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Who was Bayes?

The Reverand Thomas Bayes was born in London in 1702.

He was the son of one of the first Noncomformist ministers to be
ordained in England.

He became a Presbyterian minister in the late 1720s, but was well
known for his studies of mathematics.

He was elected a Fellow of the Royal Society of London in 1742.

He died in 1761 before his works were published.
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What is Bayes’ Theorem?

Bayes’ Theorem explains how to calculate inverse probabilities.

For example, suppose that boxes contains colored balls as shown
below.

B1: ©©©© B2: ©©©© B3: ©©©©

Given a box, a ball is chosen uniformly at random.

For example, if a ball is chosen from Box B1, there is a 3/4 chance
that it is red.

The inverse problem states if a red ball is drawn, how likely is it that
it came from Box B1?
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What is Bayes’ Theorem?

B1: ©©©© B2: ©©©© B3: ©©©©

If a red ball is drawn, how likely is it that it came from Box B1?

To answer this question, we need a prior distribution for the selection
of the box.

The answer will be different if we believe a priori that Box B1 is 10%
likely to be the chosen box than if we believe that all three boxes are
equally likely.
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Bayes’ Theorem

Bayes’ Theorem states that if a complete list of mutually exclusive
events B1,B2, . . . have prior probabilities Pr(B1),Pr(B2), . . ., and if
the likelihood of the event A given event Bi is Pr(A |Bi ) for each i ,
then

Pr(Bi |A) =
Pr(A |Bi ) Pr(Bi )∑
j Pr(A |Bj) Pr(Bj)

The posterior probability of Bi given A, written Pr(Bi |A), is
proportional to the product of the likelihood Pr(A |Bi ) and the prior
probability Pr(Bi ) where the normalizing constant
Pr(A) =

∑
j Pr(A |Bj) Pr(Bj) is the prior probability of A.
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Connection to Phylogeny

In a Bayesian approach to phylogenetics, the boxes are like different
tree topologies.

The colored balls are like site patterns, except:
I there are many more than two colors; and
I we observe multiple draws from each box.

Additional parameters such as branch lengths and substitution model
parameters affect the likelihood, are unknown, and add to the
complexity.
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Prior and Posterior Distributions

A prior distribution is a probability distribution on parameters before
any data is observed.

A posterior distribution is a probability distribution on parameters
after data is observed.
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Bayesian Methods vs. Maximum Likelihood

Maximum Likelihood Bayesian

Probability Only defined Describes everything
in the context that is uncertain
of long-run

relative frequencies

Parameters Fixed and Unknown Random

Nuisance Optimize them Average over them
Parameters

Testing p-values Bayes’ factors

Nature of Objective Subjective
Method
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Bayesian Phylogenetic Methods

Let’s say we want to find the posterior probability of a clade.

We would need to sum the posterior probabilities of all trees with the
clade.

Pr(clade | data) =
∑

tree with clade

Pr(tree | data)

=
∑

tree with clade

Pr(data | tree) Pr(tree)

Pr(data)

But we need to know the parameters including branch lengths
(params) to compute the likelihood.X

tree with clade

Pr(data | tree) Pr(tree)

=
X

tree with clade

Z
Pr(data, params | tree) Pr(tree)dparams

=
X

tree with clade

Pr(tree)

Z
Pr(data | params, tree) Pr(params | tree)dparams
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Bayesian Phylogenetic Methods

So, we need to compute:P
tree with clade Pr(tree)

R
Pr(data | params, tree) Pr(params | tree)dparams

Pr(data)

However, the denominator Pr(data) and the integral in the numerator
are generally not computable.

Solution? Markov chain Monte Carlo.
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Metropolis-Hastings Example

Assume a Jukes-Cantor likelihood model for two species where we
observe 50 sites, 9 of which differ.

The likelihood for the distance d is

L(d) =
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Assume a prior for d with the form

p(d) =
λ

(1 + λd)2
, d > 0

where λ > 0 is a parameter.

This density is what you get if you take the ratio of two independent
exponential random variables, one with parameter λ and one with
parameter 1.

The median is 1/λ, but the mean is +∞.
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Example

An exact expression for the posterior density of d is

p(d | x) =
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What is Markov Chain Monte Carlo?

Markov chain Monte Carlo (MCMC) is a method to take (dependent)
samples from a distribution.

The distribution need only be known up to a constant of
proportionality.

MCMC is especially useful for computation of Bayesian posterior
probabilities.

Simple summary statistics from the sample converge to posterior
probabilities.

Metropolis-Hastings is a form of MCMC that works using any Markov
chain to propose the next item to sample, but rejecting proposals with
specified probability.
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Typical Problem

We want to make inferences on the basis of a posterior distribution
p(θ | x).

We cannot calculate desired quantities analytically, so instead we wish
to sample from p(θ | x) and use sample statistics as estimates for the
true posterior values— for example, a sample mean is an estimate of
an expected value.

But, we also may not be able to take a simple random sample of θ
values from the posterior distribution.

A computational method called Markov chain Monte Carlo has proven
to be remarkably successful for obtaining dependent samples from
probability distributions.

The idea is that each sampled point depends on the most recently
sampled point.

If this is done carefully, sample statistics will converge to the desired
posterior values.
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Metroplis-Hastings MCMC

Markov chain Monte Carlo (MCMC) takes (dependent) samples from
a distribution.

The distribution need only be known up to a constant of
proportionality as the algorithm depends only on ratios

A proposal method is needed that describes a probability distribution
for proposing new parameter values given current ones.

In theory, just about any proposal distribution is correct (given an
infinite sample size)— the art is in designing (and correctly
implementing) a method so that feasible sample sizes are adequate.

If q(θ∗ | θ) is the probability of proposing θ∗ given the current state θ,
and if h(θ) ∝ p(θ | x) is proportional to the posterior distribution,
then the probability of accepting a proposed θ∗ is

min

{
1,

h(θ∗)

h(θ)
× q(θ | θ∗)

q(θ∗ | θ)

}
If a proposal is not accepted, the current value θ is sampled again.
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An MCMC Algorithm

1 Start at θ0; Set i = 0.

2 Propose θ∗ from the current θi .

3 Calculate the acceptance probability.

4 Generate a random number.
5

1 If accepted, set θi+1 = θ∗.
2 If rejected, set θi+1 = θi .

6 Increment i to i + 1.

7 Repeat steps 2 through 6 many times.
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MCMC Example

Target Distribution
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First Point

Initial Point
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Proposal Distribution

Proposal Distribution
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First Proposal

First Proposal

Accept with probability 1
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Second Proposal

Second Proposal

Accept with probability 0.153
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Third Proposal

Third Proposal

Accept with probability 0.144
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Beginning of Sample

Sample So Far
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Larger Sample

Second Proposal
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Comparison to Target
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MCMC for Phylogenies

The parameter space includes:
I The tree topology;
I The branch lengths;
I Substitution model parameters;

In practice, we use several MCMC proposals that leave some
parameters fixed while changing others.
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Bayesian Inference

The result of an MCMC analysis is a sample from the posterior
distribution.

Sample statistics are estimates of corresponding posterior estimates.
I The sample proportion of a give tree topology converges to the

posterior probability of that tree topology;
I The proportion of trees with a given clade converge to the posterior

probability of that clade;
I The ends of the middle 95% of the sample for the

transition/transversion bias κ is an interval estimate for κ.
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Summarizing a Posterior Distribution

A consensus tree from an MCMC sample is simply a summary of the
posterior distribution of the topology.

Other summaries are possible.

This consensus tree is not an optimal tree according to some criterion
such as maximum likelihood or parsimony.
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Cautions

MCMC does not always converge;

Should always run several chains with different random numbers and
compare answers;

If the true tree has some very short internal edges, Bayesian inference
can mislead;

Different likelihood models can lead to different results.
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Bayesian Inference

Development of Bayesian methods has led to continual improvement
in our ability to model and learn about molecular evolution.

Bayesian Inference uses likelihood, but requires a prior distribution.

Bayesian inference is computationally intensive, but can be less so
than ML plus bootstrapping.

Bayesian inference directly measures items of interest on an easily
interpretable probability scale.

Some folks dislike the requirement of specifying a prior distribution.
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