
Lecture 11: Convergence modes and stochastic orders

c = (c1, ..., ck) ∈ Rk, ‖c‖r = (
∑k

j=1 |cj|r)1/r, r > 0.
If r ≥ 1, then ‖c‖r is the Lr-distance between 0 and c.
When r = 2, ‖c‖ = ‖c‖2 =

√
cτc.

Definition 1.8. Let X, X1, X2, . . . be random k-vectors defined on a probability space.
(i) We say that the sequence {Xn} converges to X almost surely (a.s.) and write Xn →a.s. X
if and only if limn→∞ Xn = X a.s.
(ii) We say that {Xn} converges to X in probability and write Xn →p X if and only if, for
every fixed ǫ > 0,

lim
n→∞

P (‖Xn − X‖ > ǫ) = 0.

(iii) We say that {Xn} converges to X in Lr (or in rth moment) and write Xn →Lr
X if and

only if
lim

n→∞
E‖Xn − X‖r

r = 0,

where r > 0 is a fixed constant.
(iv) Let F , Fn, n = 1, 2, ..., be c.d.f.’s on Rk and P , Pn, n = 1, ..., be their corresponding
probability measures. We say that {Fn} converges to F weakly (or {Pn} converges to P
weakly) and write Fn →w F (or Pn →w P ) if and only if, for each continuity point x of F ,

lim
n→∞

Fn(x) = F (x).

We say that {Xn} converges to X in distribution (or in law) and write Xn →d X if and only
if FXn

→w FX .

→a.s., →p, →Lr
: How close is between Xn and X as n → ∞?

FXn
→w FX : Xn and X may not be close (they may be on different spaces)

Example 1.26. Let θn = 1 + n−1 and Xn be a random variable having the exponential
distribution E(0, θn) (Table 1.2), n = 1, 2, .... Let X be a random variable having the
exponential distribution E(0, 1). For any x > 0, as n → ∞,

FXn
(x) = 1 − e−x/θn → 1 − e−x = FX(x)

Since FXn
(x) ≡ 0 ≡ FX(x) for x ≤ 0, we have shown that Xn →d X.

Xn →p X?
Need further information about the random variables X and Xn.
We consider two cases in which different answers can be obtained.
First, suppose that Xn ≡ θnX (then Xn has the given c.d.f.).
Xn − X = (θn − 1)X = n−1X, which has the c.d.f. (1 − e−nx)I[0,∞)(x).

P (|Xn − X| ≥ ǫ) = e−nǫ → 0

for any ǫ > 0. (In fact, by Theorem 1.8(v), Xn →a.s. X)
Since E|Xn − X|p = n−pEXp < ∞ for any p > 0, Xn →Lp

X for any p > 0.
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Next, suppose that Xn and X are independent random variables.
Since p.d.f.’s for Xn and −X are θ−1

n e−x/θnI(0,∞)(x) and exI(−∞,0)(x), respectively, we have

P (|Xn − X| ≤ ǫ) =
∫ ǫ

−ǫ

∫

θ−1
n e−x/θney−xI(0,∞)(x)I(−∞,x)(y)dxdy,

which converges to (by the dominated convergence theorem)

∫ ǫ

−ǫ

∫

e−xey−xI(0,∞)(x)I(−∞,x)(y)dxdy = 1 − e−ǫ.

Thus, P (|Xn − X| ≥ ǫ) → e−ǫ > 0 for any ǫ > 0 and, therefore, Xn →p X does not hold.

Proposition 1.16 (Pólya’s theorem). If Fn →w F and F is continuous on Rk, then

lim
n→∞

sup
x∈Rk

|Fn(x) − F (x)| = 0.

Lemma 1.4. For random k-vectors X, X1, X2, . . . on a probability space, Xn →a.s. X if and
only if for every ǫ > 0,

lim
n→∞

P

(

∞
⋃

m=n

{‖Xm − X‖ > ǫ}
)

= 0. (1)

Proof. Let Aj = ∪∞
n=1 ∩∞

m=n {‖Xm − X‖ ≤ j−1}, j = 1, 2, ....
Then

∞
⋂

j=1

Aj = {ω : lim
n→∞

Xn(ω) = X(ω)}

By Proposition 1.1(iii),

P (Aj) = lim
n→∞

P

(

∞
⋂

m=n

{‖Xm − X‖ ≤ j−1}
)

= 1 − lim
n→∞

P

(

∞
⋃

m=n

{‖Xm − X‖ > j−1}
)

(1) holds for every ǫ > 0 if and only if P (Aj) = 1 for every j, i.e., P (∩∞
j=1Aj) = 1

P (Aj) ≥ P (
∞
⋂

j=1

Aj) = 1 − P (
∞
⋃

j=1

Ac
j) ≥ 1 −

∞
∑

j=1

P (Ac
j)

Lemma 1.5. (Borel-Cantelli lemma). Let An be a sequence of events in a probability space
and lim supn An = ∩∞

n=1 ∪∞
m=n Am.

(i) If
∑

∞

n=1 P (An) < ∞, then P (lim supn An) = 0.
(ii) If A1, A2, ... are pairwise independent and

∑

∞

n=1 P (An) = ∞, then P (lim supn An) = 1.
Proof. (i) By Proposition 1.1,

P
(

lim sup
n→∞

An

)

= P

(

∞
⋂

n=1

∞
⋃

m=n

Am

)

= lim
n→∞

P

(

∞
⋃

m=n

Am

)

≤ lim
n→∞

∞
∑

m=n

P (An) = 0

if
∑

∞

n=1 P (An) < ∞.
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(ii) We prove the case of independent An’s.

P
(

lim sup
n→∞

An

)

= lim
n→∞

P

(

∞
⋃

m=n

Am

)

= 1 − lim
n→∞

P

(

∞
⋂

m=n

Ac
m

)

= 1 − lim
n→∞

∞
∏

m=n

P (Ac
m)

n+k
∏

m=n

P (Ac
m) =

n+k
∏

m=n

[1 − P (Am)] ≤
n+k
∏

m=n

exp{−P (Am)} = exp

{

−
n+k
∑

m=n

P (Am)

}

(1 − t ≤ e−t = exp{t}). Letting k → ∞,

∞
∏

m=n

P (Ac
m) = lim

k→∞

n+k
∏

m=n

P (Ac
m) ≤ exp

{

−
∞
∑

m=n

P (Am)

}

= 0.

See Chung (1974, pp. 76-78) for the pairwise independence An’s.

The notion of O( · ), o( · ), and stochastic O( · ) and o( · )
In calculus, two sequences of real numbers, {an} and {bn}, satisfy an = O(bn) if and only if
|an| ≤ c|bn| for all n and a constant c
an = o(bn) if and only if an/bn → 0 as n → ∞
Definition 1.9. Let X1, X2, ... be random vectors and Y1, Y2, ... be random variables defined
on a common probability space.
(i) Xn = O(Yn) a.s. if and only if P (‖Xn‖ = O(|Yn|)) = 1.
(ii) Xn = o(Yn) a.s. if and only if Xn/Yn →a.s. 0.
(iii) Xn = Op(Yn) if and only if, for any ǫ > 0, there is a constant Cǫ > 0 such that
supn P (‖Xn‖ ≥ Cǫ|Yn|) < ǫ.
(iv) Xn = op(Yn) if and only if Xn/Yn →p 0.

Since an = O(1) means that {an} is bounded, {Xn} is said to be bounded in probability if
Xn = Op(1).

Xn = op(Yn) implies Xn = Op(Yn)
Xn = Op(Yn) and Yn = Op(Zn) implies Xn = Op(Zn)
Xn = Op(Yn) does not imply Yn = Op(Xn)
If Xn = Op(Zn), then XnYn = Op(YnZn).
If Xn = Op(Zn) and Yn = Op(Zn), then Xn + Yn = Op(Zn).
The same conclusion can be obtained if Op( · ) and op( · ) are replaced by O( · ) a.s. and o( · )
a.s., respectively.
If Xn →d X for a random variable X, then Xn = Op(1)
If E|Xn| = O(an), then Xn = Op(an), where an ∈ (0,∞).
If Xn →a.s. X, then supn |Xn| = Op(1).
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