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Who was Bayes?

@ The Reverand Thomas Bayes was born in London in 1702.

@ He was the son of one of the first Noncomformist ministers to be
ordained in England.

@ He became a Presbyterian minister in the late 1720s, but was well
known for his studies of mathematics.

@ He was elected a Fellow of the Royal Society of London in 1742.
@ He died in 1761 before his works were published.
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What is Bayes' Theorem?

@ Bayes' Theorem explains how to calculate inverse probabilities.

@ For example, suppose that boxes contains colored balls as shown
below.

Bi: OO0 By: OO00 Bs: OO00

@ Given a box, a ball is chosen uniformly at random.

@ For example, if a ball is chosen from Box B, there is a 3/4 chance
that it is red.

@ The inverse problem states if a red ball is drawn, how likely is it that
it came from Box B;17
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What is Bayes' Theorem?

Bi: OO0OO

B>: OOOQO

Bs: OOOO

@ If a red ball is drawn, how likely is it that it came from Box B;?

@ To answer this question, we need a prior distribution for the selection

of the box.

@ The answer will be different if we believe a priori that Box By is 10%
likely to be the chosen box than if we believe that all three boxes are

equally likely.
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Bayes' Theorem

@ Bayes' Theorem states that if a complete list of mutually exclusive
events Bi, By, ... have prior probabilities Pr(Bi), Pr(B), ..., and if
the likelihood of the event A given event B; is Pr(A| B;) for each i,
then
PF(A | B,’) PI’(B,’)

> Pr(A| B;j) Pr(B))

@ The posterior probability of B; given A, written Pr(B;|A), is
proportional to the product of the likelihood Pr(A | B;) and the prior
probability Pr(B;) where the normalizing constant

Pr(A) = )>_; Pr(A|[ B;) Pr(B;) is the prior probability of A.

Pr(B;| A) =
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Connection to Phylogeny

@ In a Bayesian approach to phylogenetics, the boxes are like different
tree topologies.

@ The colored balls are like site patterns, except:

» there are many more than two colors; and
» we observe multiple draws from each box.

@ Additional parameters such as branch lengths and substitution model
parameters affect the likelihood, are unknown, and add to the

complexity.
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Prior and Posterior Distributions

@ A prior distribution is a probability distribution on parameters before
any data is observed.

@ A posterior distribution is a probability distribution on parameters
after data is observed.
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Bayesian Methods vs. Maximum Likelihood

Maximum Likelihood Bayesian
Probability Only defined Describes everything
in the context that is uncertain
of long-run
relative frequencies
Parameters  Fixed and Unknown Random
Nuisance Optimize them Average over them
Parameters
Testing p-values Bayes' factors
Nature of Objective Subjective
Method
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Bayesian Phylogenetic Methods

@ Let's say we want to find the posterior probability of a clade.
@ We would need to sum the posterior probabilities of all trees with the

clade.

Pr(clade |data) = Z Pr(tree | data)

tree with clade
. Z Pr(data | tree) Pr(tree)
B Pr(data)

tree with clade

@ But we need to know the parameters including branch lengths
(params) to compute the likelihood.

Z Pr(data | tree) Pr(tree)

tree with clade

= Z /Pr(data, params | tree) Pr(tree)dparams

tree with clade

= Z Pr(tree) / Pr(data | params, tree) Pr(params | tree)dparams

tree with clade
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Bayesian Phylogenetic Methods

@ So, we need to compute:

> tree with clade PY(tree) [ Pr(data | params, tree) Pr(params | tree)dparams
Pr(data)

@ However, the denominator Pr(data) and the integral in the numerator
are generally not computable.

@ Solution? Markov chain Monte Carlo.
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Metropolis-Hastings Example

@ Assume a Jukes-Cantor likelihood model for two species where we
observe 50 sites, 9 of which differ.

@ The likelihood for the distance d is

L(d) — (4) X (4 — 4e§d> X (4 —+ 2egd>

@ Assume a prior for d with the form

A

Pld) = g @70

where A > 0 is a parameter.

@ This density is what you get if you take the ratio of two independent
exponential random variables, one with parameter A and one with
parameter 1.

@ The median is 1/, but the mean is +o0.
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Example

@ An exact expression for the posterior density of d is

() ((%)5° (3-3e) (3+ %e—;*d)‘”)
> (o) (7 (- 2%) (34 208) ") ad
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Graph
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What is Markov Chain Monte Carlo?

@ Markov chain Monte Carlo (MCMC) is a method to take (dependent)
samples from a distribution.

@ The distribution need only be known up to a constant of
proportionality.

@ MCMC is especially useful for computation of Bayesian posterior
probabilities.

@ Simple summary statistics from the sample converge to posterior
probabilities.

@ Metropolis-Hastings is a form of MCMC that works using any Markov
chain to propose the next item to sample, but rejecting proposals with
specified probability.
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Typical Problem

@ We want to make inferences on the basis of a posterior distribution
p(0]x).

@ We cannot calculate desired quantities analytically, so instead we wish
to sample from p(6 | x) and use sample statistics as estimates for the

true posterior values— for example, a sample mean is an estimate of
an expected value.

@ But, we also may not be able to take a simple random sample of 6
values from the posterior distribution.

@ A computational method called Markov chain Monte Carlo has proven
to be remarkably successful for obtaining dependent samples from
probability distributions.

@ The idea is that each sampled point depends on the most recently
sampled point.

@ If this is done carefully, sample statistics will converge to the desired
posterior values.
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Metroplis-Hastings MCMC

@ Markov chain Monte Carlo (MCMC) takes (dependent) samples from
a distribution.

@ The distribution need only be known up to a constant of
proportionality as the algorithm depends only on ratios

@ A proposal method is needed that describes a probability distribution
for proposing new parameter values given current ones.

@ In theory, just about any proposal distribution is correct (given an
infinite sample size)— the art is in designing (and correctly
implementing) a method so that feasible sample sizes are adequate.

o If g(0*|0) is the probability of proposing 6* given the current state 6,
and if h(0) o« p(6|x) is proportional to the posterior distribution,
then the probability of accepting a proposed 6™ is

h(6* 0|6
min{L ( )Xq(*\ )}
h() — q(6*]0)
@ If a proposal is not accepted, the current value 6 is sampled again.
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An MCMC Algorithm

@ Start at Op; Set i = 0.
© Propose 6* from the current 6;.
© Calculate the acceptance probability.

@ Generate a random number.

(5
@ If accepted, set 0,1 = 6~.
@ If rejected, set ;11 = 0,.

O Increment / to /1 + 1.
@ Repeat steps 2 through 6 many times.
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MCMC Example

Target Distribution
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Initial Point
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Proposal Distribution
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First Proposal

First Proposal

Accept with probability 1
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Second Proposal

Second Proposal
Accept with probability 0.153
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Third Proposal

Third Proposal
Accept with probability 0.144
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Sample So Far
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Second Proposal

Computati



Comparison to Target
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MCMC for Phylogenies

@ T[he parameter space includes:

» The tree topology;
» The branch lengths;
» Substitution model parameters;

@ In practice, we use several MCMC proposals that leave some
parameters fixed while changing others.
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Bayesian Inference

@ The result of an MCMC analysis is a sample from the posterior
distribution.
@ Sample statistics are estimates of corresponding posterior estimates.

» The sample proportion of a give tree topology converges to the
posterior probability of that tree topology;

» The proportion of trees with a given clade converge to the posterior
probability of that clade;

» The ends of the middle 95% of the sample for the
transition /transversion bias « is an interval estimate for .
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Summarizing a Posterior Distribution

@ A consensus tree from an MCMC sample is simply a summary of the
posterior distribution of the topology.

@ Other summaries are possible.

@ This consensus tree is not an optimal tree according to some criterion
such as maximum likelihood or parsimony.
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Cautions

@ MCMC does not always converge;

@ Should always run several chains with different random numbers and
compare answers;

@ If the true tree has some very short internal edges, Bayesian inference
can mislead;

@ Different likelihood models can lead to different results.
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Bayesian Inference

@ Development of Bayesian methods has led to continual improvement
in our ability to model and learn about molecular evolution.

@ Bayesian Inference uses likelihood, but requires a prior distribution.

@ Bayesian inference is computationally intensive, but can be less so
than ML plus bootstrapping.

@ Bayesian inference directly measures items of interest on an easily
interpretable probability scale.

@ Some folks dislike the requirement of specifying a prior distribution.

'
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