Lecture 11: Convergence modes and stochastic orders

 $c = (c_1, ..., c_k) \in \mathcal{R}^k, \|c\|_r = (\sum_{j=1}^k |c_j|^r)^{1/r}, r > 0.$ If $r \ge 1$, then $\|c\|_r$ is the L_r -distance between 0 and c. When r = 2, $\|c\| = \|c\|_2 = \sqrt{c^{\tau}c}.$

Definition 1.8. Let X, X_1, X_2, \ldots be random k-vectors defined on a probability space. (i) We say that the sequence $\{X_n\}$ converges to X almost surely (a.s.) and write $X_n \rightarrow_{a.s.} X$ if and only if $\lim_{n\to\infty} X_n = X$ a.s.

(ii) We say that $\{X_n\}$ converges to X in probability and write $X_n \to_p X$ if and only if, for every fixed $\epsilon > 0$,

$$\lim_{n \to \infty} P\left(\|X_n - X\| > \epsilon \right) = 0.$$

(iii) We say that $\{X_n\}$ converges to X in L_r (or in rth moment) and write $X_n \to_{L_r} X$ if and only if

$$\lim_{n \to \infty} E \|X_n - X\|_r^r = 0,$$

where r > 0 is a fixed constant.

(iv) Let F, F_n , n = 1, 2, ..., be c.d.f.'s on \mathcal{R}^k and P, P_n , n = 1, ..., be their corresponding probability measures. We say that $\{F_n\}$ converges to F weakly (or $\{P_n\}$ converges to Pweakly) and write $F_n \to_w F$ (or $P_n \to_w P$) if and only if, for each continuity point x of F,

$$\lim_{n \to \infty} F_n(x) = F(x).$$

We say that $\{X_n\}$ converges to X in distribution (or in law) and write $X_n \to_d X$ if and only if $F_{X_n} \to_w F_X$.

 $\rightarrow_{a.s.}, \rightarrow_p, \rightarrow_{L_r}$: How close is between X_n and X as $n \rightarrow \infty$?

 $F_{X_n} \to_w F_X$: X_n and X may not be close (they may be on different spaces)

Example 1.26. Let $\theta_n = 1 + n^{-1}$ and X_n be a random variable having the exponential distribution $E(0, \theta_n)$ (Table 1.2), n = 1, 2, ... Let X be a random variable having the exponential distribution E(0, 1). For any x > 0, as $n \to \infty$,

$$F_{X_n}(x) = 1 - e^{-x/\theta_n} \to 1 - e^{-x} = F_X(x)$$

Since $F_{X_n}(x) \equiv 0 \equiv F_X(x)$ for $x \leq 0$, we have shown that $X_n \to_d X$.

 $X_n \to_p X?$

Need further information about the random variables X and X_n . We consider two cases in which different answers can be obtained. First, suppose that $X_n \equiv \theta_n X$ (then X_n has the given c.d.f.). $X_n - X = (\theta_n - 1)X = n^{-1}X$, which has the c.d.f. $(1 - e^{-nx})I_{[0,\infty)}(x)$.

$$P\left(|X_n - X| \ge \epsilon\right) = e^{-n\epsilon} \to 0$$

for any $\epsilon > 0$. (In fact, by Theorem 1.8(v), $X_n \to_{a.s.} X$) Since $E|X_n - X|^p = n^{-p} E X^p < \infty$ for any p > 0, $X_n \to_{L_p} X$ for any p > 0. Next, suppose that X_n and X are independent random variables.

Since p.d.f.'s for X_n and -X are $\theta_n^{-1} e^{-x/\theta_n} I_{(0,\infty)}(x)$ and $e^x I_{(-\infty,0)}(x)$, respectively, we have

$$P\left(|X_n - X| \le \epsilon\right) = \int_{-\epsilon}^{\epsilon} \int \theta_n^{-1} e^{-x/\theta_n} e^{y-x} I_{(0,\infty)}(x) I_{(-\infty,x)}(y) dx dy,$$

which converges to (by the dominated convergence theorem)

$$\int_{-\epsilon}^{\epsilon} \int e^{-x} e^{y-x} I_{(0,\infty)}(x) I_{(-\infty,x)}(y) dx dy = 1 - e^{-\epsilon}.$$

Thus, $P(|X_n - X| \ge \epsilon) \to e^{-\epsilon} > 0$ for any $\epsilon > 0$ and, therefore, $X_n \to_p X$ does not hold. **Proposition 1.16** (Pólya's theorem). If $F_n \to_w F$ and F is continuous on \mathcal{R}^k , then

$$\lim_{n \to \infty} \sup_{x \in \mathcal{R}^k} |F_n(x) - F(x)| = 0$$

Lemma 1.4. For random k-vectors X, X_1, X_2, \ldots on a probability space, $X_n \rightarrow_{a.s.} X$ if and only if for every $\epsilon > 0$,

$$\lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} \{\|X_m - X\| > \epsilon\}\right) = 0.$$
(1)

Proof. Let $A_j = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \{ \|X_m - X\| \le j^{-1} \}, j = 1, 2, \dots$ Then

$$\bigcap_{j=1} A_j = \{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}$$

By Proposition 1.1(iii),

$$P(A_j) = \lim_{n \to \infty} P\left(\bigcap_{m=n}^{\infty} \{\|X_m - X\| \le j^{-1}\}\right) = 1 - \lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} \{\|X_m - X\| > j^{-1}\}\right)$$

(1) holds for every $\epsilon > 0$ if and only if $P(A_j) = 1$ for every j, i.e., $P(\bigcap_{j=1}^{\infty} A_j) = 1$

$$P(A_j) \ge P(\bigcap_{j=1}^{\infty} A_j) = 1 - P(\bigcup_{j=1}^{\infty} A_j^c) \ge 1 - \sum_{j=1}^{\infty} P(A_j^c)$$

Lemma 1.5. (Borel-Cantelli lemma). Let A_n be a sequence of events in a probability space and $\limsup_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$.

(i) If ∑_{n=1}[∞] P(A_n) < ∞, then P(lim sup_n A_n) = 0.
(ii) If A₁, A₂, ... are pairwise independent and ∑_{n=1}[∞] P(A_n) = ∞, then P(lim sup_n A_n) = 1. **Proof.** (i) By Proposition 1.1,

$$P\left(\limsup_{n \to \infty} A_n\right) = P\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m\right) = \lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} A_m\right) \le \lim_{n \to \infty} \sum_{m=n}^{\infty} P(A_n) = 0$$

if $\sum_{n=1}^{\infty} P(A_n) < \infty$.

(ii) We prove the case of independent A_n 's.

(

$$\begin{split} P\left(\limsup_{n\to\infty}A_n\right) &= \lim_{n\to\infty}P\left(\bigcup_{m=n}^{\infty}A_m\right) = 1 - \lim_{n\to\infty}P\left(\bigcap_{m=n}^{\infty}A_m^c\right) = 1 - \lim_{n\to\infty}\prod_{m=n}^{\infty}P(A_m^c)\\ &\prod_{m=n}^{n+k}P(A_m^c) = \prod_{m=n}^{n+k}[1 - P(A_m)] \le \prod_{m=n}^{n+k}\exp\{-P(A_m)\} = \exp\left\{-\sum_{m=n}^{n+k}P(A_m)\right\}\\ &1 - t \le e^{-t} = \exp\{t\}). \text{ Letting } k \to \infty, \end{split}$$

$$\prod_{m=n}^{\infty} P(A_m^c) = \lim_{k \to \infty} \prod_{m=n}^{n+k} P(A_m^c) \le \exp\left\{-\sum_{m=n}^{\infty} P(A_m)\right\} = 0.$$

See Chung (1974, pp. 76-78) for the pairwise independence A_n 's.

The notion of $O(\cdot)$, $o(\cdot)$, and stochastic $O(\cdot)$ and $o(\cdot)$

In calculus, two sequences of real numbers, $\{a_n\}$ and $\{b_n\}$, satisfy $a_n = O(b_n)$ if and only if $|a_n| \leq c|b_n|$ for all n and a constant c $a_n = o(b_n)$ if and only if $a_n/b_n \to 0$ as $n \to \infty$

Definition 1.9. Let $X_1, X_2, ...$ be random vectors and $Y_1, Y_2, ...$ be random variables defined on a common probability space.

(i) $X_n = O(Y_n)$ a.s. if and only if $P(||X_n|| = O(|Y_n|)) = 1$. (ii) $X_n = o(Y_n)$ a.s. if and only if $X_n/Y_n \to_{a.s.} 0$. (iii) $X_n = O_p(Y_n)$ if and only if, for any $\epsilon > 0$, there is a constant $C_{\epsilon} > 0$ such that $\sup_n P(||X_n|| \ge C_{\epsilon}|Y_n|) < \epsilon$.

(iv) $X_n = o_p(Y_n)$ if and only if $X_n/Y_n \to_p 0$.

Since $a_n = O(1)$ means that $\{a_n\}$ is bounded, $\{X_n\}$ is said to be bounded in probability if $X_n = O_p(1)$.

$$X_n = o_p(Y_n)$$
 implies $X_n = O_p(Y_n)$
 $X_n = O_p(Y_n)$ and $Y_n = O_p(Z_n)$ implies $X_n = O_p(Z_n)$
 $X_n = O_p(Y_n)$ does not imply $Y_n = O_p(X_n)$
If $X_n = O_p(Z_n)$, then $X_n Y_n = O_p(Y_n Z_n)$.
If $X_n = O_p(Z_n)$ and $Y_n = O_p(Z_n)$, then $X_n + Y_n = O_p(Z_n)$.
The same conclusion can be obtained if $O_p(\cdot)$ and $o_p(\cdot)$ are replaced by $O(\cdot)$ a.s. and $o(\cdot)$
a.s., respectively.
If $X_n \to_d X$ for a random variable X, then $X_n = O_p(1)$
If $E|X_n| = O(a_n)$, then $X_n = O_n(a_n)$, where $a_n \in (0, \infty)$.

If $E|A_n| = O(a_n)$, then $A_n = O_p(a_n)$, where $a_n \in (0, \infty)$ If $X_n \to_{a.s.} X$, then $\sup_n |X_n| = O_p(1)$.