Package ‘WGDgc’

June 3, 2014

Type Package

Title Whole genome duplication detection using gene counts

Version 1.1

Date 2014-06-03

Author Tram Ta, Charles-Elie Rabier, Cecile Ane

Maintainer Tram Ta <tramta@stat.wisc.edu>

Description Detection of whole genome duplications on phylogenies using gene count data, with estimation of background rates of gene duplication and loss and estimation of gene retention rates following whole genome duplications

License GPL (>= 2)

URL http://www.stat.wisc.edu/~ane/wgd/

Depends R (>= 3.0.1), phylobase, phyext, ape

R topics documented:

WGDgc-package ... 2
gEdgeOrder .. 2
gLikGeneCount .. 3
logLik_CsurosMiklos .. 4
MLEGeneCount .. 6
processInput ... 8
sampleData1 .. 10
sampleData2 .. 11

Index 12
getEdgeOrder

WGDgc-package

Whole Genome Duplication detection using gene counts

Description
Detection of whole genome duplications and triplications on phylogenies using gene count data, with estimation of background rates of gene duplication and loss and estimation of gene retention rates following whole genome duplications/triplications

Details
Package: WGDgc
Type: Package
Version: 1.1
Date: 2014-06-03
License: GPL (>= 2)

Author(s)
Tram Ta, Charles-Elie Rabier, Cécile Ané
Maintainer: Cécile Ané <ane@stat.wisc.edu>

getEdgeOrder

list the tree nodes in a post-order traversal

Description
Preprocessing to list the edges in a post-order traversal, for future use in likelihood calculation. The output includes information on which edges the birth-death process applies to, and which edges represent a whole genome duplication or triplication event.

Usage
getEdgeOrder(phyloMat,nLeaf,wgdTab)

Arguments
phyloMat Matrix representation of the species tree and WGD events
nLeaf Number of present-day species (i.e. number of leaves)
wgdTab Table representation of WGD events with retention rates

Details
This function assumes that speciation nodes in phyloMat are given lower indices than singleton nodes when the tree is read in by phyext, that speciation nodes are in pre-order in phyloMat, and that 2 singleton nodes are used to represent each WGD.
getLikGeneCount

Value
Data frame listing the edges in a post-order traversal, with the following components

- child: index of the edge’s child node
- edge: index of the edge, i.e. its row in phyloMat
- type: "BD" if birth-death edge, "WGD" or "WGT" if the edge is modelling a WGD/T event, or "rootPrior" if the edge is parent to the root node
- scdsib: TRUE if the edge is listed after a sibling edge, FALSE otherwise

Author(s)
Cécile Ané

See Also
processInput.

describe

Description
Calculates the overall negative log-likelihood of gene count data on a phylogenetic tree under a birth-and-death process and whole genome duplication events.

Usage
```r
getLikGeneCount(para, input, geneCountData, mMax=NULL, geomProb=NULL, dirac=NULL, useRootStateMLE=FALSE, conditioning=c("oneOrMore", "twoOrMore", "oneInBothClades", "none"), equalBDrates=FALSE, fixedRetentionRates=TRUE)
```

Arguments
- `para`: vector of parameters (see Details)
- `input`: object output by function `processInput`
- `geneCountData`: data frame with one column for each species and one row for each family, containing the number of gene copies in each species for each gene family. The column names must match the species names in the tree.
- `mMax`: maximum number of surviving lineages at the root, at which the likelihood will be evaluated.
- `geomProb`: inverse of the prior mean number of gene lineages at the root.
- `dirac`: value for the number of genes at the root, when this is assumed to have a fixed value (according to a dirac prior distribution).
- `useRootStateMLE`: if TRUE, the most likely number of genes at the root is determined for each family separately and is used to evaluate the likelihood function.
Log-likelihood of count data on a phylogenetic tree

Description

Calculates the probability of gene count data on a phylogenetic tree under a birth-and-death process and whole genome duplication (or triplication) events, conditional on n surviving gene lineages at the root. Also computes the probability of a family going extinct.
logLik_CsurosMiklos

Usage

\[
\text{logLik_CsurosMiklos}(\logLamlogMu, \text{nLeaf}, \text{nFamily}, \text{phyloMat},
\text{geneCountData}, \text{mMax}, \text{wgdTab}, \text{edgeOrder})
\]

Arguments

\begin{itemize}
 \item \text{logLamlogMu} \quad \text{vector of size 1 or 2, for the log of the duplication and loss rates. When a single rate is provided, the duplication and loss rates are assumed to be equal.}
 \item \text{nLeaf} \quad \text{number of present-day species.}
 \item \text{nFamily} \quad \text{number of gene families.}
 \item \text{phyloMat} \quad \text{a phylogenetic matrix with 4 columns: parent (ancestor node), child (descendant node), time (branch length), and species names. The number of rows is the number of nodes in the tree.}
 \item \text{geneCountData} \quad \text{data frame with one column for each species and one row for each family, containing the number of gene copies in each species for each gene family. The column names must match the species names in the tree.}
 \item \text{mMax} \quad \text{maximum number of surviving lineages at the root, at which the likelihood will be computed.}
 \item \text{wgdTab} \quad \text{data frame with 5 columns: node before event, event type (WGD or WGT) and retention rates of 1, 2 and 3 gene copies. The number of rows is the number of WGD events.}
 \item \text{edgeOrder} \quad \text{a data frame listing the tree edges in post-order traversal with information on which are birth-death and WGD/T edges.}
\end{itemize}

Value

\begin{itemize}
 \item \text{loglikRoot} \quad \text{matrix of size nMax+1 by nFamily giving the log likelihood of each gene family given that there are n surviving gene lineages at the root in row n+1. Column k corresponds to family k.}
 \item \text{doomedRoot} \quad \text{probability that a single gene lineage present at the root goes extinct.}
 \item \text{doomedRootLeft} \quad \text{probability that a single gene lineage at the root goes extinct in the clade on the left side of the root.}
 \item \text{doomedRootRight} \quad \text{probability that a single gene lineage at the root goes extinct in the clade on the right side of the root.}
\end{itemize}

Author(s)

\begin{itemize}
 \item Cécile Ané\end{itemize}

References

MLEGeneCount

Maximum likelihood estimation of gene turnover rates with WGD

Description

Uses gene count data to estimate rates of gene duplication and gene loss along a phylogeny with zero, one or more whole genome duplication (WGD) or triplication (WGT) events. Also estimates the gene retention rate after each WGD/WGT event.

Usage

MLEGeneCount(tr, geneCountData, mMax=NULL, geomMean=NULL, dirac=NULL, useRootStateMLE=FALSE, conditioning=c("oneOrMore", "twoOrMore", "oneInBothClades", "none"), equalBDrates=FALSE, fixedRetentionRates=FALSE, startingBDrates=c(0.01, 0.02), startingQ=NULL)

Arguments

tr a species tree in SIMMAP format (see Details).

geneCountData data frame with one column for each species and one row for each family, containing the number of gene copies in each species for each gene family. The column names must match the species names in the tree.

mMax maximum number of surviving lineages at the root, at which the likelihood will be computed.

geomMean the mean of the prior geometric distribution for the number of genes at the root.

dirac value for the number of genes at the root, when this is assumed to have a fixed value (according to a dirac prior distribution).

useRootStateMLE if TRUE, the most likely number of surviving genes at the root is determined for each family separately, and is used to calculate the overall likelihood of the data. This value at the root may vary with the parameter values during likelihood optimization.

Examples

```
tre.string = "(D:{0,18.03},(C:{0,12.06},(B:{0,7.06},A:{0,7.06}):{0,2.49:wgd,0:0,2.50}):{0,5.97});"
tre.phylo4d = read.simmap(text=tre.string)
dat = data.frame(A=c(2,2,3,1), B=c(3,0,2,1), C=c(1,0,2,2), D=c(2,1,1,1));
a = processInput(tre.phylo4d, startingQ=0.9)
logLik_CsurosMiklos(log(c(.01,.02)), nLeaf=4, nFamily=4,
a$phyloMat, dat, mMax=8, a$wdgTab, a$edgeOrder)
```
MLEGeneCount

conditioning type of conditioning for the likelihood calculation. The default is to calculate conditional probabilities on observing families with at least 1 gene copy (see Details).

equalBDrates if TRUE, the duplication and loss rates are constrained to be equal.

fixedRetentionRates if TRUE, retention rates from the user-defined tree are fixed and used as provided. If FALSE, retention rates are considered as parameters and are estimated by maximum likelihood.

startingBDrates Vector of size 2, for the starting values of the duplication and loss rates. When equalBDrates=TRUE, only the first component is used.

startingQ Vector of starting values for the retention rates at the WGD and WGT events.

Details

The tree needs to be in simmap format (version 1.1). This format is similar to the newick parenthetical format, except that branch lengths are given inside brackets where states are indicated at specific times along each branch. Along a given branch, the token ”0.18” indicates state 0 for a duration of 18 time units. Tokens are separated with “:”. State 0 is used to indicate branch segments where only the birth/death process applies for gene duplications and losses. Labels ”wgd” or ”WGT” are used for branch segments at WGD events, and ”wgt” or ”WGT” for segments at WGT events. Such segments need to have a length of 0.

For WGT events, the 2 extra copies are assumed to be retained independently. With retention rate \(q \), the probability to retain all 3 gene copies is then \(q^2 \), the probability to retain 2 gene copies is \(2 \times q \times (1 - q) \), and the probability to retain the original gene only is \((1 - q)^2 \).

Four types of conditional likelihoods are implemented. The option conditioning should match the data filtering process: use conditioning=’oneOrMore’ if all families with one or more gene copies are included in the data, use ”twoOrMore” to condition on families having two or more genes, ”oneInBothClades” if the data set was filtered to include only families with at least one gene copy in each of the two main clades stemming from the root. Unconditional likelihoods are used with conditioning=’none’.

The geomMean, dirac and useRootStateMLE options are incompatible.

By default, mMax is set to the maximum family size for an exact likelihood calculation. For data sets with one or more very large families, this can cause mMax to be very large and calculation to be very slow. In such cases, the user can set mMax to a lower value to speed up calculations, at the cost of an approximation to the likelihood of families with a larger family size.

Value

birthdate birth or duplication rate

deadthrate death or loss rate

loglikelihood log of the likelihood

WGDtable a WGD table with 5 columns: node before WGD/WGT, event type, and probabilities that 1, 2 or 3 gene copies are retained. The number of rows is the number of WGD/WGT events.

phyloMat data frame with 5 columns to describe the phylogeny: parent (ancestor node), child (descendant node), time (branch length), species names and edge type (e.g. BD or WGD). The number of rows is the number of nodes in the tree.

call initial call to the function
processInput

convergence optimization convergence flag from the optim call. 0 means successful convergence.

mMax mMax value used for the likelihood calculations

Author(s)

Tram Ta, Charles-Elie Rabier

References

See Also

`sampleData1, sampleData2` for more examples.

Examples

```r
  tre.string = "(D:{0,18.03},(C:{0,12.06},(B:{0,7.06},
   A:{0,7.06}):(0,2.49:wgd,0:0,2.50):(0,5.97}));"
  # tree with a single hypothesized WGD event, along the
  # internal edge leading to the MRCA of species A and B
  tre.phylo4d = read.simmap(text=tre.string)
  tre.phylo = as(tre.phylo4d, "phylo")
  ## Not run: plot(collapse.singles(tre.phylo))
  dat = data.frame(A=c(2,2,3,1), B=c(3,0,2,1), C=c(1,0,2,2), D=c(2,1,1,1))
  MLEGeneCount(tre.phylo4d, dat, geomMean=1.5,
               conditioning="oneOrMore", fixedRetentionRates=TRUE)
```

Description

Checking arguments and preparing data for future optimization

Usage

```r
  processInput(tr, equalBDrates=FALSE, fixedRetentionRates=TRUE,
               startingBDrates=c(0.01, 0.02), startingQ=NULL)
```
Arguments

tr
a species tree in SIMMAP format (see Details of function MLEGeneCount).

equalBDrates
if TRUE, the duplication and loss rates are equal.

fixedRetentionRates
if TRUE, retention rates will be fixed to startingQ during the future optimization. If FALSE, retention rates will be considered as parameters and will be estimated by maximum likelihood.

startingBDrates
Vector of size 2 as starting values for the duplication and loss rates. When equalBDrates=TRUE only the first component is used.

startingQ
Vector of starting values for retention rates. Default is 0.5 for all WGD events.

Details

The vector para of starting values for the parameters to be optimized is of size 1+number of WGDs if the birth and death rates are assumed equal, or 2+number of WGDs otherwise. It starts with log(StartingBDrates[1]) if equalBDrates is TRUE, with log(StartingBDrates) otherwise, and the remaining components (corresponding to the retention rates) are startingQ if startingQ is provided, 0.5 otherwise.

For WGT events, the 2 extra copies are assumed to be retained independently. With retention rate q, the probability to retain all 3 gene copies is then q^2, the probability to retain 2 gene copies is $2 \times q \times (1-q)$, and the probability to retain the original gene only is $(1-q)^2$.

lower and upper are vectors whose sizes correspond to the number of parameters for the lower and upper bounds of the different parameters in a subsequent optimization search. The log of the duplication and loss rates are unconstrained, while duplicate retention rates are constrained in [0,1].

Value

phyloMat
data frame to represent the phylogeny. The number of rows is the number of nodes in the species tree. There are 5 columns (Parent, Child, Time, Species, type).

nLeaf
number of present-day species (i.e. number of leaves)

nNode
number of nodes in the species tree

wgdTab
data frame with 5 columns. Each row corresponds to a WGD(s) or WGT(s). The first column gives the node just before the WGD/T. The second column 'type' says if the event is a WGD or WGT. The remaining columns contain the probabilities that only the original gene is retained, or if 2 (or 3) gene copies are retained.

para
Vector of parameters to be optimized. see Details

lower
Lower bounds for later optimization. see Details

upper
Upper bounds for later optimization. see Details

Examples

tre.string = "(D:{0,18.03},(C:{0,12.06},(B:{0,7.06},A:{0,7.06}):{0,2.49:wgd,0:0,2.50}):{0,5.97});"
tre.phylo4d = read.simmap(text=tre.string)
processInput(tre.phylo4d)
Simulated gene count data with 1 WGD event

Description
Sample gene count data simulated with 1 WGD, 4 species (A, B, C, D) and 6000 families.

Usage
```
data(sampleData1)
```

Format
A data frame with 6000 observations on the following 4 species as 4 named variables: A, B, C, D.

Details
These data were generated according to the following species tree (in simmap format version 1.1), with a single WGD event located on the internal edge leading to the MRCA of species A and B and retention rate 0.6: "(D:0,18.03, (C:0,12.06,(B:0,7.06,A:0,7.06):0,2.50:wgd:0,0.250):0, 5.97);" The duplication and loss rates used for simulation were 0.02 and 0.03. Families with 0 or 1 copy were excluded. All families were started with only one ancestral gene at the root of the species tree.

Examples
```
data(sampleData1)
dat <- sampleData1[1:100,] # reducing data to run examples faster
tree1WGD.str = "(D:{0,18.03},{C:{0,12.06},{B:{0,7.06},A:{0,7.06}}:0,2.50:wgd:0,0.250}):0, 5.97);"
# tree with a single WGD event along the edge to MRCA of species A and B
tree1WGD = read.simmap(text=tree1WGD.str)
MLEGeneCount(tree1WGD, dat, dirac=1, conditioning="twoOrMore")
# to estimate retention, duplication and loss rates
MLEGeneCount(tree1WGD, dat, dirac=1, conditioning="twoOrMore", fixedRetentionRates=TRUE, startingQ=0.6)
# to estimate the duplication and loss rates only, # based on a hypothesized retention rate 0.6 at the WGD.
filtered <- subset(dat, (A>0| B>0 | C>0) & D>0 )
# families with at least one copy in both clades at the root
MLEGeneCount(tree1WGD, filtered,dirac=1,conditioning="oneInBothClades")
# uses the appropriate filtering

## Analysis under a tree with no WGD
tree0WGD.str = "(D:{0,18.03},{C:{0,12.06},{B:{0,7.06},A:{0,7.06}}:0,5.00}):0, 5.97);"
tree0WGD = read.simmap(text=tree0WGD.str)
MLEGeneCount(tree0WGD, dat, dirac=1, conditioning="twoOrMore", fixedRetentionRates=TRUE)"
## Analysis under a tree with 2 events: one WGD and one WGT

tree2events.str = "(D:{0,18.03}, (C:{0,12.06},(B:{0,7.06},A:{0,7.06}):{0,2.50 :wgt,0:0,2.50}):{0, 2.985: wgd,0:0,2.985});"

# oldest event: WGD on edge to MRCA of species A, B and C.
# recent event: WGT on edge to MRCA of species A, B

```
tree2events = read.simmap(text=tree2events.str)
MLEGeneCount(tree2events, dat, dirac=1, conditioning="twoOrMore")
```

### Description

Sample gene count data simulated with 2 WGDs on the same branch, 4 species (A, B, C, D) and 6000 families.

### Usage

data(sampleData2)

### Format

A data frame with 6000 observations on the following 4 species as 4 named variables: A, B, C, D.

### Details

These data were generated according to the following species tree (in simmap format version 1.1), with both WGD events located along the internal edge leading species D, with retention rate 0.6 for the oldest event and 0.2 for the most recent event:

```
"(D:0.6.01:0.2.0:0.6.01:0.6.0:0.6.01, (C:0.12.06,(B:0.7.06,A:0.7.06):0.4.99):0.5.97);"
```

The duplication and loss rates used for simulation were 0.02 and 0.03. Families with 0 or 1 copy were excluded. All families were started with only one ancestral gene at the root of the species tree.

### Examples

data(sampleData2)
dat <- sampleData2[1:200,] # reducing data to run examples faster

tree2WGD.str="(D:{0,6.01:wgd,0:0,6.01:wgd,0:0,6.01}, (C:{0,12.06},
(B:{0,7.06},A:{0,7.06}):{0,4.99}):{0,5.97});"

# both WGD events are located on the edge leading to species D
tree2WGD = read.simmap(text=tree2WGD.str)
MLEGeneCount(tree2WGD, dat, dirac=1, conditioning="twoOrMore")
Index

gEdgeOrder, 2, 6
getLikGeneCount, 3
logLik_CsurosMiklos, 4, 4
MLEGeneCount, 4, 6
processInput, 3, 6, 8
sampleData1, 8, 10
sampleData2, 8, 11
WGDgc-package, 2