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1. impact of introgression / hybridization?

2. is a tree sufficient, or do we need a network?
3. network models
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can we ignore incomplete lineage sorting?

Does incomplete lineage sorting impact tree reconstruction?

within 1 population:
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can we ignore incomplete lineage sorting?

Does incomplete lineage sorting impact tree reconstruction?

yes! concatenation is not robust to ILS. (Kubatko & Degnan 2007)

anomalous genes trees
coalescent methods: *BEAST, MP-EST, ASTRAL, SDVquartet, etc.
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can we ignore introgression?

Does gene flow / introgression impact coalescent methods?

gene tree discordance

γ = inheritance, e.g. Neanderthals - modern humans: γ ∼ 2%
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can we ignore introgression?

Does gene flow / introgression impact coalescent methods?

yes! some coalescent-based methods are not robust to gene flow.
(Solís-Lemus, Yang & Ané 2016)
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anomalous unrooted gene trees: AuGT

under network model (Solís-Lemus, Yang & Ané 2016)

under continuous gene flow between sister species (Long & Kubatko 2018)
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anomalous unrooted gene trees: AuGT

frequency of
gene trees:

Quartet γ = 0.0 γ = 0.1 γ = 0.3
AB|CD 0.347 0.298 0.260
CA|BD 0.327 0.351 0.370
CB|AD 0.327 0.351 0.370

t1 = t2 = 0.01

ILS only: no AuGT on 4 taxa (Degnan 2013)

ILS + gene flow: AuGT on 4 taxa (Solís-Lemus, Yang & Ané 2016)

rooted gene trees, 3 taxa: same pattern
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anomaly zone with gene flow (4 taxa)

γ
0 0.212 0.5 0.876 1

0.25

0.30

0.35

0.40

0.45
match species tree
conflict species tree

● ●

t1 = t2 = 0.1, t3 = 0, t4 + t5 = 4.1

9 / 36



inconsistent methods: concatenation, ASTRAL, NJst
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inconsistent methods: concatenation, ASTRAL, NJst
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(Solís-Lemus, Yang & Ané 2016)
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1. impact of introgression / hybridization?

2. is a tree sufficient, or do we need a network?

3. network models
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does a tree fit the data well? or network needed?

TICR: goodness-of-fit test of ILS on a population tree Stenz et al. (2015)

expectation from ILS: equal % genes (CF) with minor resolutions

t p1 = 1− 2
3e−t p2 = 1

3e−t = p3

• similar idea to ABBA-BABA test on SNPs Green et al. (2010)
Durand et al. (2011)

• combine all 4-taxon sets in a single test

13 / 36



data: quartet concordance factors

4-taxon subset proportion of genes with
1 2 3 4 12|34 13|24 14|23

x1 x2 x3

A.gre A.dig A.gran A.za 0.38 0.30 0.32
A.gre A.dig A.gran A.mad 0.42 0.28 0.30

...
...

A.gran A.za A.per A.mad 0.25 0.35 0.40

Stenz et al. (2015): 3,595 loci; 30 taxa so 27,405 four-taxon sets
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x1, x2, x3: % genes for 3 quartet trees, one 4-taxon set
∼ Dirichlet, precision α, centered at p1,p2,p3 from the tree:

t p1 = 1− 2
3e−t p2 = 1

3e−t = p3

• p-value for each 4-taxon set
• overall test: based on proportion of outlier 4-taxon sets
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baobabs (Adansonia): tree with ILS rejected (p=0.04)

14 individuals, 282 orthologous genes (targeted sequence capture)
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1. impact of introgression / hybridization?
2. is a tree sufficient, or do we need a network?

3. network models
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network models

early work:
• based on parsimony
• no gene tree error
• no ILS (except MDC)

focus for today:
• the multispecies network coalescent model
• network thinking: interpretation issues
• available methods: pros and cons
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coalescent for ILS: extended to network

network coalescent:
• branch lengths: coalescent units for ILS
• network topology: extra edges for gene flow, hybridization or HGT
• inheritance γ, 1− γ on hybridization edges

Meng & Kubatko (2009), Yu Degnan & Nakhleh (2012)
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network thinking

• model: simplified one-time
events to summarize episodes
of continuous gene flow

• blurred "sister" relationship,
half-sibs

clade concept?

classification more difficult

• "major" tree concept: drop each minor hybrid edge (γ < 0.5)
meaning of species tree?
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• the network model does not say anything about the process:
resulting genetic contributions only

• visual artifacts: can mislead interpretation
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baobabs: 1 reticulation event
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network coalescent: maximum (pseudo) likelihood

(2014, PNAS)

(2013, BMC Bioinformatics)

(2016, PLOS Genetics)

identifiability: what can (or cannot) we learn from data?
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network coalescent: Bayesian

(2016, PLOS Genetics)

(2018, MBE)

(2018)
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how to estimate a species network?

Complex task!

• PhyloNet gene trees, multiple alignments, biallelic SNPs

• PhyloNetworks gene trees, quartet concordance factors

• BEAST2 multiple alignments

None of these methods scale well to many species

PhyloNet and BEAST2 methods: do not scale well to many loci
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STEM-hy gene trees likelihood hybridization b/w
rooted, BL sister lineages

PhyloNet gene trees likelihood
InferNetwork_ML rooted

PhyloNet gene trees triplet
InferNetwork_MPL rooted likelihood

PhyloNetworks gene trees quartet level-1 network
SNaQ or quartet CFs likelihood

PhyloNet gene trees Bayesian compound prior
MCMC_GT rooted
PhyloNet alignments Bayesian compound prior
MCMC_SEQ no rate variation
BEAST2 alignments Bayesian birth-hyb prior

SpeciesNetwork

PhyloNet biallelic sites likelihood compound prior
MLE_BiMarkers

PhyloNet biallelic sites Bayesian compound prior
MCMC_BiMarkers

HyDe sites invariants 4 taxa, 1 hyb.
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gene trees versus sequences?

• alignments: slower, but more accurate (if rate assumptions met)
• gene trees: faster, but less accurate

data summary, gene tree error
• quartet concordance factor: data summary,

but gene tree error can be accounted for
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use branch lengths in gene trees?

if so, dangerous assumptions of no rate variation typically:
• all genes evolve at the same rate
• same rate on all gene lineages: molecular clock

or same departure from a molecular clock across all genes

For reconstructing species trees, methods that ignore branch lengths
in gene trees are more robust.

If rate variation suspected, favor
• methods based on gene tree topologies, or
• BEAST2 with gene multipliers and relaxed clock.
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use rooted or unrooted gene trees?

danger of rooting all gene trees with an outgroup:

outgroup involved in ILS or saturation, or long branch attraction

Gatesy, DeSalle & Wahlberg (2007): rooting errors explain
incongruence in yeast dataset (Rokas et al. 2003)

we rarely check the root of 1000 gene trees...
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My own preference (but the field is moving fast):

• BEAST2-SpeciesNetwork or PhyloNet-Bayesian
• PhyloNetworks-SNaQ for more species and/or more loci
• HyDe and ABBA-BABA tests to confirm on specific taxon subsets
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PhyloNetworks package:

• SNaQ: gene trees or quartet CFs→ species network
bootSNaQ: bootstrap gene trees→ bootstrap networks
bootstrap support: for tree edges, gene flow recipient, donor

• trait evolution on networks: continuous response

• plot, root, re-root networks
extract the major tree, extract all displayed trees
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is the root identifiable?
no

same quartet proportions (ĈFs) from these networks, provided same
parameters (γ, branch lengths t)

infer semi-directed network, root if after with an outgroup
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can we identify the gene flow placement and direction?
4 taxa: no. we can detect its presence only.

same with ABBA-BABA test: not enough info

Same quartet probabilities:

ĈF(AB|CD) = (1− γ)(1− 2/3 e−t1) + γ e−t0/3

ĈF(AD|BC) = (1− γ) e−t1/3 + γ(1− 2/3 e−t0)

ĈF(AC|BD) = (1− γ) e−t1/3 + γ e−t0/3
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can we identify the gene flow placement and direction?

5+ taxa: yes, for most networks

same with DFOIL: 5-taxon version of ABBA-BABA test Pease & Hahn 2015

this network is identifiable (presence and placement of gene flow) from
the 15 quartet CFs: 3 on A1BCD, 3 on A2BCD, 3 on A1A2BC, etc.

but not all networks are identifiable.
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are branch lengths and inheritance γ’s identifiable?
• k ≥ 5: yes
• k = 4: yes if n1 ≥ 2 or n3 ≥ 2 (“good” diamond), no otherwise.
• k = 3: no

“bad” diamond I:
γ, t2, t3 not identifiable, but
γ(1− e−t2) and (1− γ)(1− e−t3) are.

“bad” diamond II:
6 parameters, 5 independent equations only.
in practice: assume t14 = 0.
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