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Arthur Cayley proved in 1890 that the number of ways to dissect a regular n-gon using

i noncrossing diagonals is 1
i+1

(
n−3
i

)(
n+i−1

i

)
. Here, a diagonal is a straight line segment

joining two nonconsecutive vertices and noncrossing means they do not intersect in the

interior though they may share an endpoint. More recently, David Beckwith [1] gave

a proof using generating functions and Legendre polynomials, Richard Stanley [2] gave

one using the hook-length formula for standard Young tableaux [3], Jósef Przytycki and

Adam Sikora [4] gave a recursively defined bijection to prove a generalization, and Len

Smiley [8] used Lagrange inversion to count dissections with various restrictions on the

dissected pieces. The purpose of this note is to point out that once the problem is recast

in terms of marked lattice paths, a simple combinatorial method of counting Dyck paths

applies almost verbatim to obtain Cayley’s result. The method also readily yields counts

of various restricted dissections, including those in [4] and [8].

A balanced n-path is a sequence of n Us and n Ds, represented as a path of upsteps

(1, 1) and downsteps (1,−1) from (0, 0) to (2n, 0), and a Dyck n-path is a balanced n-

path that never drops below the x-axis (ground level). An ascent in a balanced path is a

maximal sequence of contiguous upsteps. An ascent consisting of j upsteps contains j−1

vertices of the path in its interior. A k-marked balanced n-path is one in which k interior

vertices of ascents have been marked.

Replacing n by n + 2 and i by n − 1 − k in Cayley’s formula and rearranging the

binomial coefficient product, it says that the number of dissections of a regular (n + 2)-

gon using n − 1 − k noncrossing diagonals is 1
n+1

(
n−1
k

)(
2n−k
n

)
. Using standard bijections,

these dissections correspond one-to-one to k-marked Dyck n-paths as illustrated in the

Appendix below.
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Now, it is classic that the parameter X on balanced n-paths defined by X = “number

of upsteps above ground level” is uniformly distributed over {0, 1, 2, . . . , n} and hence

divides the
(

2n
n

)
balanced n-paths into n + 1 equal-size classes, one of which consists of

the Dyck n-paths (the one with X = n). Indeed, for 1 ≤ i ≤ n, a bijection from balanced

n-paths with X = 0 (inverted Dyck paths) to those with X = i is as follows. Number the

upsteps from left to right and top to bottom, starting with the last upstep. Then remove

the first downstep d encountered directly west of upstep i to obtain two subpaths A and

B, and reassemble as B dA. (See [5] for a more leisurely account.) The equidistribution

of X is known as the Chung-Feller theorem, first proved by Major Percy A. MacMahon

in 1909 [6, p. 168] but named after its 1949 re-discoverers [7]. MacMahon proved it using

formal series of words on an alphabet; Chung and Feller used generating functions. In

particular, the number of Dyck n-paths is the Catalan number Cn = 1
n+1

(
2n
n

)
.

The chief insight of this note is simply that the above bijection can equally well be

applied to k-marked balanced n-paths: the interior vertices of ascents are never disturbed.

It again produces n + 1 equal-size classes one of which consists of the k-marked Dyck n-

paths. Cayley’s result will follow as soon as we show that there are
(
n−1
k

)(
2n−k
n

)
k-marked

balanced n-paths. To construct them, start with a row of n upsteps. Choose k of the n−1

gaps between them for the marked vertices—
(
n−1
k

)
choices—and then insert n downsteps

into the remaining gaps and the “gap” at either end—
(

2n−k
n

)
ways to insert n balls into

n+1−k boxes—and concatenate to form a typical path. Thus there are indeed
(
n−1
k

)(
2n−k
n

)
k-marked balanced n-paths, and Cayley’s formula follows. The total number of dissections

of an (n + 2)-gon (with no restriction on the number of diagonals) is the little Schröder

number sn. Thus marked Dyck paths are another manifestation of sn.

The same method can be used to count other types of dissection of a regular (n + 2)-

gon. For example, dissections into triangles correspond to unmarked Dyck paths. Euler

found the number of the former in the 1750s, the first appearance of the Catalan numbers

in a combinatorial setting (“the process of induction I employed was quite laborious”).

On the other hand, the number of triangle-free dissections is 1
n+1

∑dn−1
2
e

k=1

(
n+k
k

)(
n−k−1
k−1

)
[8]. Under the bijection below, they correspond to marked Dyck n-paths in which every

upstep has at least one marked endpoint. It is a nice exercise to show that the number of

(n−k)-marked balanced n-paths in which every upstep has at least one marked endpoint

is
(
n+k
k

)(
n−k−1
k−1

)
.

Of course, automated techniques such as Combstruct [9] can now be used to ver-

ify all these results and more on polygon dissections. However, it will still be a while
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before computers can provide the insight of a nice bijection.

Appendix. A bijection from sets of n − 1 − k noncrossing diagonals in a regular

(n+ 2)-gon to k-marked Dyck n-paths illustrated with n = 8 and k = 4 in six easy steps.

.1. noncrossing diagonals 2. canonical triangulation 3. full binary tree

base

noncrossing diagonals triangulation full binary tree

.

Starting from the vertex at left of
base, insert as dashed lines all

diagonals from this vertex that do
not cross existing diagonals, and
repeat, visiting vertices clockwise

Place root in base triangle.
Draw tree as indicated

(Etherington [10]);
edges crossing dashed lines

(“heavy”) will all
be left-leaning
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Traverse tree clockwise from root. As each edge is encountered
for the first time, draw a step—up for a north edge,

down for an east edge (de Bruijn-Morselt [11])

5. labeled Dyck path

Left edges point north, right edges
east; “heavy” edges are labeled,

and never end at a leaf.

4. aligned binary tree
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place mark on top vertex of

each labeled upstep
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6. marked Dyck path
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In the example all interior ascent vertices happen to be marked, but incorporating

one of the dashed diagonals into the original set of noncrossing diagonals would simply

delete the corresponding mark from the Dyck path. That the steps are reversible is fairly

obvious for all but step 2→ 3 ( = 4) and we leave the reader to ponder that one (it relies

on the fact that a full binary tree has at least one vertex adjacent to two leaves).
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