
.

.

...... Julia for R programmers

Douglas Bates, U. of Wisconsin-Madison

July 18, 2013

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 1 / 67

.

What does Julia provide that R doesn’t?

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 2 / 67

.

The Julia language

To quote its developers,

Julia is a high-level, high-performance dynamic programming
language for technical computing, with syntax that is familiar to users
of other technical computing environments.
It provides a sophisticated compiler, distributed parallel execution,
numerical accuracy, and an extensive mathematical function library.
The library, mostly written in Julia itself, also integrates mature,
best-of-breed C and Fortran libraries for linear algebra, random
number generation, FFTs, and string processing.
Julia programs are organized around defining functions, and
overloading them for different combinations of argument types, which
can also be user-defined.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 3 / 67

.

Similarities to R

“high-level … dynamic programming language for technical
computing”.

▶ High-level – can work on the level of vectors, matrices, structures, etc.
▶ dynamic – values have types, identifiers don’t. Functions can be

defined during an interactive session.
▶ technical computing – these folks know about floating point arithmetic

“organized around defining functions, and overloading them for
different combinations of argument types”. The “overloading …” part
means generic functions and methods.
“syntax that is familiar to uses of other technical computing
environments”. Julia code looks very much like R code and/or
Matlab/octave code. It is, of course, not identical but sufficiently
similar to be readable.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 4 / 67

.

R is great

Open source, freely available, used in many disciplines
Allows for user contributions through the package system.
Package repositories, CRAN and Bioconductor, are growing rapidly.
Over 3000 packages on CRAN.
Packages can contain R code and sample data, which must be
documented. They can also contain code in languages like C, C++
and Fortran for compilation and vignettes (longer forms of
documentation).
Many, many books about R. Journals like Journal of Statistical
Software and the R Journal devoted nearly entirely to R packages.
Widely used, a recent coursera.org MOOC on “Computing for Data
Analysis” by Roger Peng had over 40,000 registrants.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 5 / 67

.

R is great, but …

The language encourages operating on the whole object
(i.e. vectorized code). However, some tasks (e.g. MCMC) are not
easily vectorized.
Unvectorized R code (for and while loops) is slow.
Techniques for large data sets – parallelization, memory mapping,
database access, map/reduce – can be used but not easily. R is single
threaded and most likely will stay that way.
R functions should obey functional semantics (not modify
arguments). Okay until you have very large objects on which small
changes are made during parameter estimation.
Sort-of object oriented using generic functions but implementation is
casual. Does garbage collection but not based on reference counting.
The real work is done in underlying C code and it is not easy to trace
your way through it.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 6 / 67

.

Fast development vs. fast execution - Can we have both?

The great advantage of R, an interactive language with dynamic
types, is ease of development. High level language constructs, ease of
testing small pieces of code, a read-eval-print loop (REPL) versus an
edit-compile-run loop.
Compilation to machine code requires static types. C++ allows
templates instead of dynamic types, and recent libraries like STL,
Boost, Rcpp, Armadillo, Eigen use template metaprogramming for
flexibility. But those who value their sanity leave template
metaprogramming to others.
Julia has a wide range of types, including user-defined types and type
hierarchies, and uses multiple dispatch on generic functions with
sophisticated type inference to emit code for the LLVM JIT.
In my opinion Julia provides the best of both worlds and is the
technical programming language of the future.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 7 / 67

http://eigen.bitbucket.org
http://llvm.org

.

An example, a (very) simple Gibbs sampler

The Gibbs sampler discussed on Darren Wilkinson’s blog and also on
Dirk Eddelbuettel’s blog has been implemented in several languages,
the first of which was R.
The task is to create a Gibbs sampler for the density

f(x, y) = k x2 exp(−xy2 − y2 + 2y − 4x), x > 0

using the conditional distributions

X|Y ∼ Γ

(
3,

1

y2 + 4

)

Y|X ∼ N
(

1

1 + x ,
1

2(1 + x)

)
(Gamma parameters are shape, scale. Normal parameters are mean,
variance.)

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 8 / 67

http://bit.ly/IWhJ52
http://dirk.eddelbuettel.com/blog/2011/07/14/
http://www.R-project.org

.

R version of simple Gibbs sample

1 Rgibbs <- function(N,thin) {
2 mat <- matrix(0,nrow=N,ncol=2)
3 x <- y <- 0
4 for (i in 1:N) {
5 for (j in 1:thin) {
6 x <- rgamma(1,3,y*y + 4) # 3rd arg is rate
7 y <- rnorm(1,1/(x + 1),1/sqrt(2*(x + 1)))
8 }
9 mat[i,] <- c(x,y)

10 }
11 mat
12 }

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 9 / 67

.

Julia version using the Distributions package

1 using Distributions
2 function jgibbs(N::Integer, thin::Integer)
3 mat = Array(Float64,(N,2))
4 x = y = 0.
5 for i in 1:N
6 for j in 1:thin
7 x = rand(Gamma(3.,1./(y*y+4.))) #shape/scale
8 y = rand(Normal(1./(x+1.),1./sqrt(2.(x+1.))))
9 end

10 mat[i,1] = x; mat[i,2] = y
11 end
12 mat
13 end

In Julia 0 is an integer and 0. is floating point. R has the peculiar
convention that 0 is floating point and 0L is an integer.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 10 / 67

.

Comparative timings

In R generating a bivariate sample of size 10,000 with a thinning of
500 takes about 97 sec. on this laptop

> system.time(Rgibbs(10000,500))
user system elapsed

96.740 0.004 97.027

The corresponding Julia function runs in less than 1 second.

julia> jgibbs(10000,500); # warm-up
julia> @elapsed jgibbs(10000,500)
0.867915085

In Julia the first call to a method invokes the JIT so we time the
second call.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 11 / 67

.

Distributed version in Julia

1 djgibbs(N::Integer, thin::Integer) =
2 DArray(I->jgibbs(map(length,I)[1],thin),(N,2))

This rather cryptic function creates a distributed array (i.e. different
parts are stored and accessed on different processors) using an
anonymous function, which is the first argument and uses the ->
operator to create a function.
This laptop has a 4-core processor. Starting julia with the -p 4 flag
(4 processes) provides

julia> djgibbs(10000,500); @elapsed djgibbs(10000,500)
0.218568565

Almost exactly a 4-fold increase in speed using 4 processes.
Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 12 / 67

.

Details of the syntax of these functions

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 13 / 67

.

Functions (algorithms) and types (data structures)

Like R and Matlab, programming in Julia is based on defining
functions.
Like R, names of generic functions can be applied to different
argument signatures, creating different methods for the generic.
Unlike R, all functions in Julia are generic. In a sense, you don’t
define functions, you only define methods. The first time a function
name occurs in a definition, the generic is automatically created.
Data structures are called types in Julia. The language itself defines
many types including abstract types (e.g. Integer) that include
several concrete types.
Users can define types to represent data as they choose.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 14 / 67

.

Defining functions

Function (actually method) definitions are usually the header followed
by the body, a block of code

▶ the header gives the formal argument names and, optionally, types
▶ argument types can be templated
▶ as in R, the last expression in the block is the return value

function jgibbs(N::Integer, thin::Integer)
...

end

An alternative syntax can be used for one-liners, usually a single
expression.

jgibbs(N::Integer) = jgibbs(N, 100)

An anonymous function can be defined using the -> syntax.
Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 15 / 67

.

Functions are really methods

As mentioned above, in Julia all functions are generic so any function
definition is actually a method definition. (Well, not exactly.
Anonymous functions aren’t generic because they’re, well,
anonymous.)
There is nothing special about defining an additional method for a
function. Just use the same function name and a different signature
for the arguments
Part of becoming fluent in Julia is learning to think in terms of
methods.
Default argument values can now be specified for Julia functions, as
in R. Alternatively you can write a trivial, pass-through, method that
has a truncated signature, as in the one-argument form of jgibbs.
(The effect of specifying default values is to create such pass-through
methods.)

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 16 / 67

.

Templated methods and data types

The types Vector, Matrix and Array can have different element
types; Vector{Float64}, Vector{Int}, ...
Sometimes you want to define algorithms on the abstract type with
minor variations for, say, the element type.

function sumsq{T <: Number}(V::Vector{T})
s = zero(T)
for v in V; s += v*v; end
s

end

The notation T <: Number means any type T that inherits from the
abstract type Number.
Note that some method signatures take the type itself as an
argument. e.g. zero(T), one(T), zeros(T,dim...),
ones(T,dim...)

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 17 / 67

.

Examples of types

julia> xdump(Number)
Number
Real
Complex
ComplexPair = Complex
ImaginaryUnit
Complex128 = Complex
Complex64 = Complex

Check for yourself which types inherit from Real, Integer, Signed.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 18 / 67

.

Using templated functions

Vector{T} is a typealias for Array{T,1} (one-dimensional array with
element type T).

julia> sumsq
methods for generic function sumsq
sumsq{T<:Number}(V::Array{T<:Number,1}) at none:2

julia> typeof([1:3])
Array{Int64,1}

julia> sumsq([1:3])
14

julia> typeof(sumsq([1:3]))
Int64

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 19 / 67

.

A function can modify its arguments

It is important to realize that a Julia function can modify its
arguments. If you are not careful this can result in bugs.
However, sometimes you want to modify in-place and this is exactly
what you need. Often the key to speeding up an algorithm is cutting
down on the copies being created, as we will see later.
By convention, such mutating functions in the standard library have
names ending in "!", indicating that users should be careful when
using such functions. Thus copy! is mutating, copy is not.

julia> src = [1:3]; dest = [0:2]; println(dest)
[0,1,2]

julia> copy!(dest, src); println(dest)
[1,2,3]

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 20 / 67

.

Defining types

The Cholesky decomposition of a positive definite symmetric matrix,
A, is written by numerical analysts as the lower triangular matrix, L
such that A = LL' and by statisticians as the upper triangular R such
that A = R'R.
LAPACK can work with either form and with element types of
Float32, Float64, Complex64 or Complex128, collectively called
BlasFloat.

abstract Factorization{T}

type Cholesky{T<:BlasFloat} <: Factorization{T}
UL::Matrix{T}
uplo::Char

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 21 / 67

.

Documentation

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 22 / 67

.

Finding documentation, asking questions

The project’s web site is http://julialang.org/
The docs link takes you to the documentation for version 0.1, which
is out of date. The 0.2 release is in the works but no release date yet.
When downloading use the 0.2-pre versions.
Use the documentation at http://julia.readthedocs.org/en/latest
(a.k.a. http://docs.julialang.org). Notice that there is a list of
available packages.
Mailing lists julia-dev and julia-users are linked on the project
web site. As always, it is best to read several conversations on the
archives before posting, just so you can get a feel for the culture.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 23 / 67

.

Finding function names

As with any language, Julia will initially be frustrating because you
don’t know the name of the function that does …
It is best to start with a quick perusal of the manual to familiarize
yourself.
The documentation on the standard library is organized in topic
groups which can be helpful (if you can decide which topic applies).
Interactive Julia, (i.e the REPL), provides tab completion, after which
you can check likely names with help
Read the code written by people who seem to know what they are
doing and then experiment. You have the REPL and can check things
quickly.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 24 / 67

.

Using the REPL

By default the value of an expression, even an assignment, is shown
(unlike the behavior of R where printing of assigned values is
suppressed).
Large vectors and other arrays have only the first and last few rows,
columns, etc. printed.
Printing of other objects may blurt thousands of numbers, etc. onto
your screen.
Vectors are printed vertically. The println function’s output is
sometimes more compact. Another trick is to transpose a vector so it
prints horizontally.
A semicolon (;) at the end of an expression suppresses printing.
There is no default printing in batch mode. You must use explicit
output function calls.
The last value evaluated is available as ans.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 25 / 67

.

The Distributions package

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 26 / 67

.

R’s approach to distributions

The p-q-r-d functions, providing the cumulative probability function
(e.g. pnorm), the quantile function (e.g. qnorm), a random generator
function (e.g. rnorm) and the density or probability mass function
(e.g. dnorm), are an important part of the R language.
However, the convention of creating distinct functions for each
distribution results in dozens of such functions and some confusion
(pgeom is the c.d.f and dgeom is the p.m.f.).
Every such function takes some, possibly overspecified, set of
parameters for the distribution. For safety, each such function should
do a consistency check on the arguments.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 27 / 67

.

Distributions as types

In the Distributions package for Julia we define distributions as
types. For efficiency most distributions are labelled as immutable,
indicating that you can’t change the parameter values after you
generate an instance. This also allows the compiler to take some
short cuts when working with instances of such types.
A function of the same name as the type declared within the type
definition is called an internal constructor. Usually these check
validity and perform conversions, if needed. They end in a call to new.
An external constructor has the same name as the type. It can be
used to create default values.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 28 / 67

.

An example, constructors for the Normal distribution

immutable Normal <: ContinuousUnivariateDistribution
mu::Float64
sd::Float64
function Normal(mu::Real, sd::Real)

sd > zero(sd) || error("sd must be positive")
new(float64(mu), float64(sd))

end
end
Normal(mu::Real) = Normal(float64(mu), 1.0)
Normal() = Normal(0.0, 1.0)

The check on sd > 0. in the internal constructor could be written
with an if statement. This idiom is read “either sd > 0. or throw an
error”.
The external constructors set the defaults for sd to 1. and mu to 0.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 29 / 67

.

Methods for distributions

There are dozens of generics that can be applied to Distribution
types.
Install the package

julia> Pkg.add("Distributions")

and check the types and methods shown in the file

julia> Pkg.dir("Distributions", "src", "Distributions.jl")
"/home/bates/.julia/Distributions/src/Distributions.jl"

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 30 / 67

.

Vectorization, etc.

Often we want to apply one of the generic functions to vector or array
arguments instead of scalars.
Defining distributions as types and providing abstract types
(UnivariateDistribution, ContinuousDistribution,
ContinuousUnivariateDistribution) allows for easy vectorization of
methods. Check the result of, for example,

julia> using Distributions
julia> methods(pdf)
methods for generic function pdf
pdf{T<:Real}(d::Dirichlet,x::Array{T<:Real,1}) at /home/bates/.julia/Distributions/src/multivariate/dirichlet.jl:65
pdf{T<:Real}(d::Multinomial,x::Array{T<:Real,1}) at /home/bates/.julia/Distributions/src/multivariate/multinomial.jl:76
pdf{T<:Real}(d::MultivariateNormal,x::Array{T<:Real,1}) at /home/bates/.julia/Distributions/src/multiva
pdf(d::MultivariateDistribution,X::AbstractArray{T,2}) at /home/bates/.julia/Distributions/src/fallbacks.jl:193
...

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 31 / 67

.

Some examples

julia> n1=Normal(3, 0.25); (xvals = linspace(2.,4.,9))'
1x9 Float64 Array:
2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0

julia> [mean(n1) median(n1) modes(n1) std(n1) var(n1)]
1x5 Float64 Array:
3.0 3.0 3.0 0.25 0.0625

julia> [skewness(n1) kurtosis(n1)]
1x2 Float64 Array:
0.0 0.0

julia> [pdf(n1, xvals) cdf(n1,xvals) quantile(n1,linspace(0.1,0.9,9))]
9x3 Float64 Array:
0.000535321 3.16712e-5 2.67961
0.0177274 0.0013499 2.78959
0.215964 0.0227501 2.8689
0.967883 0.158655 2.93666
1.59577 0.5 3.0
0.967883 0.841345 3.06334
0.215964 0.97725 3.1311
0.0177274 0.99865 3.21041
0.000535321 0.999968 3.32039

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 32 / 67

.

Linear algebra

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 33 / 67

.

Linear algebra operations

The names of functions and symbols for operators are similar to those
of Matlab.
For vector and matrix arguments, * and / and \ denote matrix
multiplication and solutions of linear systems. The (conjugate)
transpose operator is '.
A leading . on an operator denotes elementwise operations. e.g. .*,
./, .<
Names of generators of particular array forms are patterned on
Matlab; zeros, ones, rand, randn, linspace, eye, speye
Sparse matrices are part of the base language.
Various extractors like diag, triu and tril are available.
Predicates (functions that check for a characteristic and return a
Boolean value) usually begin with "is". E.g. istriu, issym.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 34 / 67

.

Getting and setting elements or subarrays

When indexing arrays, all of a dimension is denoted by :. Thus the
jth column of matrix A is A[:,j].
The last value in a dimension can be written end. Thus v[2:end] is
everything in the vector v beyond the first element.
The size generic returns dimensions. With no additional arguments
the value is a "tuple". Specifying a specific dimension returns an
integer. The length generic returns the overall length (i.e. the
product of the dimensions).

julia> I = eye(4);
julia> println("$(size(I)), $(size(I,1)), $(length(I))")
(4,4), 4, 16

Note the use of expression interpolation in a string

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 35 / 67

.

Assigning multiple values

Having shown that size returns a tuple, it is a good time to mention
that the elements of the tuple can be assigned to multiple names in a
single statement.
A common idiom is

function matprod{T<:Number}(A::Matrix{T}, B::Matrix{T})
m,n = size(A); p,q = size(B)
n == p || error("incompatible dimensions")
res = Array(T, m, q)
...

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 36 / 67

.

Comprehensions

It is common to create a vector or array by applying a scalar function
to the values of another vector or array or to indices.
In Julia you do not need to “fear the loop”, especially within a
method definition.
A comprehension is an implicit loop that creates the result array and
fills it. Suppose we want to apply a logit function to an array.

logit(p::Float64) = 0<p<1?log(p/(1.-p)):error("p not in (0,1)")
logit(V::Vector{Float64}) = [logit(v) for v in V]
logit(linspace(0.1,0.9,9))'

1x9 Float64 Array:
-2.19722 -1.38629 -0.847298 -0.405465 0.0 0.405465 0.847298 1.38629 2.19722

The scalar logit method uses the ternary operator
(cond ? trueres : falseres) and the ability to chain
comparisons (0. < p < 1.)

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 37 / 67

.

Using BLAS and LAPACK

Dense matrix operations are based on the well-known LAPACK
(Linear Algebra Package) and BLAS (Basic Linear Algebra
Subroutines) facilities. Julia is usually built against an accelerated,
multi-threaded BLAS package such as OpenBLAS or MKL providing
very high performance.
Occasionally you need to throttle the number of threads being used
with, e.g.

blas_set_num_threads(1)

Operations such as X'X, X'y, and norm(y) on a vector y and matrix
X will automatically call a suitable BLAS routine. These allocate
space for the result.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 38 / 67

.

Calling BLAS and LAPACK directly

Sometimes you want the result of a linear algebra calculation to
overwrite existing storage, thereby saving on storage allocation and
freeing (called “garbage collection”) in an iterative algorithm.
Most BLAS and LAPACK operations can be called directly.
Templated Julia functions like gemm (general matrix-matrix product)
allocate storage whereas gemm! overwrites one of its arguments.
Because the Julia functions are templated, their names are the BLAS
or LAPACK names without the first character.
The calling sequence for the ! version is the BLAS or LAPACK
version without all the dimension arguments.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 39 / 67

.

Factorizations

The backslash, \, operator applied to a matrix and vector analyzes the
form of the matrix to decide on a suitable factorization (e.g. Cholesky,
LU, QR) to solve a linear system or a least squares problem.
Explicitly creating the factorization allows for its re-use or for more
specific forms. Available factorizations include

▶ Cholesky (functions cholfact and cholfact!)
▶ CholeskyPivoted (functions cholpfact and cholpfact!)
▶ LU (functions lufact and lufact!)
▶ QR (functions qrfact and qrfact!)
▶ QRPivoted (functions qrpfact and qrpfact!)
▶ Hessenberg (functions hessfact and hessfact!)
▶ Eigenvalue-eigenvector and generalized eigenvalue (functions eigfact,

eigfact!, eigvals, eigvecs, eig, eigmax, eigmin)
▶ SVD and generalized SVD (svdfact, svdfact!, svd, svdvals)
▶ Schur (functions schurfact and schurfact!)

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 40 / 67

.

Use of the backslash

julia> srand(1234321) # set the random seed
julia> X = [ones(100) rand(100,2)]; X'
3x100 Float64 Array:
1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0
0.0944218 0.936611 0.258327 0.930924 0.555283 0.799287 0.261148 0.255576 0.817669
0.942218 0.042852 0.658443 0.933942 0.493509 0.00561552 0.502888 0.0869479 0.0272969

julia> beta = rand(Normal(),3); beta'
1x3 Float64 Array:
-0.197287 -0.86977 -1.55077

julia> y = X*beta + rand(Normal(0.,0.4), size(X,1)); y'
1x100 Float64 Array:
-1.89246 -1.06572 -1.92631 -2.00036 -1.19763 … -1.27156 -0.976077 -0.913521 -0.167361

julia> betahat = X\y; betahat'
1x3 Float64 Array:
-0.225888 -0.913171 -1.4425

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 41 / 67

.

Use of factorizations

julia> using NumericExtensions
julia> ch = cholpfact!(X'X)
CholeskyPivoted{Float64}(3x3 Float64 Array:
10.0 5.26508 4.88059
0.0 3.03731 0.289294
0.0 0.0 2.91872 ,'U',[1,2,3],3,-1.0,0)

julia> beta = ch\X'y; beta'
1x3 Float64 Array:
-0.225888 -0.913171 -1.4425

julia> df = length(y) - rank(ch)
julia> fitted = X*beta; ssqr = sqdiffsum(y, fitted)/df
0.15681475390926472
julia> vcov = ssqr * inv(ch)
3x3 Float64 Array:
0.00981028 -0.00818202 -0.00806099
-0.00818202 0.0171654 -0.00175329
-0.00806099 -0.00175329 0.0184078

julia> stderr = sqrt(diag(vcov)); println(stderr)
[0.09904684680425663,0.131016871473335,0.1356755193594016]

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 42 / 67

.

Julia packages

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 43 / 67

.

Using packages created by others

Although only recently available, the Julia package system is growing
rapidly. Check the list of available packages on the documentation
site.
Packages of interest to statisticians include

▶ DataFrames — facilities similar to R data frames and formula language
▶ Distributions — described above
▶ GLM — fitting linear and generalized linear models
▶ MixedModels — mixed-effects models - currently LMMs but GLMMs

are coming
▶ NLopt — high-quality optimizers for constrained and unconstrained

problems
▶ NumericExtensions - highly optimized matrix reductions etc.
▶ Winston — 2D plotting
▶ various MCMC packages

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 44 / 67

.

An example - overdetermined ridge regression

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 45 / 67

.

Overdetermined ridge regression

It is not uncommon now to work with data sets that have fewer
observations (rows) than variables (columns).
For example, GWAS (genome-wide association studies) data may
determine status at millions of SNP sites for tens of thousands of
individuals.
Paulino Perez and Gustavo de la Campos performed a centered, scaled
ridge regression using R on such data where at each SNP position a
binary response was measured. Here p > n and a p-dimensional
coefficient vector is estimated by regularizing the system to be solved.
On modern computers the system could be solved in memory when p
is in the thousands or tens of thousands but not for p in the hundreds
of thousands. A back-fitting algorithm was used.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 46 / 67

.

R code

backfit <- function(Xstd, yc, h2 = 0.5, nIter = 20L) {
n <- nrow(Xstd); p <- ncol(Xstd)
stopifnot(length(yc) == n)
lambda <- p * (1 - h2)/h2
SSx <- colSums(X^2) # the diagonal elements of crossprod(X)
bHat <- rep(0,p) # initial values bj=zero
e <- y # initial model residuals
for(i in 1:nIter){ # loop for iterations of the algorithm

for(j in 1:p){ # loop over predictors
yStar <- e+X[,j] * bHat[j] # forming offsets
bHat[j] <- sum(X[,j] * yStar)/(SSx[j]+lambda) # eq. [4]
e <- yStar-X[,j] * bHat[j] # updates residuals

}
}
bHat

}

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 47 / 67

.

Direct Julia translation

function backfit(Xstd::Matrix, yc::Vector, h2=0.5, nIter=20)
n,p = size(Xstd)
lambda = p*(1-h2)/h2
SSx = sum(Xstd .^ 2, 1) # all n-1 after standardizing
bHat = zeros(p)
e = copy(yc)
for i in 1:nIter, j in 1:p

yStar = e + Xstd[:,j]*bHat[j] # offsets
bHat[j] = dot(Xstd[:,j],yStar)/(SSx[j] + lambda)
e = yStar - Xstd[:,j]*bHat[j]

end
bHat

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 48 / 67

.

Julia version with in-place updates

using Base.LinAlg.BLAS.axpy!
function backfit2(Xstd::Matrix, yc::Vector, h2=0.5, nIter=20)

n,p = size(Xstd)
lambda = p*(1 - h2)/h2
SSx = sum(Xstd .^ 2, 1) # all n-1 after standardizing
bHat = zeros(p)
e = copy(yc)
for i in 1:nIter, j in 1:p

axpy!(bHat[j], Xstd[:,j], e)
bHat[j] = dot(Xstd[:,j], e)/(SSx[j] + lambda)
axpy!(-bHat[j], Xstd[:,j], e)

end
bHat

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 49 / 67

.

Julia version using NumericExtensions

using NumericExtensions
function backfit3(Xstd::Matrix, yc::Vector, h2=0.5, nIter=20)

n,p = size(Xstd)
length(yc) == n || error("Dimension mismatch")
SSx = sum(Abs2(), Xstd, 1) # all n-1 after standardizing
bHat = zeros(p); lambda = p*(1 - h2)/h2
e = copy(yc)
for i in 1:nIter, j in 1:p

Xj = unsafe_view(Xstd, :, j:j)
fma!(e, Xj, bHat[j]) # fused multiply and add
bHat[j] = mapreduce(Multiply(),Add(),Xj,e)/(SSx[j]+lambda)
fma!(e, Xj, -bHat[j])

end
bHat

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 50 / 67

.

Timing results

On a moderate-sized data set (600 by 1280) backfit2 is twice as
fast as backfit in Julia and about 3 times as fast as the R version.

> system.time(backfit(X,y))
user system elapsed

1.604 0.012 1.623

julia> @time backfit(Xstd, yc);
elapsed time: 1.093174015 seconds
julia> @time backfit2(Xstd, yc);
elapsed time: 0.460209712 seconds

Profiling the execution of backfit2 showed that most of the time was
spent in indexing operations, leading to the backfit3 version.

julia> @time backfit3(Xstd, yc);
elapsed time: 0.103352683 seconds

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 51 / 67

.

Timing results (cont’d)

A direct calculation using the 1280 by 1280 system matrix with an
inflated diagonal was nearly as fast as backfit3.

function directfit(Xstd::Matrix, yc::Vector, h2=0.5)
n,p = size(Xstd); lambda = p*(1-h2)/h2; XtX = Xstd'Xstd
SSx = sum(Abs2(), Xstd, 1) # all n-1 after standardizing
for i in 1:size(XtX,1); XtX[i,i] += SSx[i] + lambda; end
cholfact!(XtX)\(Xstd'yc)

end

julia> @time directfit(Xstd, yc);
elapsed time: 0.132523019 seconds

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 52 / 67

.

Timing results (cont’d)

On a 1000 by 200000 example backfit3 took 25 seconds, backfit2
125 seconds and backfit nearly 300 seconds in Julia.

julia> size(Xstd)
(1000,200000)
julia> @time backfit(Xstd,yy);
elapsed time: 296.172161458 seconds
julia> @time backfit2(Xstd, yy);
elapsed time: 125.506957544 seconds
julia> @time backfit3(Xstd, yy);
elapsed time: 25.27092502 seconds

The direct solution with a 200000 by 200000 system matrix is not on.
If the matrix X is a binary matrix, it is more effective to store the
matrix as a BitArray and evaluate the two possible values in each
column separately, customizing the multiplication operation for this
data type.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 53 / 67

.

Workflow in Julia as described by Tim Holy

The workflow “quickly write the simple version first” (which is really
pleasant thanks to Julia’s design and the nice library that everyone
has been contributing to) -> “run it” -> “ugh, too slow” -> “profile
it” -> “fix a few problems in places where it actually matters” ->
“ah, that’s much nicer!” is quite satisfying.
If I had to write everything in C from the ground up it would be far
more tedious. And doing a little hand-optimization gives us geeks
something to make us feel like we’re earning our keep.
Key points as summarized by Stefan Karpinski

...1 You can write the easy version that works, and

...2 You can usually make it fast with a bit more work

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 54 / 67

.

Calling compiled code

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 55 / 67

.

Calling compiled functions through ccall

R provides functions .C, .Fortran and .Call to call functions
(subroutines) in compiled code.
The interface can be tricky, whole chapters of the manual “Writing R
Extensions” are devoted to this topic.
The Rcpp package provides a cleaner interface to C++ code but
using it is still no picnic.
In Julia it is uncommon to need to write code in C/C++ for
performance.
The ccall facility allows for calling functions in existing C libraries
directly from Julia, usually without writing interface code.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 56 / 67

.

Example of ccall

In the Rmath library the pbinom function for evaluating the cdf of
the binomial distribution has signature

double pbinom(double x, double n, double p, int lower_tail, int log_p)

We can call this directly from Julia as

function cdf(d::Binomial, q::Number)
ccall((:pbinom,:libRmath), Cdouble,

(Cdouble, Cdouble, Cdouble, Cint, Cint),
q, d.size, d.prob, 1, 0)

end

Cdouble is a typealias for Float64, Cint for Int32 making it easier
to translate the signature. Pointers and, to some extent, C structs
can be passed as well.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 57 / 67

.

Julia for “Big Data”

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 58 / 67

.

Julia for “wide data”

Data sets like that from a GWAS study is sometimes called “wide
data” because the number of “variables” (SNP locations in this case)
can vastly excede the number of observations (test subjects).
We showed a simulated example with 1000 subjects and 200,000 SNP
locations but much larger studies are common now. Millions of SNP
locations and perhaps 10’s of thousands of subjects.
In these cases we must store the data compactly. The combinations
of the .bed, .bim and .fam files generated by plink are common.
The data are a (very) large matrix of values that can take on 1 of 4
different values (including the missing value). They are stored as 4
values per byte.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 59 / 67

http://pngu.mgh.harvard.edu/~purcell/plink/

.

GenData2 data type

type GenData2
gendat::Matrix{Uint8}
nsubj::Int
counts::Matrix{Int}

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 60 / 67

.

GenData2 constructor

function GenData2(bnm::ASCIIString) # bnm = basename
nsnp = countlines(string(bnm,".bim"))
nsubj = countlines(string(bnm,".fam"))
bednm = string(bnm,".bed"); s = open(bednm)
read(s,Uint8) == 0x6c && read(s,Uint8) == 0x1b || error("wrong magic number in file $bednm")
read(s,Uint8) == 1 || error(".bed file, $bednm, is not in correct orientation")
m = div(nsubj+3,4) # of bytes per col., nsubj rounded up to next multiple of 4
bb = mmap_array(Uint8, (m,nsnp), s); close(s)
GenData2(bb,nsubj,bedfreq(bb,nsubj)')

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 61 / 67

.

Counter for column frequencies

function bedfreq(b::Matrix{Uint8},ns::Integer)
m,n = size(b)
div(ns+3,4) == m || error("ns = $ns should be in [$(4m-3),$(4m)] for size(b) = $(size(b))")
cc = zeros(Int, 4, n)
bpt = convert(Ptr{Uint8},b)
for j in 0:(n-1)

pj = bpt + j*m
for i in 0:(ns-1)

cc[1+(unsafe_load(pj,i>>2+1)>>(2i&0x06))&0x03,
1+j] += 1

end
end
cc

end

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 62 / 67

.

Performance the current version

On the “consensus” data set from the “HapMap 3” samples (296
subjects, 1,440,616 SNPs) the time to generate the frequency counts
was about 5 seconds on a single process

julia> @time gd = GenData2("/var/tmp/hapmap3/consensus");
elapsed time: 5.662568297 seconds
julia> gd.counts'
4x1440616 Int64 Array:

3 0 15 0 245 230 203 147 77 … 4 33 19 29 80 51 20 115
16 3 0 0 0 19 28 3 17 0 1 0 13 1 2 1 5
11 66 123 1 459 433 410 438 290 0 0 0 0 0 0 0 0

1154 1115 1046 1183 480 502 543 596 800 1180 1150 1165 1142 1103 1131 1163 1064

Using distributed arrays is an obvious next step.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 63 / 67

.

Julia on “long” data

I hear of people needing to fit models like logistic regression on very
large data sets but getting the data are usually proprietary.
Simulating such data

julia> using GLM
julia> n = 2_500_000; srand(1234321)
julia> df2 = DataFrame(x1 = rand(Normal(), n),

x2 = rand(Exponential(), n),
ss = pool(rand(DiscreteUniform(50), n)));

julia> beta = unshift!(rand(Normal(),52), 0.5);
julia> eta = ModelMatrix(ModelFrame(Formula(:(~ (x1 + x2 + ss))),

df2)).m * beta;
julia> mu = linkinv!(LogitLink, similar(eta), eta);
julia> df2["y"] = float64(rand(n) .< mu); df2["eta"] = eta;
julia> df2["mu"] = mu;

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 64 / 67

.

Julia on “long” data (cont’d)

julia> head(df2)
x1 x2 ss y eta mu

[1,] -0.160767 0.586174 6 1.0 1.92011 0.872151
[2,] -1.48275 0.365982 46 0.0 -0.206405 0.448581
[3,] -0.384419 1.13903 37 1.0 1.22092 0.772226
[4,] -1.3541 1.02183 10 1.0 0.534944 0.630635
[5,] 1.03842 1.1349 34 1.0 3.33319 0.96555
[6,] -1.16268 1.503 6 0.0 2.21061 0.901198

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 65 / 67

.

Julia on “long” data (cont’d)

julia> @time gm6 = glm(:(y ~ x1 + x2 + ss), df2, Bernoulli(), LogitLink())
elapsed time: 19.711060758 seconds

Formula: y ~ :(+(x1,x2,ss))
Coefficients:

Estimate Std.Error z value Pr(>|z|)
[1,] 0.410529 0.0122097 33.6232 7.69311e-248
[2,] 0.550263 0.00214243 256.84 0.0
[3,] 1.01559 0.00370327 274.241 0.0
[4,] 0.591439 0.0206309 28.6676 9.66624e-181
...

I had plans for making the numerical work faster but then I profiled
the execution and discovered that the time was being spent creating
the model matrix.

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 66 / 67

.

Julia summary
.Good points..

......

Speed of a compiled language in a dynamic, REPL-based language.
(They said it couldn’t be done.)
Core developers are extremely knowledgable (and young).
Syntax “not unlike” R and/or Matlab. Many functions have the same
names.
generic functions, multiple dispatch and parallelization built into the
base language.

.Pitfalls..

......

Need to learn yet another language. Syntax and function names are
similar to R but not the same.
Language, package system and packages are still in their infancy (but
development is at an amazing pace).

Douglas Bates, U. of Wisconsin-Madison () Julia for R programmers July 18, 2013 67 / 67

	What does Julia provide that R doesn't?
	Details of the syntax of these functions
	Documentation
	The Distributions package
	Linear algebra
	Julia packages
	An example - overdetermined ridge regression
	Calling compiled code
	Julia for ``Big Data''

