
Chapter 12

Inference for a Binomial p

In Part 1 of these Course Notes you learned a great deal about statistical tests of hypotheses.

These tests explore the unknowable; in particular, whether or not the Skeptic’s Argument is true.

In Section 11.4, I briefly introduced you to three tests that explore whether or not a sequence of

dichotomous trials are Bernoulli trials. In this chapter, we will assume that we have Bernoulli

trials and turn our attention to the value of the parameter p. Later in this chapter we will explore

a statistical test of hypotheses concerning the value of p. First, however, I will introduce you to

the inference procedure called estimation. I will point out that for Bernoulli trials, estimation is

inherently much more interesting than testing.

The estimation methods in this chapter are relatively straightforward. This does not mean,

however, that the material will be easy; you will be exposed to several new ways of thinking about

things and this will prove challenging.

After you complete this chapter, however, you will have a solid understanding of the two types

of inference that are used by scientists and statisticians: testing and estimation. Most of the remain-

der of the material in these Course Notes will focus on introducing you to new scientific scenarios,

and then learning how to test and estimate in these scenarios. (In some scenarios you also will

learn about the closely related topic of prediction.) Thus, for the most part, after this chapter you

will have been exposed to the major ideas of this course, and your remaining work, being familiar,

should be easier to master.

12.1 Point and Interval Estimates of p

Suppose that we plan to observe n Bernoulli Trials. More accurately, we plan to observe n di-

chotomous trials and we are willing to assume—for the moment, at least—that the assumptions of

Bernoulli trials are met. Throughout these Course Notes, unless I state otherwise, we always will

assume that the researcher knows the value of n.

Before we observe the n Bernoulli trials, if we know the numerical value of p, then we can

compute probabilities for X , the total number of successes that will be observed. If we do not

know that numerical value of p, then we cannot compute probabilities forX . I would argue—not

everyone agrees with me—that there is a gray area between these extremes; refer to my example
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concerning basketball player Kobe Bryant on page 264 of Chapter 11; i.e., if I have a massive

amount of previous data from the process that generates my future Bernoulli trials, then I might be

willing to use the proportion of successes in the massive data set as an approximate value of p.

Still assuming that the numerical value of p is unknown to the researcher, after n Bernoulli

trials are observed, if one is willing to condition on the total number of successes, then one can

critically examine the assumption of Bernoulli trials using the methods presented in Section 11.4.

Alternatively, we can use the data we collect—the observed value x of X—to make an inference

about the unknown numerical value of p. Such inferences will always involve some uncertainty. To

summarize, if the value of p is unknown a researcher will attempt to infer its value by looking at the

data. It is convenient to create Nature—introduced in Chapter 8 in the discussion of Table 8.8—

who knows the value of p.

The simplest inference possible involves the idea of a point estimate/estimator, as defined be-

low.

Definition 12.1 (Point estimate/estimator.) A researcher observes n Bernoulli trials, counts the

number of successes, x and calculates p̂ = x/n. This proportion, p̂, is called the point estimate of

p. It is the observed value of the random variable P̂ = X/n, which is called the point estimator of

p. For convenience, we write q̂ = 1− p̂, for the proportion of failures in the data; q̂ is the observed
value of the random variable Q̂ = 1− P̂ .

Before we collect data, we focus on the random variable, the point estimator. After we collect

data, we compute the value of the point estimate, which is, of course, the observed value of the

point estimator.

I don’t like the technical term, point estimate/estimator. More precisely, I don’t like half of it.

I like the word point because we are talking about a single number. (I recall the lesson I learned

in math years ago, “Every number is a point on the number line and every point on the number

line is a number.”) I don’t particularly like the use of the word estimate/estimator. If I become

tsar of the Statistics world, I might change the terminology. I say might instead of will because,

frankly, I can’t actually suggest an improvement on estimate/estimator. I recommend that you

simply remember that estimate/estimator is a word statisticians use whenever they take observed

data and try to infer a feature of a population.

It is trivially easy to calculate p̂ = x/n; thus, based on experiences in previous math courses,

you might expect that we will move along to the next topic. But we won’t. In a Statistics course

we evaluate the behavior of a procedure. What does this mean? Statisticians evaluate procedures

by seeing how they perform in the long run.

We say that the point estimate p̂ is correct if, and only if, p̂ = p. Obviously, any honest

researcher wants the point estimate to be correct. As we will see now, whereas having a correct

point estimate is desirable, the concept has some serious difficulties.

Let’s suppose that a researcher observes n = 100 Bernoulli trials and counts a total of x = 55
successes. Thus, p̂ = 55/100 = 0.55 and this point estimate is correct if, and only if, p = 0.55.
This leads us to the first difficulty with the concept of being correct.

• Nature knows whether p̂ is correct; the researcher never knows.
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The above example takes place after the data have been collected. We can see this because we

are told that a total of x = 55 successes were counted. Now let’s go back in time to before the data

are collected and let’s take on the role of Nature. I will change the scenario a bit to avoid confusing

this current example with what I just did. As Nature, I am aware that a researcher plans to observe

n = 200 Bernoulli trials. I also know that p = 0.600, but the researcher does not know this. In

addition, after collecting the data, the researcher will calculate the point estimate of p. What will

happen? I don’t know what will happen—I don’t make Nature omniscient; it just knows the value

of p! When I don’t know what will happen, I resort to calculating probabilities. In particular, as

Nature, I know that p̂ will be correct if, and only if, the total number of successes turns out to

be 120—making p̂ = 120/200 = 0.600. Thus, back in time before data are collected, I want to

calculate

P (X = 120) given that X ∼ Bin(200, 0.600).

I can obtain this exact probability quite easily from the website

http://stattrek.com/Tables/Binomial.aspx.

I used this website and obtained P (X = 120) = 0.0575. Thus, in addition to the fact that only

Nature knows whether a point estimate is correct, we see that

• The probability that the point estimator will be correct can be very small and, indeed, can be

calculated by Nature, but not the researcher.

I don’t want to dwell on this too much, but we need something better than point estimation!

In Section 10.2 I extended the saying,

Close counts in horseshoes and hand grenades

to

Close counts in horseshoes, hand grenades and probabilities.

I want to extend it again; this time to

Close counts in horse shoes, hand grenades, probabilities and estimation.

Let’s revisit my last example: a researcher plans to observe n = 200 Bernoulli trials; the

researcher does not know the value of p; and Nature knows that p = 0.600. The researcher plans
to compute the point estimate of p. We saw above that the probability that the point estimator will

be correct—i.e., that p̂ will be exactly equal to p = 0.600 is small; indeed only 0.0575. Suppose

now that the researcher thinks, “In order for me to be happy, I don’t really need to have my point

estimate be exactly equal to p; all I need is for p̂ to be close to p.” In order to proceed, the researcher
needs to specify how close is required for happiness. I will look at two examples.

1. The researcher decides that within 0.04 is close enough for happiness. Thus, Nature knows

that the event (0.560 ≤ P̂ ≤ 0.640) is the event that the researcher will be happy. (Paradox-
ically, of course, the researcher won’t know that this is the happiness event!) Nature, being

good at algebra, writes

P (0.560 ≤ P̂ ≤ 0.640) = P (112 ≤ X ≤ 128), for X ∼ Bin(200, 0.600).
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Next,

P (112 ≤ X ≤ 128) = P (X ≤ 128)− P (X ≤ 111).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

this probability equals

0.8906− 0.1103 = 0.7803.

2. The researcher decides that within 0.07 is close enough for happiness. Thus, Nature knows

that the event (0.530 ≤ P̂ ≤ 0.670) is the event that the researcher will be happy. Nature
writes

P (0.530 ≤ P̂ ≤ 0.670) = P (106 ≤ X ≤ 134), for X ∼ Bin(200, 0.600).

Next,

P (106 ≤ X ≤ 134) = P (X ≤ 134)− P (X ≤ 105).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

this probability equals

0.9827− 0.0188 = 0.9639.

The above ideas lead to the following definition.

Definition 12.2 (Interval estimate/estimator.) A researcher observes n Bernoulli trials and counts

the number of successes, x. An interval estimate of p is a closed interval with endpoints l (for lower
bound) and u (for upper bound), written [l, u]. Although the dependence is often suppressed, both l
and u are functions of x. Thus, more properly, an interval estimate should be written as [l(x), u(x)].
An interval estimate is the observed value of the interval estimator: [l(X), u(X)].

Below is an example of an interval estimate of p. It is called a fixed-width interval estimate

because, as you will see, its width is constant; i.e., its width is not a function of the random

variableX .

• Define the interval estimate to be [p̂− 0.04, p̂+ 0.04]. Note that

l(x) = p̂− 0.04 = x/n− 0.04 and u(x) = p̂+ 0.04 = x/n+ 0.04;

thus, this is a bona fide interval estimate. The width of this interval is

u− l = x/n + 0.04− (x/n− 0.04) = 0.08.

Thus, this is a fixed-width interval estimate with width equal to 0.08. Usually, however,

statisticians refer to this as a fixed-width interval estimate with half-width equal to 0.04.
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Recall, we say that the point estimate p̂ is correct if, and only if, p is equal to p̂. Similarly, we

say that an interval estimate is correct if, and only if, p lies in the interval; i.e., if, and only if,

l ≤ p ≤ u.
Let’s look at this notion of correctness with our fixed-width interval estimate with half-width

equal to 0.04. The interval estimate is correct if, and only if,

p̂− 0.04 ≤ p ≤ p̂+ 0.04.

I will need to rearrange the terms in this expression which contains two inequality signs. If you

are good at this activity, you will find my efforts below to be a bit tedious because I will break

the above into two pieces; analyze the pieces separately; and then put the pieces back together. In

particular, let’s start with

p ≤ p̂+ 0.04 which becomes p− 0.04 ≤ p̂.

Similarly,

p̂− 0.04 ≤ p becomes p̂ ≤ p+ 0.04.

Combining these inequalities, we obtain

p− 0.04 ≤ p̂ ≤ p+ 0.04.

This last expression, in words, means that p̂ is within 0.04 of p. This implies that a researcher

who would be happy to have the point estimate be within 0.04 of p, should estimate p with interval
estimate with half-width equal to 0.04; the interval is correct if, and only if, the researcher is happy.

Sadly, fixed-width interval estimates have a serious weakness for statistical inference; details

will be given in one of the Practice Problems for this chapter. At this time we turn our attention to

the type of interval estimate that is very useful in inference and science.

12.2 The (Approximate) 95% Confidence Interval Estimate

In this section you will be introduced to a particular type of interval estimate of p, called a confi-

dence interval estimate.

This is a tricky topic. I want to derive the confidence interval for you, but experience has taught

me that the topic is very confusing if I begin with the derivation. Thus, instead I will give you the

formula and use it twice before I derive it.

Recall the definition of an interval estimate presented in Definition 12.2. In order to specify an

interval estimate, I must give you formulas for l and u, the lower and upper bounds of the interval.

Result 12.1 (The (approximate) 95% confidence interval estimate of p.) The lower and upper

bounds of the (approximate) 95% confidence interval estimate of p are

l(x) = p̂− 1.96

√

p̂q̂

n
and u(x) = p̂+ 1.96

√

p̂q̂

n
. (12.1)
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Because of the similarity between the formulas for l and u, we usually combine the above into one
formula. The (approximate) 95% confidence interval estimate of p is

p̂± 1.96

√

p̂q̂

n
(12.2)

Let me make a few comments about this definition.

1. It will be convenient to give a symbol for the half-width of an interval estimate. We will

use h. With this notation, the half-width of the (approximate) 95% confidence interval esti-

mate of p is

h = 1.96

√

p̂q̂

n
.

Note that this is not a constant half-width; the value of h depends on x through the value

of p̂ (remembering that q̂ = 1− p̂).

2. The confidence interval is centered at p̂. It is correct—includes p—if, and only if, p̂ is

within h of p.

3. The formula for the confidence interval is mysterious. The derivation I give later will clear up

the mystery, especially the presence of the magic number 1.96. As you might have guessed,

the appearance of 1.96 in the formula is tied to the specification of 95% confidence. Note

that if I replace 1.96 in Formula 12.2 by the number 3, we get the nearly certain interval

introduced in Chapter 4.

I will now illustrate the computation of the 95% confidence interval for two data sets similar to my

earlier example with Kobe Bryant.

1. In his NBA career, Karl Malone attempted 13,188 free throws during games and made 9,787

of them. On the assumption that Malone’s game free throws were Bernoulli trials, calculate

the 95% confidence interval for his p.

Solution: Note that unless p̂ is close to zero, my convention in these Course Notes is to

round p̂ to three digits. We compute p̂ = 9,787/13,188= 0.742 and q̂ = 1− 0.742 = 0.258.
Thus,

h = 1.96

√

0.742(0.258)

13,188
= 0.007.

Thus, the approximate 95% confidence interval estimate of p is

0.742± 0.007 = [0.735, 0.749].

This interval is very narrow. If it is indeed correct, then we have a very precise notion of the

value of p.
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2. In his NBA career, Shaquille O’Neal attempted 11,252 free throws during games and made

5,935 of them. On the assumption that O’Neal’s game free throws were Bernoulli trials,

calculate the 95% confidence interval for his p.

Solution: We compute p̂ = 5,935/11,252= 0.527 and q̂ = 1− 0.527 = 0.473. Thus,

h = 1.96

√

0.527(0.473)

11,252
= 0.009.

Thus, the approximate 95% confidence interval estimate of p is

0.527± 0.009 = [0.518, 0.536].

This interval is very narrow. If it is indeed correct, then we have a very precise notion of the

value of p. Note that O’Neal’s interval is a bit wider than Malone’s; as we will see later, this

difference is due to: O’Neal’s n is smaller than Malone’s; and O’Neal’s p̂ is closer to 0.5

than Malone’s.

12.2.1 Derivation of the Approximate 95% Confidence Interval Estimate

of p

Our derivation involves the computation of probabilities; thus, we go back in time to before data

are collected. Our basic random variable of interest is X , the number of successes that will be

obtained in the n future Bernoulli trials. We know that the sampling distribution ofX is Bin(n, p).
Of course, we don’t know the value of p, but let’s not worry about that. Much of algebra, as you

no doubt remember, involves manipulating unknown quantities!

The reason our confidence interval includes the modifier approximate is that we are not going

to work with exact binomial probabilities; instead, we will approximate the Bin(n, p) distribution
by using the Normal curve with µ = np and σ =

√
npq. I want to obtain an answer that is true for

a variety of values of n and p; as a result, it will prove messy to constantly have our approximating

curve change; e.g., if I change from n = 100 to n = 200, then the µ and σ of the approximating

Normal curve will change. It is more convenient to instead standardize the random variable X ,

as now described. Define a new random variable, denoted by Z, which we call the standardized

version of X . For a general X—i.e., not just binomial—we define

Z =
X − µ

σ
, (12.3)

where µ is the mean and σ is the standard deviation of the random variableX . In this chapter—i.e.,

because X has a binomial distribution—Equation 12.3 becomes

Z =
X − np√

npq
. (12.4)

It can be shown mathematically—although I won’t demonstrate it—that the Normal curve with

µ = np and σ =
√
npq approximates the binomial distribution ofX exactly the same as the N(0,1)
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curve approximates the distribution of Z. In other words, the conditions for the first approximation

to be good are exactly the conditions for the second approximation to be good. Recall also that the

general guideline I gave you for using a Normal curve to approximate a binomial is that both np
and nq should equal or exceed 25. Finally, recall that whereas everybody agrees that the values of

np and nq are critical, not everybody agrees with my threshold of 25.

It turns out that for the goal of interval estimation, the unknown p (and q = 1 − p) in the

denominator of Z creates a major difficulty. Thanks, however, to an important result of Eugen

Slutsky (1925) (called Slutsky’s Theorem) probabilities for Z ′,

Z ′ =
(X − np)
√

nP̂ Q̂
,

can be well approximated by the N(0,1) curve, provided n is reasonably large; p is not too close to
0 or 1; and 0 < P̂ < 1 (we don’t want to divide by zero). Note that Z ′ is obtained by replacing the

unknown p and q in the denominator of Z with the random variables P̂ and Q̂, both of which will

be replaced by their observed values once the data are collected.

Here is the derivation. Suppose that we want to calculate P (−1.96 ≤ Z ′ ≤ 1.96). Because of
Slutsky’s result, we can approximate this probability with the area under the N(0,1) curve between

−1.96 and 1.96. Using the website,

http://davidmlane.com/hyperstat/z_table.html

you can verify that this area equals 0.95. Next, dividing the numerator and denominator of Z ′ by

n gives

Z ′ =
P̂ − p

√

P̂ Q̂/n
.

Thus,

−1.96 ≤ Z ′ ≤ 1.96 becomes − 1.96 ≤ P̂ − p
√

P̂ Q̂/n
≤ 1.96;

rearranging terms, this last inequality becomes

P̂ − 1.96
√

P̂ Q̂/n ≤ p ≤ P̂ + 1.96
√

P̂ Q̂/n.

Examine this last expression. Once we replace the random variables P̂ and Q̂ by their observed

values p̂ and q̂, the above inequality becomes

p̂− 1.96
√

p̂q̂/n ≤ p ≤ p̂+ 1.96
√

p̂q̂/n.

In other words,

l ≤ p ≤ u.

Thus, we have shown that, before we collect data, the probability that we will obtain a correct

confidence interval estimate is (approximately) 95% and that this is true for all values of p! Well,
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all values of p for which the Normal curve and Slutsky approximations are good. We will return to

the question of the quality of the approximation soon.

Let me say a bit about the use of the word confidence in the technical expression confidence

interval. First and foremost, remember that I use confidence as a technical term. Thus, whatever

the word confidence means to you in every day life is not necessarily relevant. Let’s look at

the 95% confidence interval I calculated for Karl Malone’s p for free throw shooting. I am 95%

confident that

0.735 ≤ p ≤ 0.749.

Literally, this is a statement about the value of p. This statement might be correct or it might

be incorrect; only my imaginary creature Nature knows. Here is the key point. I assign 95%

confidence to this statement because of the method I used to derive it. Before I collected Malone’s

data I knew that I would calculate the 95% confidence interval for p. Before I collected data I

knew that the probability I would obtain a correct confidence interval is (approximately) 95%.

By appealing to the Law of Large Numbers (Subsection 10.2.1), I know that as I go through life,

observing Bernoulli trials and calculating the approximate 95% confidence interval from each set

of said data, in the long run approximately 95% of these intervals will be correct. Thus, a particular

interval—such as mine for Malone—might be correct or it might be incorrect. Because, in the long

run, 95% of such intervals will be correct, I am 95% confident that my particular interval is correct.

12.2.2 The Accuracy of the 95% Approximation

Later, I will give you a specific general guideline for when to use the approximate confidence

interval as well as an alternative method to be used if the guideline is not satisfied. In the current

subsection I will focus on how we assess the accuracy of the approximation. I will do this with

several examples. Essentially, we must specify values of both n and p and then see how the formula

performs.

Before I get to my first example, it is convenient to have a not-so-brief digression. I want to

introduce you to what I call the Goldilocks metaphor, a device that repeatedly will prove useful

in these notes.

According to Wikipedia,

The Story of the Three Bears (sometimes known as The Three Bears, Goldilocks and

the Three Bears or, simply,Goldilocks) is a fairy tale first recorded in narrative form by

British author and poet Robert Southey, and first published anonymously in a volume

of his writings in 1837. The same year, British writer George Nicol published a version

in rhyme based upon Southey’s prose tale, with Southey approving the attempt to bring

the story more exposure. Both versions tell of three bears and an old woman who

trespasses upon their property. . . . Southey’s intrusive old woman became an intrusive

little girl in 1849, who was given various names referring to her hair until Goldilocks

was settled upon in the early 20th century. Southey’s three bachelor bears evolved into

Father, Mother, and Baby Bear over the course of several years. What was originally

a fearsome oral tale became a cozy family story with only a hint of menace.
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Figure 12.1: The Goldilocks metaphor for confidence intervals.

pl u

The CI is too small, u < p:

p l u

The CI is too large, p < l:

pl u

The CI is correct, l ≤ p ≤ u:

In my opinion, Goldilocks, a juvenile delinquent specializing in home invasion, gets her come-

upance when she stumbles into the wrong house. In any event, Goldilocks is well-known for

complaining that something was too hot or too cold, before setting on something that was just

right.

So, what does any of this have to do with confidence intervals? Only that it is useful to realize

that a confidence interval can be too small, too large or correct (just right!). Perhaps a picture will

help. Figure 12.1 presents the three possibilities for the relationship between a confidence interval

and the p it is estimating. Let’s look at the three pictured possibilities.

1. The confidence interval could be too small. This means that p is larger than every number in

the confidence interval. It will be convenient to note that a confidence interval is too small

if, and only if, u < p.

2. The confidence interval could be too large. This means that p is smaller than every number

in the confidence interval. It will be convenient to note that a confidence interval is too large

if, and only if, p < l.

3. The confidence interval could be correct. This means that l ≤ p ≤ u.

The main message of these three observations is: In general, it is easier to determine whether a

confidence interval is too small or too large rather than correct. This is because determining either

of the former requires checking one inequality, whereas determining the latter requires checking

two inequalities.
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For my first example, I will take n = 200 and p = 0.500. I anticipate that the interval should
perform well, because both np = 200(0.5) = 100 and nq = 200(0.5) = 100 are much larger

than our Chapter 11 guideline threshold of 25 for using a Normal curve to approximate binomial

probabilities. We have a very specific criterion that we want to examine. We want to determine the

exact probability that the 95% confidence interval will be correct. If you desire, you may verify

the following facts, but you don’t need to; i.e., I will never ask you to perform such an activity on

an exam.

• The event the confidence interval is too small is the event (X ≤ 86); i.e., for any x ≤ 86,
the value of u is less than 0.500.

• The event the confidence interval is too large is the event (X ≥ 114); i.e., for any x ≥ 114,
the value of l is greater than 0.500.

• In view of the previous two items, the event the confidence interval is correct is the event

(87 ≤ X ≤ 113).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find

P (X ≤ 86) = 0.0280 and P (X ≥ 114) = 0.0280; thus,

P (87 ≤ X ≤ 113) = 1− 2(0.0280) = 1− 0.0560 = 0.9440.

Actually, I am a bit disappointed in this approximation. In the limit (long run), 94.4%, not the

advertised 95.0%, of the confidence intervals will be correct.

For my second example, I will take n = 1,000 and p = 0.600. For this example, np =
1000(0.6) = 600 and nq = 1000(0.4) = 400 are both substantially larger than the threshold value

of 25. If you desire, you may verify the following facts:

• The event the confidence interval is too small is the event (X ≤ 568); i.e., for any x ≤ 568,
the value of u is less than 0.600.

• The event the confidence interval is too large is the event (X ≥ 631); i.e., for any x ≥ 631,
the value of l is greater than 0.600.

• In view of the previous two items, the event the confidence interval is correct is the event

(569 ≤ X ≤ 630).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,
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we find

P (X ≤ 568) = 0.0213 and P (X ≥ 631) = 0.0241; thus,

P (569 ≤ X ≤ 630) = 1− (0.0213 + 0.0241) = 1− 0.0454 = 0.9546.

In this example, in the limit (long run), the nominal 95% confidence interval is correct a bit more

often than promised.

For my third and final example, I will take n = 100 and p = 0.020. For this example, np =
100(0.02) = 2, which is far below the threshold value of 25. Thus, I anticipate that our approximate

confidence interval will not perform as advertised. If you desire, you may verify the following

facts:

• The event the confidence interval is too small is the event (X = 0); i.e., for x = 0, the
value of u is less than 0.02. In fact, for x = 0 the confidence interval is [0, 0], a single point!
Also, for (1 ≤ x ≤ 3) the lower bound, l, of the confidence interval is a negative number!

Whenever an interval reduces to a single number or a nonnegative quantity (in the current

set-up p) is stated to be possibly negative, it’s a good indication that the formula being used

can’t be trusted!

• The event the confidence interval is too large is the event (X ≥ 9); i.e., for any x ≥ 9, the
value of l is greater than 0.020.

• In view of the previous two items, the event the confidence interval is correct is the event

(1 ≤ X ≤ 8).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find

P (X = 0) = 0.1326 and P (X ≥ 9) = 0.0001; thus,

P (1 ≤ X ≤ 8) = 1− (0.1326 + 0.0001) = 1− 0.1327 = 0.8673.

In this example, in the limit (long run), the nominal 95% gives way too many incorrect intervals.

We will revisit my third example in Section 12.3 and you will learn a method that performs as

it promises.

In summary, the approximate 95% confidence interval for p (Formula 12.2) is one of the most

useful results in Statistics. For its computation, we don’t need access to the internet; we don’t need

a fancy calculator; all we need is a calculator that can compute square roots. If both np and nq
are 25 or larger, then the actual probability that the confidence interval will be correct is indeed

reasonably close to the advertised (nominal) value of 95%. Admittedly, this last sentence is quite

vague, but it will suffice for a first course in introductory Statistics.

You may have noticed a flaw in the part of my advice that requires both np and nq to be 25 or

larger. Do you see it? The whole point of estimation is that we don’t know the value of p or q and,
thus, we can’t actually check the values of np and nq. There are two ways we handle this.
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1. Sometimes n is so large that even though I can’t literally check the values of np and nq I

am quite sure that they both exceed 25. For example, I don’t know who will be running for

President of the United States in 2016, but if I have a random sample of n = 1,000 voters,

and the dichotomy is vote Democrat or Republican, I am quite sure that both np = 1000p
and nq = 1000q will be much larger than 25.

2. If you aren’t sure that the above item applies, a popular—and valuable—guideline is to use

Formula 12.2 provided that both x and (n − x) equal or exceed 35. Note that 35 is my

personal choice; other statisticians might consider me to be too cautious (they advocate a

smaller threshold) or too reckless (they advocate a larger threshold).

12.2.3 Other Confidence Levels

In our 95% confidence interval, the number 95% is called the confidence level of the interval. The

obvious question is: Can we use some other confidence level? The answer is “Yes, and I will show

you how in this short subsection.”

If you think back to my derivation of the 95% confidence interval formula, you will recall that

my choice of 95% gave us the magic number of 1.96. In particular, the Normal curve website told

us that the area under the N(0,1) curve between the numbers −1.96 and +1.96 is equal to 0.95.

You can verify that the area under the N(0,1) curve between the numbers −1.645 and +1.645 is

equal to 0.90. Thus, we immediately know that the approximate 90% confidence interval estimate

of p is

p̂± 1.645

√

p̂q̂

n
.

We can summarize our two confidence intervals—95% and 90%—by writing them as

p̂± z∗
√

p̂q̂

n
, (12.5)

with the understanding that for 95% [90%] confidence we substitute 1.96 [1.645] for z∗. Let me

make two comments on Formula 12.5.

1. There is no need to restrict ourselves to 95% or 90%. The most popular choices for confi-

dence level—and their corresponding values of z∗ are provided in Table 12.1. Note that you

now know that the nearly certain interval for p is, indeed, the 99.73% confidence interval

estimate of p.

2. Many texts—I hate to be rude, but frankly— are sadistic in their presentation of the general

confidence interval, Formula 12.5. In particular, instead of our user-friendly z∗, they write

something like

z∗α/2

(usually without the asterisk) and refer to the result as the 100(1− α)% confidence interval

estimate of p. I prefer my method; seeing z∗ reminds you that you need to make a choice of

confidence level and that the number you use, z∗, depends on your choice.
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Table 12.1: Popular choices for the confidence level and their corresponding values of z∗ for the
general approximate confidence interval estimate of p, Formula 12.5.

Confidence Level 80% 90% 95% 98% 99% 99.73%

z∗: 1.282 1.645 1.960 2.326 2.576 3.000

I will discuss the choice of confidence level in Section 12.4. Let me just state that earlier I

examined the quality of the approximation and gave guidelines on whether or not to use the 95%

confidence interval formula. All of my results are qualitatively the same for other confidence levels.

In particular, my guideline for using Formula 12.5 is the same as it was for the 95% confidence

level: if both x and (n−x) equal or exceed 35, I recommend using it. This will be a general pattern

in our ongoing studies of confidence intervals. When I explore properties of the intervals, I will

focus on 95% and the results will always be qualitatively the same for other confidence levels.

12.3 The Clopper and Pearson “Exact” Confidence Interval

Estimate of p

In Section 12.4, I will explain why I put the word Exact in quotes in the title of this section.

In line with the last paragraph of the previous section, let me summarize the facts about the

approximate 95% confidence interval estimate of p; remembering that similar comments are true

for other choices of the confidence level.

Formula 12.2 has the following property. For every possible value of p the probability that

the researcher will obtain a correct confidence interval is approximately 95%. The fact that the

formula works for every possible p is pretty amazing; there are, after all, an infinite number of

possibilities for p! The word approximately is, however, troublesome. We saw by example, that

sometimes the approximation can be bad. In particular, if either np or nq is smaller than 25 then

I recommend that you do not use Formula 12.2. Because the values of p and q are unknown, my

more useful recommendation is that if, after you collect data, you notice that either x or (n− x) is
smaller than 35, then I recommend that you do not use Formula 12.2.

Let’s look at the origin of Formula 12.2 again. The approach was as follows. For any fixed

value of p, we found numbers b and c such that P (b ≤ X ≤ c) is approximately 95%, where

the approximation is based on using a Normal curve. Next, because both b and c are functions of
p we were able to manipulate the event (b ≤ X ≤ c) into a confidence interval for p. This last

part, recall, required help from Slutsky’s theorem too. Thus, our confidence interval is based on

two approximations: using a Normal curve to approximate binomial probabilities and then using

Slutsky’s theorem.

There is an obvious alternative approach. Let’s find the numbers b and c without using an

approximating Normal curve; obtain them by using exact binomial probabilities. If we can invert

this collection of inequalities—a big if because there are an infinite number of inequalities—then

we will have a confidence interval for p that does not involve any approximations. In 1934, Clopper

296



Table 12.2: The Clopper and Pearson (CP) 95% confidence intervals for n = 20.

x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)]
0: [0, 0.168] 6: [0.119, 0.543] 11: [0.315, 0.769] 16: [0.563, 0.943]
1: [0.001, 0.249] 7: [0.154, 0.592] 12: [0.360, 0.809] 17: [0.621, 0.968]
2: [0.012, 0.317] 8: [0.191, 0.640] 13: [0.408, 0.846] 18: [0.683, 0.988]
3: [0.032, 0.379] 9: [0.231, 0.685] 14: [0.457, 0.881] 19: [0.751, 0.999]
4: [0.057, 0.437] 10: [0.272, 0.728] 15: [0.509, 0.913] 20: [0.832, 1]
5: [0.087, 0.491]

and Pearson managed to make this alternative approach work. (See Binomial proportion confidence

interval in Wikipedia for more information.) Well, it almost works. The main sticking problem is

that because of the discrete nature of the binomial distribution, for a given p we cannot, in general,
find numbers b and c so that the binomial P (b ≤ X ≤ c) is exactly equal to 0.95. Instead, they

settled on finding numbers b and c so that

P (b ≤ X ≤ c) ≥ 0.95, for every value of p.

(Historical note: Working in the precomputer age, the accomplishment of Clopper and Pearson

was quite amazing. Their work has been improved in recent years because while their choices of b
and c were good for inverting the infinite number of inequalities, for many values of p, their exact
P (b ≤ X ≤ c) is much larger than 0.95. As we will see later, this means that their intervals were

wider—and, hence, less informative—than necessary. I won’t show you the modern improvement

on Clopper and Pearson because it is not easily accessible computationally.)

As you probably know, there was no internet in 1934; in fact, as best I can tell there were no

computers in 1934. Thus, Clopper and Pearson distributed their work by creating lots of tables.

An example of a Clopper and Pearson table is given in Table 12.2. This table presents all of the

Clopper and Pearson (CP) 95% confidence intervals for n = 20. Let’s look at a few of the entries

in Table 12.2.

If we observe a total of x = 7 successes in 20 Bernoulli trials, then the CP 95% confidence

interval estimate of p is: [0.154, 0.592]. If x = 15, the confidence interval is [0.509, 0.913]. Note
that for all 21 possible values of x, the CP 95% confidence intervals are very wide; in short, we

don’t learn much about the value of p with only 20 Bernoulli trials.
Next, let’s do a couple of computations to verify that the probability that a CP 95% confidence

interval will be correct is at least 95%. Let’s consider p = 0.500. From Table 12.2, we can quickly

ascertain the following facts and you should be able to verify these.

• The CP confidence interval is too small (u < 0.500) if, and only if, (X ≤ 5).

• The CP confidence interval is too large (0.500 < l) if, and only if, (X ≥ 15).

• The CP confidence interval is correct (l ≤ 0.500 ≤ u) if, and only if, (6 ≤ X ≤ 14).
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With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find that for n = 20 and p = 0.500,

P (X ≤ 5) = 0.0207, P (X ≥ 15) = 0.0207 and, thus, P (6 ≤ X ≤ 14) = 1−2(0.0207) = 0.9586.

The probability that the CP interval will be correct does, indeed, achieve the promised minimum

of 0.95.

Let’s do one more example, for n = 20 and p = 0.200. From Table 12.2, we can quickly

ascertain the following facts:

• The CP confidence interval is too small (u < 0.200) if, and only if, (X = 0).

• The CP confidence interval is too large (0.200 < l) if, and only if, (X ≥ 9).

• The CP confidence interval is correct (l ≤ 0.200 ≤ u) if, and only if, (1 ≤ X ≤ 8).

With the help of the website

http://stattrek.com/Tables/Binomial.aspx,

we find that for n = 20 and p = 0.200,

P (X = 0) = 0.0115, P (X ≥ 9) = 0.0100 and, thus,

P (1 ≤ X ≤ 8) = 1− (0.0115 + 0.0100) = 0.9785.

The probability that the CP interval will be correct does, indeed, achieve the promised minimum

of 0.95. In fact, the probability of being correct is quite a bit larger than the nominal 95%.

The obvious question is: Suppose you want to obtain a CP confidence interval for p, but your
number of trials n is not 20. Before the internet you would have needed to find a CP table for your

value of n. The method we use now is introduced after the next example.

Example 12.1 (Mahjong solitaire online.) My friend Bert loves to play mahjong solitaire online.

(See Wikipedia if you want details of the game.) Each game ends with Bert winning or losing. He

played n = 100 games, winning a total of 29 of the games.

Let’s analyze Bert’s data. Clearly, the trials yield a dichotomous response: a win (success) or a

loss (failure). Are we willing to assume that they are Bernoulli trials? I have two remarks to make

on this issue:

1. The game claims that it randomly selects an arrangement of tiles for each game. (Pieces in

mahjong are called tiles; they look like dominoes. Well, more accurately, online tiles look

like pictures of dominoes.) Of course, there might be something about the way Bert performs

that violates the assumptions of Bernoulli trials: perhaps he improved with practice; perhaps

his skills declined from boredom; perhaps he had streaks of better or worse skill.
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2. I looked for patterns in Bert’s data: his 100 trials contained 41 runs; his longest run of

successes [failures] had length 3 [14]. In the first [last] 50 games he won 16 [13] times. We

will examine these statistics together in a Practice Problem. For now, let’s assume that we

have Bernoulli trials.

There exists a website that will give us the CP 95% confidence interval estimate of p; it is:

http://statpages.org/confint.html

I will now explain how to use this site.

First of all, do not scroll down this page. A bit later we will learn the benefits of scrolling

down, but don’t do it yet! You will see a box next to Numerator (x); enter the total number of

successes in this box—for Bert’s data, enter 29. Next, you will se a box next to Denominator (N);

enter the value of n in this box—for Bert’s data, enter 100. Click on the box labeled Compute.

The site produces three numbers for us, the value of p̂ and the lower and upper bounds of the CP

interval:

• Proportion (x/N): For Bert’s data, we get p̂ = 29/100 = 0.29.

• Exact Confidence Interval around Proportion: For Bert’s data we get 0.2036 to 0.3893.

For comparison, let’s see the answer we obtain if we use the 95% confidence interval based on the

Normal curve approximation and Slutsky’s theorem:

0.2900± 1.96

√

0.29(0.71)

100
= 0.2900± 0.0889 = [0.2011, 0.3789].

These two confidence intervals are very similar. As a practical matter, I cannot think of a scientific

problem in which I would find these answers to be importantly different.

Recall that on page 294 we looked at an example with n = 100 and p = 0.020. We found

that the approximate 95% confidence interval was correct—included p = 0.020—if, and only if,

(1 ≤ x ≤ 8). We further found that

P (1 ≤ X ≤ 8|p = 0.020) = 0.8673,

which is much smaller than the target of 0.95. Thus, for this combination of n and p the approxi-

mate 95% confidence interval performs poorly and should not be used. Let’s see what happens if

we use the CP 95% confidence interval.

The long answer is for me to create a table of all CP 95% confidence intervals for n = 100, as
I reported in Table 12.2 for n = 20. If I do that, I obtain the following results. The CP interval is

never too small; it is too large if, and only if, x ≥ 6; and it is correct if, and only if, x ≤ 5. With

the help of

http://stattrek.com/Tables/Binomial.aspx,

I find that

P (X ≤ 5|n = 100 and p = 0.020) = 0.9845.

Thus, the CP interval performs as advertised—this probability actually exceeds the target 0.95—in

the same situation in which the approximate confidence interval performs very poorly.
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12.3.1 Other Confidence Levels for the CP Intervals

Let’s return to the site

http://statpages.org/confint.html

and now let’s scroll down. Scroll past the section headed Poisson Confidence Intervals all the

way to the section headed Setting Confidence Levels, below which you will see the following

display:

Confidence Level: 95

% Area in Upper Tail: 2.5

% Area in Lower Tail: 2.5

The three numbers above—95, 2.5 and 2.5—are the default values for the confidence level. The

first number, 95, tells us that the default confidence level for the site is 95%. It is important to note

that the site does not want the % sign, nor does it want 95% written as a decimal. It wants 95.

Similarly, the complement of 95% is 5%; equally divided 5 gives 2.5 twice; these numbers appear

in the Upper and Lower rows.

If you want, say, 90% confidence instead of the default 95%, no worries. The easiest way to

accomplish this is to replace the default 95 by 90 (not 90%, not 0.90) and click on the compute box.

When you do this you will note that the site automatically changes both the Upper and Lower rows

entries to 5. If you now scroll back up the page to the Binomial Confidence Intervals section, you

will see that your entries 29 and 100 have not changed. If you now click on the box Compute you

will be given a new confidence interval: 0.2159 to 0.3737—this is the CP 90% confidence interval

estimate of p.

12.3.2 The One-sided CP Confidence Intervals

Both the approximate and CP confidence intervals of this chapter are two-sided. They provide both

an upper and a lower bound on the value of p. Sometimes a scientist wants only one bound; the

bound can be either upper or lower and there are approximate methods as well as methods derived

from the work of Clopper and Pearson. A one-semester class cannot possibly present an exhaustive

view of introductory Statistics; thus, I will limit the presentation to the upper confidence bound that

can be obtained using the Clopper and Pearson method.

Before I turn to a website for answers, I want to create a table that is analogous to our Ta-

ble 12.2, the two-sided CP confidence intervals for n = 20. Table 12.3 presents the Clopper and

Pearson 95% upper confidence bounds for p for n = 20. Let’s compare the one- and two-sided

95% intervals for p for n = 20 and a couple of values of x.

• For x = 19, the two-sided interval states 0.751 ≤ p ≤ 0.999; and the one-sided interval

states p ≤ 0.997

• For x = 1, the two-sided interval states 0.001 ≤ p ≤ 0.249; and the one-sided interval states
p ≤ 0.216
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Table 12.3: The Clopper and Pearson (CP) 95% upper confidence bounds for p for n = 20.

x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)] x [l(x), u(x)]
0: [0, 0.139] 6: [0, 0.508] 11: [0, 0.741] 16: [0, 0.929]
1: [0, 0.216] 7: [0, 0.558] 12: [0, 0.783] 17: [0, 0.958]
2: [0, 0.283] 8: [0, 0.606] 13: [0, 0.823] 18: [0, 0.982]
3: [0, 0.344] 9: [0, 0.653] 14: [0, 0.860] 19: [0, 0.997]
4: [0, 0.401] 10: [0, 0.698] 15: [0, 0.896] 20: [0, 1]
5: [0, 0.456]

The most obvious thing to note is that for x = 19—which is fairly likely to occur if p is close to

1—then computing a one-sided upper bound for p is ridiculous. For x = 1, however, the one-sided
upper bound might well be preferred to the two-sided interval. The two-side interval rules out the

possibility that p < 0.001, but at the cost of having an upper bound that is 0.249/0.216 = 1.15
times as large as the upper bound for the one-sided interval.

The computations above are insightful, but what does science tell me to do? In my experience,

sometimes what we call a success can be a very nasty outcome. For example, a success might be

that a biological item is infected; that a patient dies; or that an asteroid crashes into the Earth. In

such situations, we are really hoping that p—if not zero—will be very small. When we estimate p
it might well be more important to have a sharp upper bound on p rather than have a scientifically
rather uninteresting lower bound on p.

In any event, I will now show you how to use the website

http://statpages.org/confint.html

to obtain the CP one-sided 95% upper confidence bound for p. Scroll down to the Setting Confi-

dence Levels section. Enter 5 in the Upper box and 0 in the Lower box and click on Compute. The

entries in the Upper and Lower boxes—i.e., 5 and 0, respectively—will remain unchanged, but the

entry in the Confidence Level box will become 95. Similarly, if you want the one-sided 90% upper

confidence bound for p, repeat the steps above, but put 10 in the Upper box.

After you have made your entries in the Setting Confidence Levels section, scroll back up to

the top, enter your data and click on compute. You should practice this activity a few times by

making sure you can obtain my answers in Table 12.3.

12.4 Which Should You Use? Approximate or CP?

In this section I will tie-up various loose ends related to confidence interval estimation and even-

tually give you my answer to the question in its title.

The obvious question is:

Given that the probability of obtaining a correct interval when using the CP 95% con-

fidence interval always equals or exceeds 0.95. Given that the approximate method
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cannot make this claim, why do people ever use the approximate method?

The CP method is a black box, as discussed in Chapter 3; it gives us answers, but little or

no insight into the answers. In a particular problem, the CP interval we obtain is a function of

three values: n; x or p̂; and the confidence level. We could, literally, vary these values and obtain

hundreds of CP intervals and not see how the answers are related. As I stated in Chapter 7, when

introducing you to fancy math approximations:

Being educated is not about acquiring lots and lots of facts. It is more about seeing

how lots and lots of facts relate to each other or reveal an elegant structure in the

world. Computer simulations are very good at helping us acquire facts, whereas fancy

math helps us see how these facts fit together.

The above sentiment is relevant in this chapter, if we replace computer simulations by CP intervals.

Indeed, the approximate confidence intervals of this chapter are fancy math solutions. Thus, I will

now turn to a discussion of what the approximate confidence intervals reveal.

The approximate confidence intervals are centered at the value of p̂. Another way to say this

is that these intervals are symmetric around p̂. This symmetry is a direct result of the fact that

the approximating curve we use—a Normal curve—is symmetric. By contrast, if you look at the

95% CP intervals for n = 20 that are presented in Table 12.2, you see that they are not symmetric

around p̂ = x/20 except when x = 10, giving p̂ = 0.50. In fact, as x moves away from 10, in

either direction, the CP intervals become more asymmetrical. This is a direct result of the fact that

for p 6= 0.50 the binomial distribution is not symmetric and it becomes more skewed as p moves

farther away from 0.50.

Because the approximate confidence intervals are symmetric around the value p̂, we learn how

they behave by looking at the half-width,

h = z∗
√

p̂q̂

n
. (12.6)

There are three numbers in this formula for h that we can vary: z∗, which is determined by the

choice of confidence level; n; and p̂, remembering that q̂ = 1 − p̂. My first effort is to fix the

confidence level at 95%—i.e. z∗ = 1.96—and see how h varies as a function of n and p̂. We

can—and will—investigate this issue analytically—i.e., by doing algebra—but it is helpful to first

draw a picture, which I have done in Figure 12.2, and which I will now discuss.

There are two curves in this figure; one for n = 1,000 and one for n = 4,000. I will begin by

focusing on either of these curves; i.e., by fixing the value of n and looking at the effect of p̂ on h.
Analytically, I note that p̂ affects h through the term

√

p̂q̂ which I will write as
√

p̂(1− p̂).

Visually, the figure shows me that the curve of h values to the right of 0.50 is the mirror image of

the curve of h values to the left of 0.50; i.e., the curve of h values is symmetric around 0.50. This

fact is obvious analytically because whether we replace p̂ by b, 0 < b < 1 or by (1 − b), the value

of
√

p̂(1− p̂) is the same.
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Figure 12.2: Plot of the half-width, h in Equation 12.6, versus p̂ for the approximate 95% confi-

dence interval estimate of p for n = 1,000 and n = 4,000.
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The figure does a good job of showing us that the curve of h values is rather flat for p̂ close to

0.50. For example, we have the following values:

√

p̂(1− p̂) 0.458 0.490 0.500 0.490 0.458

p̂ 0.30 0.40 0.50 0.60 0.70

This table—and the figure—indicates that for p̂ between 0.40 and 0.60, the actual value of p̂ will

affect h by at most 2% (0.490 is 2% smaller than 0.500). This fact is very useful for most sample

surveys—there is not much interest in asking questions unless there is a good controversy; i.e.,

unless there is a roughly equal split in the population between the possible responses. Thus, before

performing a survey, for a large n a researcher might be quite sure that p̂ will take on a value be-

tween 0.40 and 0.60; if the surety comes to pass it means that before collecting data the researcher

has a good idea what the half-width—and, hence, the usefulness—of the interval will be.

In science, we are often interested in estimating p’s that are very different from 0.500 and,

hence, we often obtain values for p̂ that are outside the range of 0.400 to 0.600. Thus, the central

flatness of the curve of h values is not as interesting.

Next, let’s look at the effect of n on the half-width.

• For any fixed value of p̂, changing n from 1,000 to 4,000 results in h being halved.

This fact is true for any n, as can be seen analytically. In general, consider two possibilities for n:
m and 4m; i.e., the smaller sample size can be anything and the larger is four times as large. For

n = 4m, we find

h = 1.96

√

p̂q̂

4m
=

1.96

2

√

p̂q̂

m
,

303



because when we factor a 4 out of a square root sign we get
√
4 = 2. We can see that this argument

remains true for any fixed value of z∗, not just z∗ = 1.96. I am tempted to say,

If we quadruple the amount of data we collect, the half-width of the approximate

confidence interval is halved.

I cannot literally say this because if I quadruple the amount of data collected, the value of p̂ will

likely change. If, however, I believe that both of my p̂’s will be in the interval [0.400, 0.600], then,
from our earlier work, we know that a change in p̂ will have only a minor affect on h. Thus, the
statement

If we quadruple the amount of data we collect, the half-width of the approximate

confidence interval is halved

will be reasonably accurate.

Finally, let’s look at the effect of changing the confidence level, i.e., changing the value of z∗

in the formula for the half-width. Our guidance for this issue is contained in our table relating

confidence level to z∗, namely Table 12.1 on page 296. First, we see that as the confidence level

increases, z∗ increases and, thus, the half-width h increases. This makes sense: In order to increase

the probability of obtaining a correct confidence interval, we must make the interval wider; i.e.,

a more general statement about p has a better chance of being correct. There is a striking feature

about this relationship that can be overlooked. Namely, if we take the ratio of two h’s; one for 99%
confidence and the other for 80% confidence, we get

2.576/1.282 = 2.01,

because the other terms in h cancel. Thus, in words, the price we pay for increasing confidence

from 80% to 99% is that the half-width increases by a factor of approximately 2. This can be

counteracted—sort of, see above—by quadrupling the sample size.

I want to end this section with a comment about the label Exact that is popularly affixed to

the CP confidence intervals. This label is actually quite misleading. The CP 95% intervals are

usually referred to as the exact 95% confidence intervals for p. Indeed, the title across the top of

the website we use claims that it provides Exact Binomial and Poisson Confidence Intervals.

Based on everything we did in Part I of this book, indeed also based on all that we have done so

far in Part II, exact should mean that the probability that the researcher will obtain a correct

confidence interval is exactly equal to 0.95. What is weird about these being called exact intervals

is that statisticians have a perfectly good technical term to describe the truth about the CP intervals:

We say that the CP 95% intervals are conservative. By conservative I don’t mean that these are

the preferred intervals of Michele Bachman—although they might be, I am not familiar with Ms.

Bachman’s views on Statistics—nor am I trying to conjure up memories of Ronald Reagan. Saying

that the CP 95% intervals are conservative conveys that the target probability is 95% and, no matter

what the value of p, the true probability will be at least 95%. We saw, by example, that even when

an approximate confidence interval performs well, its performance is not necessarily conservative.

For example, if the approximate method gives an actual probability of 94.9% for a particular p,
then in my opinion the approximation is very good, but not conservative. Similarly, if a CP 95%
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interval has true probability of 99% I would not be happy, but it is conservative. I would not be

happy because if the true probability is 99%, the interval must be wider than if we could somehow

make the true probability closer to 95%.

Here is the idea I would like you to remember. We might choose 95% confidence because

everybody else does, but we should remember what it means. When we select 95% confidence, we

are telling the world that we have decided that we are happy with intervals that are incorrect about

one time in every 20 intervals. If, instead, the intervals are incorrect about one time for every 100

intervals, then we are seriously out-of-touch with the actual performance of our conclusions; this

cannot be a good thing!

Finally, the intervals are called exact not because they give exact probabilities (or confidence

levels) but because they use exact binomial probabilities for their derivation.

12.5 A Test of Hypotheses for a Binomial p

.

We immediately have a problem. How do we specify the null hypothesis? Let me explain why

this is a problem. In Part I of these notes we had an obvious choice for the null hypothesis: the

Skeptic is correct. I say that this choice was obvious for two reasons.

1. If a scientist is comparing two treatments by performing a CRD, it is natural to at least

wonder whether the Skeptic is correct.

2. Following the principle of Occam’s Razor, given that we wonder about the Skeptic being

correct, it should be the null hypothesis.

I cannot create a similar argument for a study of a binomial p. Here is what I can do. Suppose

that out of all the possible values of p—i.e., all numbers between 0 and 1 exclusive—there is one

possible value for p for which I have a special interest. I will denote this special value of interest

by the symbol p0. (The reason for a subscript of zero will soon be apparent.)

Let’s be clear about this. The symbol p with no subscript represents the true probability of

success for the Bernoulli trials. It is unknown to the researcher, but known to Nature. By contrast,

p0 is a known number; indeed, it is specified by the researcher as being the singular value of p that
is special. How does a researcher decide on this specialness? Be patient, please.

The null hypothesis specifies that p is equal to the special value of interest; i.e.,

H0 : p = p0.

Our test in this section allows three possibilities for the alternative hypothesis:

H1 : p > p0;H1 : p < p0 or H1 : p 6= p0.

As in Part I of these notes, you could use the Inconceivable Paradigm to select the alternative. Ac-

tually, for the applications in this section, I will take the alternative to be the one-sided alternative

of most interest to the researcher.

If you go back to the beginning of this chapter, the last sentence in the first paragraph reads:
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I will point out that for Bernoulli trials, estimation is inherently much more interesting

than testing.

Now I can say why or point outwhy. If I am a researcher and I don’t know the value of p then I will
always be interested in obtaining a confidence interval estimate of p. I will, however, be interested
in a test of hypotheses only if there exists in my mind a special value of interest for p. In my

experience, it is somewhat unusual for a researcher to have a special value of interest for p.
Let me digress for a moment before I show you the details of the test of hypotheses of this

section. In many ways, the test is almost scientifically useless. Almost, but not quite. Thus, there

is a little bit of value in your knowing it. The value of the test is not sufficient for your valuable

time except that it provides a relatively painless introduction to tests of hypotheses for population-

based inference. You need to see this introduction at some point in these notes, so it might as well

be now.

I will introduce the remainder of the test very mechanically and then end with the only appli-

cations of it that I consider worthwhile.

12.5.1 The Test Statistic, its Sampling Distribution and the P-value

The only random variable we have isX , the total number of successes in the nBernoulli trials; thus,

it is our test statistic. The sampling distribution of X is Bin(n, p0) because if the null hypothesis
is true, then p = p0. The three rules for computing the exact P-value are given in the following

result.

Result 12.2 In the formulas below,X ∼ Bin(n, p0) and x is the actual observed value of X .

1. For the alternative p > p0, the exact P-value equals

P (X ≥ x) (12.7)

2. For the alternative p < p0, the exact P-value equals

P (X ≤ x) (12.8)

3. For the alternative p 6= p0, the exact P-value is a bit tricky.

• If x = np0, then the exact P-value equals one.

• If x > np0, then the exact P-value equals

P (X ≥ x) + P (X ≤ 2np0 − x) (12.9)

• If x < np0, then the exact P-value equals

P (X ≤ x) + P (X ≥ 2np0 − x) (12.10)

The above result is all we need provided n ≤ 1000 and we have access to the website
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http://stattrek.com/Tables/Binomial.aspx.

Another approach is to use the Normal curve approximation, as detailed in the following result.

Result 12.3 Let q0 = 1−p0. Assume that both np0 and nq0 equal or exceed 25. In the rules below,
when I say area to the right [left] of, I am referring to areas under the Normal curve with mean

µ = np0 and standard deviation σ =
√
np0q0. Also, x is the actual observed value of X .

1. For the alternative p > p0, the Normal curve approximate P-value equals the area to the

right of (x− 0.5).

2. For the alternative p < p0, the Normal curve approximate P-value equals the area to the left
of (x+ 0.5).

3. For the alternative p 6= p0, the situation is a bit tricky.

• If x = np0, then the exact P-value equals one.

• If x 6= np0:

– Calculate the area to the right of (x− 0.5); call it b.

– Calculate the area to the left of (x+ 0.5); call it c.

The Normal curve approximate P-value is the minimum of the three numbers: 2b, 2c
and 1.

Let’s now turn to the question: How does a researcher choose the value p0. The textbooks I have
seen claim that there are three possible scenarios for choosing the special value of interest; they

are: history; theory; and contractual or legal. I will consider each of these possibilities in turn.

12.5.2 History as the Source of p0

I won’t be able to hide my contempt; so I won’t even try. History as the source of p0 is almost

always dumb or dangerous. (Indeed, every example I have seen of this type is bad. I am being

generous by allowing for the possibility that there could be a good example.)

The basic idea of the history justification goes as follows. Let’s say that we are interested in a

finite population, for example all 28 year-old men currently living in the United States. For some

reason, we are interested in the proportion of these men, p, who are married. We don’t know what

p equals, but somehow we know the proportion, p0, of 28 year-old men living in the United States

in 1980 who were married! The goal of the research is to compare the current men with the same

age group on 1980. Thus, we would be interested in the null hypothesis that p = p0. I have seen
numerous textbooks that have problems just like this one. I am amazed that an author could type

such a ludicrous scenario! Do you really believe that someone conducted a census of all 28 year-

old men in the United States in 1980? (Note: After typing this it occurred to me that the United

States did conduct a census in 1980. The problem, however, is that the US census suffers from

an undercount—how could it not? The idealized census as used in these notes is perfect in that it

samples every population member.)
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My final example of this subsection is one that I have seen in many textbooks. It is not only

dumb, but dangerous. It is dangerous because it promotes a really bad way to do science. A

textbook problem reads as follows. The current treatment for disease B will cure 40% of the

persons to whom it is given. Researchers have a new treatment. The researchers select n =
100 persons at random from the population of those who suffer from disease B and give the new

treatment to each of these persons. Let p denote the proportion of the population that would be

cured with the new treatment. The researcher want to use the data they will collect to test the null

hypothesis that p = 0.40. Think about this problem for a few moments. Do you see anything

wrong with it?

The first thing I note is that it’s a total fantasy to say that we ever know exactly what percentage

of people will be cured with a particular treatment. But suppose you disagree with me; suppose

you think I am way too cynical and feel that while the cure rate for the existing treatment might

not be exactly 40%, pretending that it is 40% seems relatively harmless. Even if you are correct

and I am wrong, this is still a horribly designed study! Why do I say this?

The key is in the statement:

The researchers select n = 100 persons at random from the population of those who

suffer from disease B.

I opine that this statement has never been literally true in any medical study. (Can you explain

why?) It is very possible that the actual method used by the researchers to select subjects for

study resulted in either better than average patients—which would skew the results in the new

treatment’s favor— or worse than average patients—which would skew the results in favor of the

existing treatment. Even if the researchers got lucky and obtained average patients, good luck to

them in trying to convince the scientific community to believe it!

Phrasing the medical situation as a one population problem is bad science. It would be better to

take the 100 subjects—better yet, have 200 subjects—and divide them into two treatment groups

by randomization. Then analyze the data using Fisher’s test from Chapter 8 or a population-based

procedure that will be presented in a later chapter.

12.5.3 Theory as the Source of p0

Zener cards were popular in the early twentieth century for investigating whether a person pos-

sesses extra sensory perception (ESP). Each Zener card had one of five shapes—circle, cross,

waves, square or star—printed on it. There were various protocols for using the Zener cards. The

protocol I will talk about is available on a website:

http://www.e-tarocchi.com/esptest/index.php

I request that you take a break from this fascinating exposition and test yourself for ESP. Click on

the site above. When you arrive at the site click on the Test Me box and take the 25 item exam.

Let’s match the above to the ideas of this chapter and section and focus on a point in time before

you take the ESP exam. You plan to observe 25 dichotomous trials. Each trial will be a success if

you correctly identify the shape chosen by the computer and a failure if you don’t. I will assume
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that your trials are Bernoulli trials and I will denote your probability of success by p. I don’t want
to prejudge your psychic skills; thus, I do not know the value of p, Of all the possible values of

p, however, there is definitely one possibility that is of special interest to me. Can you determine

what it is? (By the way, if you can correctly determine my special value of interest, this is not an

indication of ESP!) My special value of interest is p0 = 1/5 = 0.20 because if you are guessing

then the probability you guess correctly is one-in-five. In other words, my choice of p0 follows

from my theory that you are guessing.

Thus, I select the null hypothesis p = 0.20. Although we could debate the choice of alternative
I will use p > 0.20. From Equation 12.7 in Result 12.2, if you score x correct, the exact P-value is

P (X ≥ x), where X ∼ Bin(25, 0.20).

So, what is your P-value? Well, since I have not figured out how to make these notes interactive, I

cannot respond to your answer. Thus, I will tell you how I did. I scored x = 6 correct responses in
n = 25. I went to the website

http://stattrek.com/Tables/Binomial.aspx.

and found that the exact P-value for my data is:

P (X ≥ 6) = 0.3833.

12.5.4 Contracts or Law as the Source of p0

Company B manufactures tens of thousands of widgets each month. Any particular widget can

either work properly or be defective. Because defectives are rare, we label a defective widget a

success. By contract or by law Company B is required to manufacture no more than 1% defective

widgets.

Suppose we have the ability to examine 500 widgets in order to investigate whether the con-

tract/law is being obeyed. How should we do this? Before we collect data, let’s assume that we

will be observing n = 500 Bernoulli trials with unknown probability of success p. I don’t know
what p equals, but I am particularly interested in the value 0.01, because 0.01 is the threshold be-

tween the manufacturing process being fine and being in violation of the contract/law. I take my

null hypothesis to be p = 0.01, following the philosophy that it seems fair to begin my process

by assuming the company is in compliance with the law/contract. In problems like this one, the

alternative is always taken to be p > p0 because, frankly, there is not much interest in learning that

p < p0—unless we are trying to decide whether to give Company B an award for good corporate

citizenship! Note that my stated goal above was to investigate whether the company is obeying the

law/contract. I don’t want to accuse the company of misbehaving unless I have strong evidence to

that effect.

From Equation 12.7 in Result 12.2, if the sample of 500 widgets yields x defectives, the exact

P-value is

P (X ≥ x), where X ∼ Bin(500, 0.01).

Below are some possibilities for the exact P-value.
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x : 5 6 7 8 9 10
P (X ≥ x) : 0.5603 0.3840 0.2371 0.1323 0.0671 0.0311

I will now tie this example to the idea of a critical region and the concept of power, introduced in

Chapters 8 and 9.

Recall that a critical region is a rule that specifies all values of the test statistic that will lead to

rejecting the null hypothesis. The critical regions (X ≥ 10) is the rule we get if we follow classical

directive to reject the null hypothesis if, and only if, the P-value is 0.05 or smaller. If one uses this

critical region, we see that the probability of making a Type 1 error is:

α = P (Reject H0|H0 is true) = P (X ≥ 10|p = p0 = 0.01) = 0.0311.

Now that we have determine the critical region, we can investigate the power of the test. With

the help of the binomial website, I obtained:

P (X ≥ 10|p = 0.015) = 0.2223;P (X ≥ 10|p = 0.02) = 0.5433;

P (X ≥ 10|p = 0.03) = 0.9330; and P (X ≥ 10|p = 0.04) = 0.9956.

Let me briefly interpret these four powers.

If, in fact, p = 0.015—i.e., a defective rate 50% larger than allowed by law/contract—there

is only about 2 chances in 9 (0.2223) that the test will detect it. If p = 0.02, then the chance of

correctly rejecting the null climbs to a bit more than 54%. If p = 0.03, the probability of detecting
such a large violation of the law/contract is extremely high, 93.30%. Finally, if p = 0.04, it is
almost certain—a 99.56% chance—that the test will detect the violation of the contract/law.

12.6 Summary

A researcher plans to observe n Bernoulli trials and doesn’t know the value of p. The researcher
wants to use the data that will be obtained to infer the value of p. Late in this chapter we explore the
use of a familiar method—a statistical test of hypotheses—as an inference procedure for p. Most

of this chapter, however, is focused on introducing you to a new method of inference, estimation.

As with our earlier work involving probabilities, it is important to distinguish the time before

the data are collected from the time after the data are collected. Before the data are collected,

there is a random variableX , the total number of successes that will be obtained in the n Bernoulli

trials. After the data are collected, the researcher will know the observed value, x, of X .

The notion of a point estimate/estimator is a natural starting point for inference. After the data

are collected, x is used to calculate the value of p̂ = x/n. This single number is called the point

estimate of p; the name is somewhat suggestive: the word point reminds us that we are dealing

with one number and the word estimate is, well, how statisticians refer to this activity. The point

estimate p̂ is called correct if, and only if, p̂ = p.
Having a correct point estimate is a good thing, but because the researcher does not know the

value of p, he/she will not know whether the point estimate is correct. To avoid having this all

become too abstract, it is convenient for me to reintroduce our supernatural friend Nature, first
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introduced in Chapter 8. In this current chapter Nature knows the value of p. Thus, Nature—but

not the researcher—will know whether a particular point estimate is correct.

Let’s travel back in time to before the data are collected. The researcher announces, “After I

collect data I will calculate the point estimate p̂.” In symbols, the researcher is interested in the

random variable P̂ = X/n, which we call the point estimator of p. Note the distinction, the point
estimator is a random variable P̂ that will take on observed value p̂, the point estimate.

Thus, before the data are collected, Nature—but, again, not the researcher—can calculate the

probability that the point estimator will be correct. Taking the role of Nature, we looked at one

specific possibility (n = 200 and p = 0.600) and found that this probability is very small. We could

have looked at many more examples and, except for quite uninteresting situations, the probability

that a point estimator will be correct is very small. (By uninteresting I mean situations for which

n is very small. For example, if n = 2 and p happens to equal exactly 0.5, then there is a 50%

probability that p̂ = p.) The lesson is quite clear: we need something more sophisticated than point

estimation.

Thus, I introduced you to the notion of an interval estimate/estimator. The first type of interval

estimate/estimator—the so-called fixed width interval—is intuitively appealing—but, as you will

see in Practice Problem 1 of this chapter, is unsatisfactory in terms of the probability that it is

correct.

Next, you learned about the approximate 95% confidence interval estimate of p. This interval
is really quite amazing. Before collecting data it can be said that for any value of p, the probability
that the 95% confidence interval that will be obtained is correct is approximately 95%. The lone

flaw—and it is serious—is that for this approximation to be good, both np and nq must equal or

exceed 25. I give an example with n = 100 and p = 0.02—hence, np = 2 is much smaller than

the magic threshold of 25—and show that the probability that the 95% confidence interval will be

correct is only 86.73%.

I introduce you to a misnamed exact method developed by Clopper and Pearson in 1934 with

the property that for all values of p and n the probability that the Clopper and Pearson 95% confi-

dence interval will be correct is 95% or larger.

In this chapter, you learned how to extend both the approximate and exact confidence interval

estimates to levels other than 95%. Also, you learned how to obtain the Clopper and Pearson upper

confidence bound for p, which is very useful if you believe that p is close to zero.
Section 12.4 explores why—when the approximate method performs well—most researchers

prefer it to the Clopper and Pearson conservative intervals. In particular, one can see how the

sample size n, the confidence level and the value of p̂ influence the half-width of the approximate

confidence interval. In contrast, the Clopper and Pearson intervals come from a black box and,

hence, we cannot see useful patterns in their answers.

Finally, Section 12.5 provides a brief—mostly critical—introduction to a test of hypotheses

for the value of p. This problem is not very useful in science, but I want you to be aware of its

existence, if only for intellectual completeness. In addition, this test allows us to compute its power

quite easily, which is a nice feature.
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12.7 Practice Problems

1. Diana plans to observe n = 100 Bernoulli trials. She decides to estimate p with a fixed-

width interval estimate with half width equal to 0.06. Thus, her interval estimate of p will be
[p̂− 0.06, p̂+ 0.06].

Diana wonders, “What is the probability that my interval estimator will be correct?” She

understands that the probability might depend on the value of p. Thus, she decides to use the
website binomial calculator:

http://stattrek.com/Tables/Binomial.aspx.

to find the missing entries in the following table.

Actual value of p: 0.03 0.06 0.20

The event the interval is correct: (0 ≤ X ≤ 9) (0 ≤ X ≤ 12) (14 ≤ X ≤ 26)
P (The interval is correct|p):

Actual value of p: 0.30 0.40 0.50

The event the interval is correct: (24 ≤ X ≤ 36) (34 ≤ X ≤ 46) (44 ≤ X ≤ 56)
P (The interval is correct|p):

Find Diana’s six missing probabilities for her and comment.

2. During his NBA career in regular season games, Michael Jordan attempted 1,778 three point

shots and made a total of 581.

Assume that these shots are the result of observing 1,778 Bernoulli trials.

(a) Calculate the approximate 95% confidence interval for p.

(b) Calculate the exact 95% confidence interval for p.

3. Example 12.1 introduced you to my friend Bert’s data from playing mahjong solitaire online.

In my discussion of these data, I promised that we would revisit them in a Practice Problem.

I am now keeping that promise.

This is a different kind of practice problem because none of the things I ask you to do involve

Chapter 12.

(a) Calculate the mean and standard deviation of the null distribution of R. Explain why

there is no need to specify an alternative or compute a P-value.

(b) I performed a 10,000 run simulation experiment to obtain an approximate sampling

distribution for V , the length of the longest run of successes given that the total number

of successes equals 29. Recall that for Bert’s data, V = 3. My experiment yielded:

The relative frequency of (V ≥ 3) = 0.8799.

Comment on this result.
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(c) I performed a 10,000 run simulation experiment to obtain an approximate sampling

distribution for W , the length of the longest run of failures given that the total number

of failures equals 71. Recall that for Bert’s data,W = 14. My experiment yielded:

The relative frequency of (W ≥ 14) = 0.1656.

Bert remarked that he became discouraged while he was experiencing a long run of

failures. (He actually had two runs of failures of length 14 during his 100 games.) It

was his feeling that being discouraged led to him concentrating less and, thus, perhaps,

playing worse. Comment on the simulation result and Bert’s feeling.

(d) We can create the following 2× 2 table from the information given.

Outcome Row Prop.

Half: Win Lose Total Win Lose

First 16 34 50 0.32 0.68

Second 13 37 50 0.26 0.74

Total 29 71 100

This table looks like the tables we studied in Chapter 8. Bert’s data, however, are not

from a CRD; games were not assigned by randomization to a half. The first 50 games

necessarily were assigned to the first half. As you will learn in Chapter 15, there is a

population-based justification for performing Fisher’s test for these data. Thus, use the

Fisher’s test website:

http://www.langsrud.com/fisher.htm

to obtain the three Fisher’s test P-values for these data.

4. During his NBA career, Shaquille O’Neal attempted a total of 22 three-point shots, making

one. Assuming that these shots are 22 observations of Bernoulli trials:

(a) Calculate the 95% two-sided confidence interval for p.

(b) Calculate the 95% one-sided upper confidence bound for p.

5. Manute Bol, at 7 feet, 7 inches, is tied (with Gheorghe Muresan) for being the tallest man to

ever play in the NBA. Not surprisingly, Bol’s specialty was blocking opponents’ shots. He

was, however, a horrible offensive player. So horrible that he hurt his team because the man

guarding him could safely ignore him. In 1988–89, Golden State’s innovative coach, Don

Nelson, decided to make Bol a three-point shot threat. If nothing else, given the NBA’s rules,

a defensive player would need to stand near Bol, who would position himself in a corner of

the court, just beyond the three-point line. During the 1988–89 season, Bol attempted 91

three points shots, making 20 of them.

Assume that his attempts are 91 observations of a sequence of Bernoulli trials. Calculate the

approximate and exact 95% confidence intervals for Bol’s p and comment.

313

http://www.langsrud.com/fisher.htm


6. Refer to the investigation of ESP using Zener cards presented in Section 12.5.3. Recall that

this led to the null hypothesis that p = 0.20. I am interested in the alternative p > 0.20.
Suppose that we decide to test Shawn Spencer, famed psychic police consultant in Santa

Barbara, California. (Well, at least in the USA network world.)

We decide that the study of Shawn will involve n = 1,000 trials.

(a) Use the website

http://stattrek.com/Tables/Binomial.aspx.

to obtain the exact P-value if Shawn scores: x = 221 correct; x = 222 correct; x = 240
correct.

(b) What is the value of α for the critical regionX ≥ 222?

(c) Using the critical region in part (b), calculate the power of the test if, indeed, Shawn’s

p equals 0.23.

(d) Explain the practical importance of having p = 0.23 when guessing Zener cards. (Yes,

this is a trick question.)

7. Years ago, I received a gift of two round-cornered dice. Have you ever seen round-cornered

dice? Regular dice have pointy squared-corners. When I cast regular dice they bounce and

then settle. By contrast, round-cornered dice spin a great deal before coming to a rest. I

played with my round-cornered dice a great deal and noticed that both of them seemed to

give way too many 6’s; I did not record any data, but I had a very strong feeling about it.

Thus, with my past experience suggesting that 6 seemed to be special, I decided to perform

a formal study.

I took my white round-cornered die and cast it 1,000 times—call me Mr. Excitement! I

will analyze the data as follows. I will assume that the casts are Bernoulli trials, with the

outcome ‘6’ deemed a success and any other outcome a failure. I will test the null hypothesis

that p = 1/6 versus the alternative that p > 1/6 because, given my past experience, I felt

that p < 1/6 is inconceivable. If you don’t like my alternative, read on please. My 1,000

casts yielded a total of 244 successes. From Equation 12.7, the P-value for the alternative >
is

P (X ≥ 244|n = 1000, p = 1/6) = 2.91× 10−10,

with the help of the website binomial calculator. This is an incredibly small P-value! (Even

if you use the alternative 6= and double this probability, it is still incredibly small.) The null

hypothesis is untenable.

By the way, the approximate 99.73% (nearly certain) confidence interval estimate of p is:

0.244± 3

√

0.244(0.756)

1000
= 0.244± 0.041 = [0.203, 0.285].

The lower bound of this interval is much larger than 1/6 = 0.167.
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8. I want to give you a bit more information about dumb versus smart sampling. The result of

this problem, however, is not important unless you frequently:

• Select a smart random sample with n/N > 0.05.

In other words, if you choose not to read this problem, no worries.

The half-width, h, of the approximate confidence interval estimate of p is

h = z∗
√

p̂q̂

n
.

This formula arises from a dumb random sample—which includes Bernoulli trials as a spe-

cial case—or as an approximation if one has a smart random sample. It turns out that a

simple modification of the half-width will handle the situation in which one has a smart ran-

dom sample and does not want to pretend it is a dumb random sample. In this new situation,

the half-width, denoted by hs (s is for smart) is:

hs = z∗
√

p̂q̂

n

√

N − n

N − 1
= h× fpc,

where I have implicitly defined fpc—which stands for the finite population correction—to

equal
√

N − n

N − 1
.

Note the following features of the fpc:

• If n = 1, then fpc = 1. This makes sense because if n = 1 there is no distinction

between smart and dumb sampling. (Of course, if n = 1, you would not use the

approximate confidence interval formula.)

• For n > 1, fpc < 1; thus, the fpc correction term always leads to a narrower confidence

interval; why not use it all the time? Suppose that N = 10,000 and n = 500, making

n/N = 0.05, our threshold value. In this case, fpc equals

√

9500/9999 = 0.974.

Thus, if you use the fpc, the half-width of the approximate confidence interval will

decrease by 2.6%.

Often times, of course, we don’t know the exact value of N , so the fpc cannot be used.
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12.8 Solutions to Practice Problems

1. The completed table is below.

Actual value of p: 0.03 0.06 0.20

The event the interval is correct: (0 ≤ X ≤ 9) (0 ≤ X ≤ 12) (14 ≤ X ≤ 26)
P (The interval is correct|p): 0.9991 0.9931 0.8973

Actual value of p: 0.30 0.40 0.50

The event the interval is correct: (24 ≤ X ≤ 36) (34 ≤ X ≤ 46) (44 ≤ X ≤ 56)
P (The interval is correct|p): 0.8446 0.8157 0.8066

For example, for p = 0.20,

P (X ≤ 26) = 0.9442 and P (X ≤ 13) = 0.0469,

giving P (14 ≤ X ≤ 26) = 0.9442− 0.0469 = 0.8973.

My comment: The answers in this table are unsatisfactory. Without knowing the value of p,
the probability of a correct interval could be nearly one for p = 0.03 or p = 0.06 or barely

four-in-five, for p = 0.50.

2. (a) We compute p̂ = 581/1,778 = 0.327. Thus, q̂ = 0.673 and the approximate 95%

confidence interval is:

0.327± 1.96

√

0.327(0.673)

1,778
= 0.327± 0.022 = [0.305, 0.349].

(b) The exact website gives [0.305, 0.349], the same answer as the approximate interval.

3. (a) First, from Equation 11.4, we get

c = 2x(n− x) = 2(29)(71) = 4118.

From Equation 11.5, we get

µ = 1 +
c

n
= 1 + (4118/100) = 42.18.

From Equation 11.6, we get

σ =

√

√

√

√

c(c− n)

n2(n− 1)
=

√

√

√

√

4118(4018)

(100)2(99)
= 4.088.

The observed number of runs, 41, is almost equal to µ. The Normal curve approximate

P-value:
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• For > will be larger than 0.5000;

• For < will be quite close to 0.5000 (its actual value: 0.4339); and

• For 6= will be quite close to 1 (its actual value: 0.8678).

Thus, regardless of the choice of alternative, there is only weak evidence in support of

it.

(b) With the huge approximate P-value for the test statistic V , there is little reason to doubt

the assumption of Bernoulli trials.

(c) The approximate P-value for the test statistic W is small, but not convincing. Perhaps

there is some validity to Bert’s conjecture that repeated failures adversely affect his

ability.

(d) After rounding, the P-values are:

• 0.8109 for the alternative <;

• 0.3299 for the alternative >; and

• 0.6598 for the alternative 6=.

There is very little evidence that Bert’s ability changed from the first to the second half

of his study.

4. (a) Using the exact confidence interval website:

http://statpages.org/confint.html

I obtain [0.0012, 0.2284].

(b) I use the above website, but remember that I need to reset the confidence levels. I put

5 in the Upper box and 0 in the Lower box and then click on Compute. I scroll back

up the page and click on Compute. The answer is [0, 0.1981].

5. For the approximate confidence interval, I first compute p̂ = 20/91 = 0.220, which gives

q̂ = 0.780. The interval is

0.220± 1.96

√

0.22(0.78)

91
= 0.220± 0.085 = [0.135, 0.305].

For the exact confidence interval, the website gives me [0.140, 0.319]. The exact interval is
a bit wider and is shifted to the right of the approximate interval. The approximate interval

seems to be pretty good—because it is similar to the exact—even though x = 21 falls far

short of my guideline of 35.

6. (a) At the website, we enter p0 = 0.20 as the Probability of success on a single trial

because we want to compute probabilities on the assumption the null hypothesis is

correct. I enter 1,000 for the Number of trials. I then enter the various x’s values in
the question and obtain the following results:

P (X ≥ 221) = 0.0539;P (X ≥ 222) = 0.0459; and P (X ≥ 240) = 0.0011.
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(b) Recall that

α = P (RejectingH0|H0 is correct);

for the critical rule I have given you, this probability is

P (X ≥ 222|p = 0.20) = 0.0459 from part (a).

We can also see from part (a) that if one’s goal is to have α = 0.05, then this goal

cannot be met, but α = 0.0459 is the Price is Right value of α: it comes closest to the

target without exceeding it.

(c) I first note that the p = 0.23 I ask you to consider is, indeed, part of the alternative

hypothesis, p > 0.20. Thus,

P (X ≥ 222|p = 0.23) = 0.7372, roughly, 3 out of 4

actually is an example of power. The power business is different from the confidence

interval business; a power of 75% is considered to be quite respectable.

(d) I know of no career in which one gets paid for predicting Zener cards. (Notify me

if you know of one.) If Zener-card-based ESP can transfer to gambling or the stock

market—a big if—then a person with p = 0.23 might be able to make a living.
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12.9 Homework Problems

1. In the 1984 Wisconsin Driver Survey, subjects were asked the question:

For statistical purposes, would you tell us how often, if at all, you drink alcoholic

beverages?

Each subject was required to choose one of the following categories as the response:

• Several times a week;

• Several times a month;

• Less often; and

• Not at all.

Of the n = 2,466 respondents, 330 selected Several times a week. If we make the WTP

assumption (Definition 10.3) then we may view these data as the result of selecting a random

sample from the population of all licensed drivers in Wisconsin. Because n is a very small

fraction of N (which, as I opined earlier in these notes, must have been at least one million),

we may view these data as the observations from 2,466 Bernoulli trials in which the response

Several times a week is deemed a success.

(a) Use these data to obtain the approximate 95% confidence interval estimate of p.

(b) In your opinion what proportion of people would answer this question accurately? (I

say accurately instead of honestly because a person’s self-perception might not be ac-

curate.) Do you think that giving an accurate answer is related to the response; e.g.,

are true non-drinkers more or less accurate than those who truly drink several times per

week?

(c) In addition to the 2,466 persons who responded to this question, 166 persons chose

not to respond. Does this extra information change your interpretation of your answer

in part (a)? In other words, do you think that the failure to respond is related to the

self-perceived frequency of drinking?

2. Don observes n1 Bernoulli trials. Later, Tom observes n2 trials from the same process that

Don observed. In other words, Don and Tom are interested in the same p, they have different
sets of data and their data sets are independent of each other.

Don uses his data to construct the approximate 90% confidence interval for p. Tom uses his

data to construct both the approximate 95% and approximate 98% confidence intervals for p.
The three confidence intervals are:

[0.349, 0.451], [0.363, 0.477] and [0.357, 0.443].

(a) Match each interval to its researcher—Don or Tom—and its confidence level.

(b) Calculate Don’s 99% confidence interval for p.
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(c) This part is tricky. Find the 95% confidence interval for p for Don’s and Tom’s com-

bined data. Hint: First, determine the values of n1 and n2. There will be round-off

error; thus, you may use the fact that the 1’s digit for both n’s is 0.

3. Recall that my friend Bert enjoys playing mahjong solitaire online, as described in Exam-

ple 12.1. Bert also plays a second version of mahjong solitaire online, which is much more

difficult than the version explored in Example 12.1. For this second version, Bert played 250

games and achieved only 34 victories.

Assuming that Bert’s data are 250 observations of a sequence of Bernoulli trials, calculate

the exact and approximate 98% confidence interval for p.

Here is a side note for those of you who are fascinated with Bernoulli trials or mahjong soli-

taire online or the lengths of longest runs. For the first version Bert played, the length of his

longest run of failures—while not convincing—was a bit long for Bernoulli trials. For this

second version, the length of Bert’s longest run of failures was w = 25, which—according

to him—was very frustrating. I performed a 10,000 run simulation study to investigate this

issue and found that 5,799 of my simulated arrangements yielded a value of W that was

greater than or equal to 25. Thus, Bert’s observed value of W does little to diminish my

belief in Bernoulli trials.

With such a small proportion of successes, looking at either the runs test or the value of

V is not likely to be fruitful. In particular, Bert’s observed value of V was 3. In a 10,000

run simulation study, 4,227 arrangements yielded V ≥ 3; thus, V = 3 is not remarkable.

Finally, Bert’s data had 59 runs, which is almost equal to the mean number of runs under the

assumption of Bernoulli trials, 59.752.

4. Refer to Practice Problem number 6, a study of Shawn Spencer’s power of ESP. I decided to

test his partner, Burton ‘Gus’ Guster too. There was time to test Gus with only 500 cards.

Again, I will assume Bernoulli trials. The null hypothesis is p = 0.20 and the alternative is

p > 0.20.

(a) Use the website

http://stattrek.com/Tables/Binomial.aspx.

to obtain the exact P-value if Gus scores: x = 115 correct; x = 116 correct; x = 125
correct.

(b) What is the value of α for the critical regionX ≥ 116?

(c) Using the critical region in part (b), calculate the power of the test if, indeed, Gus’s p
equals 0.23.

(d) Compare your answer to part (c) to the power for the study of Shawn. Comment.
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