective
approach to understand structural and functional connectiv-
ity of the brain. Brain networks have an innate graph struc-
ture that have been studied through graphical or graph theo-
retic models based on single-scale covariance estimation [1]
or single-scale graph-theoretic measures [2, 3]. These mod-
els effectively characterize brain network topology and have
become the norm for brain network analysis. However, it
has recently been noted that single-scale models may not be
sufficient in capturing the complexity of brain connectivity
and multi-scale models are needed [4]. On the other hand, a
ubiquitous problem in brain network analysis is selection of
threshold on edge weights to reveal significant connections
within and between brain regions. Arbitrary threshold may
cause problem of bias and consistency across studies [5, 6].
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Persistent homology (PH) is a powerful computational ap-
proach that extracts invariant multi-scale features in data [7].
It reveals the underlying topological structures in data through
multiple resolutions and dimensions in a coherent framework.
The fact that the overall topological changes hold more sig-
nificance over fleeting structures in PH makes the approach
particularly robust under the presence of noise and artifacts,
thus revealing more topological insight than traditional meth-
ods [8].

Statistical inference on PH features in brain networks has
been almost exclusively developed using resampling tech-
niques on Betti numbers, the numbers of clusters or holes,
across a range of filtration values [9, 10]. Other procedures
have also been developed in a wider application context for
analyzing persistence diagram (PD) that encodes the birth
and death times of clusters or holes as coordinates of planar
points. Procedures range from confidence-based approach
[11] to classification with dissimilarity kernel measures on
PDs based on scale-space representations of PD from so-
lutions of heat diffusion equations [12]. However, popular
kernel measures on PD are typically in a convolution form
[12], making it difficult to perform standard resampling-based
statistical inference procedures such as permutation testing.

In this study, we propose a spectral permutation test on
PDs through a new scale-space representation, where the
upper-triangular domain of PDs is represented using a finite
number of Fourier coefficients with respect to the Laplace-
Beltrami (LB) eigenfunction expansion of the domain [13].
The scale-space representation provides a powerful vector-
ized algebraic representation for comparisons of PDs at the
same coordinates, foregoing the need for matching across
PDs due to their arbitrary point locations. We evaluate the em-
pirical performance of the proposed spectral permutation test
in detecting an innate shape with a hole in a two-dimensional
image. The test is found to be sensitive in detecting the topo-
logical structure under noisy perturbations. It is also applied
to compare diffusion and rest-state functional brain networks
at baseline and first treatment visits within two types of post-
stroke aphasia. We find that the structural connectivity in
the diffusion networks alters between visits, whereas the
resting-state functional connectivity does not.
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2. METHODS

Brain networks are typically modeled as a weighted graph,
with the edge weights given by a similarity measure between
the measurements on the nodes of the network [14, 15]. Sup-
pose we have a network represented by the weighted graph
G = (V,w) with the node set V = {1, . . . , p} and unique
positive undirected edge weights w = (wij) constructed from
a similarity measure such as Pearson’s correlation. We define
the binary network Gε = (V,wε) as a subgraph of G consist-
ing of the node set V and the binary edge weights wε defined
by

wε,ij =

{
1 if wij < ε;
0 otherwise. (1)

As we increase ε, which we call the filtration value, more
edges are included in the binary network Gε and so the size
of the edge set increases. Since edges connected in the net-
work do not get disconnected again, we observe a sequence
of nested subgraphs

Gε0 ⊂ Gε1 ⊂ Gε2 ⊂ · · · , (2)

for any
ε0 ≤ ε1 ≤ ε2 ≤ · · · .

This sequence of nested subgraphs make up a Rips filtra-
tion where two nodes with a weight wij smaller than ε are
connected, and the birth and death of clusters and holes are
tracked through the filtration [16, 17]. We pair the birth and
death times of clusters and holes as coordinates of scatter
points on a planar graph {(ai, bi)}Li=1, i.e., persistence dia-
gram (PD). PDs do not possess a natural statistical framework
and requires additional manipulation such as kernel smooth-
ing.

2.1. Heat-kernel estimation of persistence diagram

We estimate a PD based on a spectral representation. Let T
be the upper triangular region above y = x where the scatter
points {(ai, bi)}Li=1 are located. We constrain T at some fixed
y-coordinates so that T is bounded. The heat kernel (HK) in
T is given by

Kσ(p, q) =

∞∑
k=0

e−λkσψk(p)ψk(q) (3)

with respect to the eigenfunctions ψk of Laplace-Beltrami
(LB) operator ∆ satisfying ∆ψk(p) = λkψk(p) for p ∈ T .
The first eigenvalue λ0 = 0 corresponds to eigenfunction
ψ0 = 1√

µ(T )
, where µ(T ) is the area of triangle T and σ

is the bandwidth of the HK. Consider heat diffusion

∂h(σ, p)

∂σ
= ∆h(σ, p) (4)

Fig. 1. Heat-kernel estimation of a persistence diagram (PD)
through Laplace-Beltrami (LB) eigenfunctions: PD (left) and
its heat-kernel estimate (right).

with the initial condition

h(σ = 0, p) =

L∑
i=1

δ(ai,bi)(p),

where δ(ai,bi) is the Dirac-delta function at (ai, bi). The scat-
ter points in the PD serve as the heat sources. A unique solu-
tion to (4) is thus given by the HK expansion

h(σ, p) =

∫
T
Kσ(p, q)h(σ = 0, q) dµ(q)

=

∞∑
k=0

e−λkσfkψk(p), (5)

where

fk =

∫
T
h(σ = 0, q)ψk(q) dµ(q) =

L∑
i=1

ψk(ai, bi) (6)

are the Fourier coefficients with respect to the the LB eigen-
functions. In practice, we include a finite number of terms for
PD estimation:

hK(σ, p) =
K∑
k=0

e−λkσfkψk(p), (7)

with sufficiently large degree K = 10000 for convergence.
As σ → 0, we can completely recover the initial scatter
points. As σ → ∞, we are doing kernel density estimation
with uniform kernel on T . Figure 1 shows the HK-estimation
of a PD with σ = 10, which we empirically choose for the
study. To simplify notation, we will refer to any series h(σ, p)
as h(p) as the bandwidth σ is fixed.

2.2. Spectral permutation test on persistence diagrams

We use permutation test to compare across PDs. Exact per-
mutation test on two samples of sizesm and n requires

(
m+n
n

)
permutations, which increases exponentially as the sample
sizes increase. A random permutation approach based on
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uniform sampling from the full set of permutations is typi-
cally used in practice. However, even with sample sizes like
m = n = 20, random permutations require significant com-
putational resources. The main computational bottleneck of
permutation testing is the computation of the test statistic for
each permutation. In this work, we propose a spectral trans-
position test that performs the permutation test on the spec-
trum of PDs [18, 9, 10].

Suppose we obtain PDs through filtrations on two groups
of correlation brain networks with rsizes m and n. The
degree-K HK-estimates of the PDs {f i} and {gj} are

f i(p) =

K∑
k=0

e−λkσf ikψk(p), i = 1, . . . ,m, (8)

gj(p) =

K∑
k=0

e−λkσgjkψk(p), j = 1, . . . , n, (9)

where f ik and gjk, k = 0, . . . ,K, are the Fourier coefficients
with respect to the k-th LB eigenfunction ψk. Their func-
tional means are

f̄(p) =

K∑
k=0

e−λkσ f̄kψk(p), (10)

ḡ(p) =

K∑
k=0

e−λkσ ḡkψk(p), (11)

where f̄k = 1
m

∑m
i=1 f

i
k and ḡk = 1

n

∑n
j=1 g

j
k are the mean

Fourier coefficients. We will use the L2-norm difference be-
tween the functional means ||f̄ − ḡ||22 as a test statistic for
measuring the group differences. We can algebraically show
that

||f̄ − ḡ||22 =

K∑
k=0

e−2λkσ(f̄k − ḡk)2. (12)

In a standard permutation test, the subject labels of the two
groups are randomly exchanged. Here, we consider the per-
mutation πij that only exchanges the i-th and j-th subject la-
bels between {f i, i = 1, . . . ,m} and {gj , j = 1, . . . , n} and
keeps all the other PDs fixed, i.e.

πij(f
1, . . . , fm) = (f1, . . . ,gj , . . . , fm), (13)

πij(g
1, . . . ,gn) = (g1, . . . , f i, . . . ,gn), (14)

which we call a spectral transposition. Any permutation of
the two groups ofm and n subjects is reachable by a sequence
of transpositions, which has been shown to be computation-
ally much more efficient than the standard permutation testing
procedure of exchanging all labels at once [10].

Permutation test based on spectral transpositions. We
generate the empirical distribution for the permutation test
through the spetral transpositions. Over one spectral transpo-
sition πij , we obtain the L2 distance between the functional

means of the degree-K HK-estimates based on transposed
PDs:

||f̄ ′ − ḡ′||22 =

K∑
k=0

e−2λkσ(f̄ ′k − ḡ′k)2, (15)

where f̄ ′k = f̄k + 1
m (gjk − f ik) and ḡ′k = ḡk + 1

n (f ik − g
j
k)

are the means of transposed Fourier coefficients. Since we
know f̄k and ḡk already, we simply update the terms 1

m (gjk −
f ik) and 1

n (f ik − g
j
k) in an online fashion. The p-value of the

spectral permutation test is then calculated as the proportion
of L2 distances in the empirical distribution exceeding the L2

distance between the observed PDs. To ensure convergence,
we perform 100,000 permutations in the subsequent analysis.

2.3. Performance evaluation

We evaluate the proposed test’s power in detecting the shape
of a key, or part of the key, with a distinct hole (Figure 2). In
each simulation, two groups of five 100-point point clouds are
generated: the 100 points in each point cloud of the first group
are generated randomly from the or part of the rectangular
image above the threshold, whereas the 100 points in each
point cloud of the second group are generated randomly with
a varied percentage (90%, 95%, 100%) of points from the
shape of the key. Rips filtration is constructed on each point
cloud. The proposed spectral permutation test is then applied
to compare the PDs of the Rips filtrations in the two groups.
When there are respectively 90%, 95%, and 100% points
sampled from the shape of the key in the second group, the
spectral permutation test rejects (p-value < 0.05) the null hy-
pothesis of no group difference in 91, 100, and 100% (whole
key) and 76, 88, and 93% (partial key) of 100 simulations
(corresponding means ± standard deviations of p-values:
0.0124±0.0327, 0.0041±0.0125, 0.0008±0.0057 (whole
key), and 0.0417±0.0794, 0.0200±0.0545, 0.0082±0.0217
(partial key), showing that the test stays sensitive in detecting
the group shape difference when points in the second group
are not entirely sampled from the shape of the key.

Fig. 2. The 1-skeletons of Rips complexes built on 100 points
randomly sampled from the image with an innate shape of a
key.
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Anomia – Baseline Anomia – 1st TreatmentBroca’s – Baseline Broca’s – 1st Treatment

Fig. 3. Average resting-state functional correlation matrices of the anomia and Broca’s groups in two visits.

3. APPLICATION

Aphasia is an acquired speech-language disorder that com-
monly develops after a left-hemisphere stroke. It affects an
estimated one million people in the US. Although many pa-
tients experience significant spontaneous recovery from apha-
sia in the first few days and weeks following stroke, approxi-
mately 30-40% of patients experience persistent language im-
pairment affecting communication ability and life participa-
tion. Quantification of brain functional patterns in fMRI al-
lows for an objective assessment of aphasia impairment [19].

Data. Participants were recruited locally in Columbia,
South Carolina, as part of the Predicting Outcome of Lan-
guage Recovery (POLAR) in Aphasia study of post-stroke
aphasia by the Center for the Study of Aphasia Recovery at
the University of South Carolina. The study was approved
by the Institutional Review Board and adhered to the ethics
guidelines. Only participants with a single ischemic or a hem-
orrhagic stroke in the left hemisphere were included. Aphasia
types were classified based on the Western Aphasia Battery-
Revised (WAB-R) [20]. Among the participants included in
the study, 14 were diagnosed with anomia or anomic aphasia
(a mild, fluent type of aphasia where individuals have word
retrieval failures and cannot express the words they want to
say, particularly nouns and verbs), and 28 were diagnosed
with Broca’s aphasia (type of aphasia characterized by partial
loss of the ability to produce spoken or written language, al-
though comprehension generally remains intact). Every par-
ticipant underwent resting-state fMRI (rs-fMRI) and diffusion
MRI (dMRI) scans at a baseline and first treatment visit with
a Siemens Prisma 3T scanner with a 20-channel head coil.

Preprocessing. The preprocessing procedures of the
fMRI data include motion correction, brain extraction and
time correction. This modality is processed using a novel
method developed for stroke patients [21]. For brain parcella-
tion, the automated anatomical label (AAL) atlas was used. A
single correlation matrix representing functional connectivity

between 90 AAL ROIs (excluding cerebellum and vermis)
was computed for each individual. Average resting-state
functional correlation matrices of the two groups of aphasic
individuals after the baseline and first treatment visits are
shown in Figure 3. Average fractional anisotropy (FA) val-
ues were computed for AAL ROIs for each participant. A
structural correlation matrix was computed on the average FA
values by leaving one participant out in each group.

Topological network analysis. We construct Rips fil-
trations and PDs over the individual structural and resting-
state functional correlation networks within the anomic and
Broca’s groups. The HK-estimated PDs are then respectively
compared between the two visits using the spectral transpo-
sition test. The test on resting-state functional networks does
not detect strong difference in holes between the two visits in
both anomia (p-value = 0.7048) and Broca’s aphasia (p-value
= 0.3641), which could indicate connectivity in resting-state
functional network is not yet altered by the first treatment.
On the other hand, there is significant difference between the
structural networks in both anomia (p-value = 0.0151) and
Broca’s aphasia (p-value = 0.0221), indicating changes in
structural connectivity between the two visits.

4. DISCUSSION

The spectral permutation approach has been applied in a
signal setting to preserve topology in resampling [22]. This
study generalizes the approach to the planar space of PDs.
Resampling is also of high relevance to deep learning. Since
deep learning does not perform well in small sample schemes,
data augmentation methods are needed to increase the train-
ing data by resampling [23]. In future studies, the proposed
spectral permutation method can be easily adapted for deep
learning where the input is the HK coefficients of PDs.
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