
BUCKy
Bayesian Untangling of Concordance Knots
(applied to yeast and other organisms)

Version 1.1, 30 October 2006
Copyright c© 2006 by Bret Larget

Departments of Statistics and of Botany

University of Wisconsin - Madison

Medical Sciences Center,

1300 University Ave. Madison, WI 53706, USA.

Introduction

BUCKy is a program to analyze a multi-locus data sets with Bayesian Concordance Analysis
(BCA), as described in Ané et al. (2006). This method accounts for biological processes
like hybridization, incomplete lineage sorting or lateral gene transfer, which may result in
di�erent loci to have di�erent genealogies. With BCA, each locus is assumed to have a unique
genealogy, and di�erent loci having di�erent genealogies. The a priori level of discordance
among loci is controlled by one parameter α.

BCA works in two steps: First, each locus is to be analyzed separately, with MrBayes
for instance. Second, all these separate analyses are brought together to inform each other.
BUCKy will perform this second step. BUCKy comes into two separate programs: mbsum

and bucky. The �rst program mbsum summarizes the output produced by MrBayes from the
analyses of a individual loci. The latter, bucky, takes the summary produced by mbsum and
performs the second step of BCA. These two programs were kept separate because mbsum

is typically run just once, while bucky might be run several times independently, with or
without the same parameters.

Installation and Compilation

BUCKy is a command-line controlled program written is C++. It should be easily compiled
and run on any Linux system or Mac OSX.

Installation (Mac OSX 10.4 users). Since Mac OSX 10.4 does not come with a C++
compiler, we can provide an executable �le that compiled with OSX 10.4, upon request.

Installation (Linux or Mac OSX, version 10.3.9 or below). Pick a directory where
you want the BUCKy code to be. This directory will be called $BUCKY_HOME in this doc-
umentation. Download the bucky-1.1.tgz �le and put it in $BUCKY_HOME. To open the
compressed tar �le with the BUCKy source code and example data, do these commands:

cd $BUCKY_HOME

tar -xzvf bucky-1.1.tgz

1

This creates a directory named BUCKy-1.1 with subdirectories BUCKy-1.1/data and BUCKy-1.1/src.

Compilation. If you have gcc installed, compile the software with these commands.

cd $BUCKY_HOME/BUCKy-1.1/src

make

This will compile programs mbsum and bucky. It is suggested that copies of mbsum and bucky

be put in ~/bin if this directory is in your path.
If you do not have gcc installed and the executable provided is not working on your

system, you need to �nd the installer for gcc. On a Macintosh (version 10.3.9 or before), it
may be in Applications/Installers/Developer Tools .

Running mbsum

Type these commands for a brief help message

mbsum --help

Purpose and Output. It is advised to have one directory containing the MrBayes output
of all individual locus analyses. Typically, in this directory each �le of the form *.t is a
MrBayes output �le from one single locus. Use mbsum to summarize all �les from the same
locus. You want mbsum to create a �le <filename>.in for each locus. The extension .in

just means input (for later analysis by bucky). Output �les *.in from mbsum will typically
look like the following, containing a list of tree topologies and a tally representing the trees'
posterior probabilities from a given locus (as obtained in the �rst step of BCA).

(1,(2,(3,(4,(5,((6,7),8)))))); 24239

(1,(2,(3,(4,(5,(6,(7,8))))))); 15000

(1,(2,(3,(4,(5,((6,8),7)))))); 2983

(1,(2,(3,((4,5),((6,7),8))))); 2590

(1,(2,((3,((6,7),8)),(4,5)))); 2537

(1,(2,((3,(6,(7,8))),(4,5)))); 1097

(1,(2,(3,((4,5),(6,(7,8)))))); 995

(1,(2,(3,((4,5),((6,8),7))))); 163

(1,(2,(3,((4,((6,7),8)),5)))); 145

(1,(2,((3,((6,8),7)),(4,5)))); 96

(1,(2,((3,(4,5)),((6,7),8)))); 66

(1,(2,(3,((4,(6,(7,8))),5)))); 51

(1,(2,((3,(4,5)),(6,(7,8))))); 22

(1,(2,(3,((4,((6,8),7)),5)))); 15

(1,(2,((3,(4,5)),((6,8),7)))); 1

2

Syntax and Options. To run mbsum on a single �le, type:

mbsum [-h] [--help] [-n #] [-o filename] [--version] <inputfilename(s)>

For example, let's say an alignment mygene.nex was analyzed with MrBayes with two runs,
and sampled trees are in �les mygene.run1.t and mygene.run2.t. These two sample �les
include, say, 5000 burnin trees. To summarize these 2 runs use

mbsum -n 5000 -o mygene mygene.run1.t mygene.run2.t

or more generally

mbsum -n 5000 -o mygene mygene.run?.t

Note: the older version of mbsum could only take a single �le. It was then necessary to have a
single �le for each locus, and to combine all independent MrBayes runs from the same locus
into a single �le. This is no longer necessary. With version 1.02b of mbsum, there can be
several input �les, such as several parallel runs from MrBayes. Here is a description of the
available options.

[-h] or [--help] prints a help message describing the options and then quits.
[-n #] or [--skip #] This option allows the user to skips lines of trees before actually

starting the tally tree topologies. The default is 0, i.e no tree is
skipped. The same number of trees will be skipped in each input
�le.

[-o filename] or
[--out filename]

sets the output �le name. A single output �le will be created even
if there are multiple input �les. The tally combines all trees (except
skipped trees) found in all �les.

[--version] prints the program's name and version and then quits.

Since mbsum needs to be run on all tree �les *.t, we provide here a way to do so very
e�ciently. For example, you can choose to run mbsum to all *.t �les and remove the �rst
1000 trees of each for burnin, with:

for X in *.t; do mbsum -n 1000 $X; done

Warnings. mbsum will overwrite a �le named <filename>.in if such a �le exists. Most
importantly, mbsum assumes that the same translation table applies to all �les, i.e. that taxon
1 is the same taxon across all genes, and taxon 2 is the same taxon across all genes, etc. This
is okay as long as taxa appear in the same order in all alignment �les. But if not, the BCA
would be screwed up with no warning. This shortcoming will be �xed in a later version of
mbsum.

3

Running bucky

To run bucky, type

bucky [-options] <summary_files>

For example, after creating all .in �les with mbsum in the same directory, you can run bucky
with the default parameters by typing this:

bucky *.in

Options. Next, we describe the available options and the output of the program.

[-o output-file-root] Use this option to change the names of output �les. Default is run1.
[-a alpha] α is the a priori level of discordance among loci. Default α is 1.
[-n number-MCMC-updates] Use this option to increase the number of updates (default: 100,000).

An extra number of updates will actually be performed for burnin. This
number will be 10% of the desired number n of post-burning updates.
The default, then, is to perform 10,000 updates for burnin, which will
be discarded, and then 100,000 more updates.

[-h] or [--help] Prints a help message describing options, and then quits.
[-c number-chains] Use this option to run Metropolis coupled MCMC (or MCMCMC),

whereby hot chains are run in addition to the standard (cold) chain.
These chains occasionally swap states, so as to improve their mixing.
The option sets the total number of chains, including the cold one.
Default is 1, i.e. no heated chains.

[-r MCMCMC-rate] When Metropolis coupled MCMC is used, this option controls the rate
r with which chains try to swap states: a swap is proposed once every
r updates. Default is 100.

[-m alpha-multiplier] Warm and hot chains, in MCMCMC, use higher values of α than does
the cold chain. The cold chain uses the α value given by the option -a.
Warmer chains will use parameters mα,m2α, . . . ,mc−1α. Default m is
10.

[-s subsample-frequency] Use this option for thinning the sample. All post-burnin samples will be
used for summarizing the posterior distribution of gene-to-tree maps,
but you may choose to save just a subsample of these gene-to-tree maps.
One sample will be saved every s updates. This option will have an
e�ect only if option --create-sample-file is chosen. Default is 1, i.e.
no thinning.

[-s1 seed1] Default is 1234. FIXIT: Explain why 2 seeds??
[-s2 seed2] Default is 5678.

4

[--create-sample-file] Use this option for saving samples of gene-to-tree maps. Default
is to not use this option: samples are not saved, although a �le
.sample is created. Saving all samples can slow down the program.

[--use-independence-prior] Use this option if you want to assume a priori that loci choose their
trees independently of each other. This is equivalent to setting
α = ∞. Default is to not use this option.

[--calculate-pairs] Use this option if you want to calculate the posterior probability
that pairs of loci share the same tree. Default is to not use this
option.

[--use-update-groups] Use this option if you want to permit all loci in a group to be up-
dated to another tree. Default is to use this option, as it improves
mixing.

[--no-use-update-groups] Use this option to disable the update that changes the tree
of all loci in a group in a single update. Default is to not

use this option. If both options --use-update-groups and
--no-use-update-groups are used, only the last one is applied.
No warning is given, but the �le rootname.out indicates whether
group updates were enabled or disabled.

Output. Running bucky will create a bunch of output �les. With defaults parameters,
these output �les will have names of the form run1.*, but you can choose you own root �le
name. The following output �les describe the input data, input parameters, and progress
history.

run1.out Gives the date, version (1.1), input �le names, parameters used, running time and
progress history. If MCMCMC is used, this �le will also indicate the acceptance
history of swaps between chains.

run1.input Gives the list of input �les. There should be one �le per locus.
run1.single Gives a table with tree topologies in rows and loci in columns. The entries in the

table are posterior probabilities of trees from the separate locus analyses. The is a
one-�le summary of the �rst step of BCA.

run1.gene This �le provides almost the same information as run1.single, but di�erently. For
each locus, topologies supported by the locus are listed along with their posterior
probabilities. In this �le, topologies indices are indicated, instead of parenthetical
representations.

run1.top Gives a table with tree topologies in rows. Entries are indices of bipartitions (or
splits) that are present in the tree topologies.

run1.splits Splits key giving the correspondence between bipartitions (splits) and their indices
used in the �le run1.top.

The following �les give the full results as well as various summaries of the results.

5

run1.sample Gives the list of gene-to-tree maps sampled by bucky. With n post-burnin
updates and subsampling every s steps, this �le contains n/s lines, one for
each saved sample. Each line contains the number of accepted updates (to be
compared to the number of genes), the number of clusters in the gene-to-tree
map (loci mapped to the same tree topology are in the same cluster), the
log-posterior probability of the gene-to-tree map (up to an additive constant
??FIXIT), followed by the gene-to-tree map. If there are k loci, this map is
just a list of k trees. In �le run1.sample trees are given by their indices. This
�le will be created but empty if the option --create-sample-file is not set
to true.

run1.concordance Gives the posterior distribution of concordance factors of clades (bipartitions).
The sample-wide concordance factor of a clade is the proportion of loci in
the sample who have the clade. However, in this �le, concordance factors
are expressed in number of loci (instead of proportion of loci). The �le
run1.concordance starts with a list of all clades in the concordance tree
(clades with concordance factor greater than 50% and possibly other clades).
Then, clades are listed along with their sample-wide concordance factor's pos-
terior distribution and credibility intervals. Clades are sorted by their posterior
mean concordance factor.

run1.cluster Gives the posterior distribution of the number of clusters, as well as credibility
intervals. A cluster is a group of loci sharing the same tree topology, and loci
in di�erent clusters have di�erent tree topologies.

run1.joint Gives a table with topologies in rows and loci in columns. This �le is similar to
�le run1.single although topologies are named by their indices rather than
with the parenthetical description. Entries are frequencies with which each
locus was mapped to each topology.

run1.genepost This �le is similar to �le run1.gene, but contains more information. If gives
the list of loci, and for each locus it lists all topologies supported by this locus
(topology index and parenthetical description). For each topology is indicated
the posterior probability of this topology from the individual gene analysis
(like in run1.gene) as well as the posterior probability that the locus has this
tree given all data from all loci (like in run1.joint).

run1.topologies Gives the list of all supported topologies, the arithmetic average across loci of
their locus-speci�c posterior probability, from the individual analyses as well
as from the concordance analysis. The interpretation of these numbers is not
clear, so we do not recommend using them.

run1.pairs Gives a k by k matrix where k is the number of loci. Entries are the posterior
probability that two given loci share the same tree. This �le is created only if
option --calculate-pairs is used.

6

Examples

The example data provided with the program is organized as follows: directory
$BUCKY_HOME/BUCKy-1.1/data/example1/ contains 10 folders named ex0 to ex9, one for
each locus. These 10 folders contain a single �le each, named ex.in, which was created by
mbsum. For analyzing these data, one can use the default parameters and type

bucky $BUCKY_HOME/BUCKy-1.1/data/example1/ex?/ex.in

The question mark will match any character (any digit 0 to 9 in particular), so that all 10
locus �les will be used for the analysis. The following commands will run bucky twice, with
α = 5, no MCMCMC, group updates disabled, and one million updates. To have independent
runs, seeds are changed. (keep each of these two commands on a single line).

bucky -n 1000000 -a 5 -s1 745203 -s2 905423 --no-use-update-groups

$BUCKY_HOME/BUCKy-1.1/data/example1/ex?/ex.in

bucky -n 1000000 -a 5 --no-use-update-groups -s1 4948537 -s2 8764223

$BUCKY_HOME/BUCKy-1.1/data/example1/ex?/ex.in

After the �rst run, a look at the �le run1.genepost shows that all genes give a 100%
estimated posterior probability to tree 1 and 0% estimated posterior probability to other
trees. However, after the second run we see that tree 3 receives 100% estimated posterior
probability by all loci, instead of tree 1. So the two run are in very strong disagreement.
A look at the run1.concordance �les would have shown this disagreement too. The poor
mixing of either previous run is �xed by using the option --use-update-groups (or by not
using the --no-use-update-groups option!).

The yeast data analyzed in Ané et al. (2006) is provided with the program and organized
as follows. The directory $BUCKY_HOME/BUCKy-1.1/data/yeast/ contains 106 folders named
y000 to y105, one for each gene. In each of these folders, a �le created by mbsum and named
run2.nex.in contains the data from one gene. For analyzing these data with α = 2.5,
n = 1, 000, 000 updates, c = 4 chains (one cold and 3 hot chains), and for saving samples
once every 1000 updates, one would type (on a single line)

bucky -a 2.5 -n 1000000 -c 4 --create-sample-file

$BUCKY_HOME/BUCKy-1.1/data/yeast/y???/run2.nex.in

General notes

Choosing the a priori level of discordance α. To select a value based on biological
relevance, the number of taxa and number of genes need to be considered. For example, the
user might have an a priori for the proportion of loci sharing the same genealogy. One can
turn this information into a value of α since the probability that two randomly chosen loci
share the same tree is about 1/(1+α) if α is small compared to the total number of possible
tree topologies. Also, the value of α sets the prior distribution on the number of distinct locus
genealogies in the sample. Go to the website www.stat.wisc.edu/~larget/bucky.html for
an interactive display of this distribution, which can serve as a tool for the choice of α.

7

First step of BCA: individual locus analysis. Any model of sequence evolution can
be selected for any locus: there need not be one model common to all loci. Some loci can be
protein alignments, others DNA alignments, and other morphological characters.

Missing sequences. If some loci have missing sequences, i.e. missing taxa, then rows of
missing data (????) need to be inserted in place of the missing taxon's sequence. However,
a more e�cient way to deal with missing sequences will be implemented in a future version
of bucky.

Genome-wide concordance factors. The output �le run1.concordance provides the
posterior distribution of the sample-wide concordance factor for each clade. For example, the
information pertaining to clade {1, 2, 3} might look like this:

{1,2,3|4,5,6,7,8}

#Genes count probability cumulative

90 2 0.000002 0.000002

91 11 0.000011 0.000013

92 96 0.000096 0.000109

93 883 0.000883 0.000992

94 4354 0.004354 0.005346

95 17375 0.017375 0.022721

96 52301 0.052301 0.075022

97 124923 0.124923 0.199945

98 211516 0.211516 0.411461

99 260611 0.260611 0.672072

100 204057 0.204057 0.876129

101 100355 0.100355 0.976484

102 22995 0.022995 0.999479

103 521 0.000521 1.000000

mean CF = 98.760

99% CI for CF = (94,102)

95% CI for CF = (96,101)

90% CI for CF = (96,101)

However, the sample contained 106 loci only and there is extra uncertainty on the genome-
wide number of loci having clade {1, 2, 3}. The 95% credibility interval for the genome-
wide concordance factor of this clade must be wider than (96/106, 101/106). Ané et al.

(2006) describe how one can get the genome-wide posterior distribution from the sample-
wide posterior distribution. For now, this is implemented in a separate program, (a set of R
functions). In the later version of bucky, these programs will be uni�ed.

Download the �le concordance_genomewide.r. Open an R session (to download R, go
to http://cran.us.r-project.org) and set R's working directory to the directory where
you have concordance_genomewide.r. Have R read the �le with

8

> source("concordance_genomewide.r")

You are now ready to use the program. The �rst thing to do is to read the results from
bucky regarding sample-wide concordance factors. In the example above, clade 123|45678

is considered. Results can be read from a �le or just given to R with

> sampleCF = c(0.000002,0.000011,0.000096,0.000883,0.004354,0.017375,0.052301,

+ 0.124923,0.211516,0.260611,0.204057,0.100355,0.022995,0.000521)

Since these posterior probabilities correspond to concordance factors of 90 genes out of 106
through 103 genes out of 106, probabilities of 0 need to be added. A plot is suggested for
checking.

> sampleCF = c(rep(0,90), sampleCF, 0,0,0)

> plot(sampleCF, type="h")

To get credibility intervals for the genome-wide concordance factor, use

> genomewide(sampleCF,alpha=2.5,N=6000,n=106,Ntax=8,Nclade=3)

> genomewide(sampleCF,alpha=2.5,N=6000,n=106,Ntax=8,Nclade=3,conf.level=.99)

Parameters: The level of discordance α was set to 2.5 because it was the value used in bucky.
There were n=106 genes in the sample, and it is thought that there are a total of about
N=6,000 genes in the yeast genome. The bipartition has Nclade=3 taxa on one side and 5
on the other side for a total of Ntax=8 taxa. The function genomewide may take some time
(here a couple seconds). If you want to use this function many times for many di�erent
bipartitions, it is suggested to use a 2-step procedure, which we now explain. The posterior
distribution of the genome-wide CF is obtained by multiplying the posterior distribution
of the sample-wide CF (named sampleCF in the example) with some matrix. This matrix
depends on the size of the bipartition, but all bipartitions with the same size will use the
same matrix, which can then be re-used. The function dpPosteriorWeights will calculate
this matrix. In the example above use

> mat = dpPosteriorWeights(alpha=2.5,N=6000,n=106,Ntax=8,Nclade=3)

and �nally get the posterior distribution of the genome-wide CF for this clade, or for any
clade with separates the 8 taxa into a group of 3 and a group of 5 taxa.

> genomeCF = mat %*% sampleCF

> distribution.summary(genomeCF)

References

Ané, C., B. Larget, D. A. Baum, S. D. Smith, andA. Rokas. 2006. Bayesian estimation
of concordance among gene trees. Molecular Biology and Evolution .

9

