
Lecture 2: Product measure, measurable function and distribution

Product space
I = {1, ..., k}, k is finite or ∞
Γi, i ∈ I, are sets
∏

i∈I Γi = Γ1 × · · · × Γk = {(a1, ..., ak) : ai ∈ Γi, i ∈ I}
R ×R = R2, R×R×R = R3

Let (Ωi,Fi), i ∈ I, be measurable spaces
∏

i∈I Fi is not necessarily a σ-field
σ (

∏

i∈I Fi) is called the product σ-field on the product space
∏

i∈I Ωi

(
∏

i∈I Ωi, σ (
∏

i∈I Fi)) is denoted by
∏

i∈I(Ωi,Fi)

Example:
∏

i=1,...,k(R,B) = (Rk,Bk)

Product measure

Consider a rectangle [a1, b1] × [a2, b2] ⊂ R2. The usual area of [a1, b1] × [a2, b2] is

(b1 − a1)(b2 − a2) = m([a1, b1])m([a2, b2])

Is m([a1, b1])m([a2, b2]) the same as the value of a measure defined on the product σ-field?

A measure ν on (Ω,F) is said to be σ-finite if and only if there exists a sequence {A1, A2, ...}
such that ∪Ai = Ω and ν(Ai) < ∞ for all i
Any finite measure (such as a probability measure) is clearly σ-finite
The Lebesgue measure on R is σ-finite, since R = ∪An with An = (−n, n), n = 1, 2, ...
The counting measure in is σ-finite if and only if Ω is countable

Proposition 1.3 (Product measure theorem). Let (Ωi,Fi, νi), i = 1, ..., k, be measure
spaces with σ-finite measures, where k ≥ 2 is an integer. Then there exists a unique σ-finite
measure on the product σ-field σ(F1 ×· · ·×Fk), called the product measure and denoted by
ν1 × · · · × νk, such that

ν1 × · · · × νk(A1 × · · · × Ak) = ν1(A1) · · ·νk(Ak)

for all Ai ∈ Fi, i = 1, ..., k.

Let P be a probability measure on (Rk,Bk). The c.d.f. (or joint c.d.f.) of P is defined by

F (x1, ..., xk) = P ((−∞, x1] × · · · × (−∞, xk]) , xi ∈ R

There is a one-to-one correspondence between probability measures and joint c.d.f.’s on Rk

If F (x1, ..., xk) is a joint c.d.f., then

Fi(x) = lim
xj→∞,j=1,...,i−1,i+1,...,k

F (x1, ..., xi−1, x, xi+1, ..., xk)

is a c.d.f. and is called the ith marginal c.d.f.
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Marginal c.d.f.’s are determined by their joint c.d.f.
But a joint c.d.f. cannot be determined by k marginal c.d.f.’s.
If

F (x1, ..., xk) = F1(x1) · · ·Fk(xk), (x1, ..., xk) ∈ Rk,

then the probability measure corresponding to F is the product measure P1 × · · · × Pk with
Pi being the probability measure corresponding to Fi

Measurable function

f : a function from Ω to Λ (often Λ = Rk)
Inverse image of B ⊂ Λ under f :

f−1(B) = {f ∈ B} = {ω ∈ Ω : f(ω) ∈ B}.

The inverse function f−1 need not exist for f−1(B) to be defined.
f−1(Bc) = (f−1(B))c for any B ⊂ Λ;
f−1(∪Bi) = ∪f−1(Bi) for any Bi ⊂ Λ, i = 1, 2, ...
Let C be a collection of subsets of Λ. Define f−1(C) = {f−1(C) : C ∈ C}

Definition 1.3. Let (Ω,F) and (Λ,G) be measurable spaces and f a function from Ω
to Λ. The function f is called a measurable function from (Ω,F) to (Λ,G) if and only if
f−1(G) ⊂ F .

If f is measurable from (Ω,F) to (Λ,G), then f−1(G) is a sub-σ-field of F (verify). It is
called the σ-field generated by f and is denoted by σ(f).

If f is measurable from (Ω,F) to (R,B), it is called a Borel function or a random variable
A random vector (X1, ..., Xn) is measurable from (Ω,F) to (Rn,Bn) (each Xi is a random
variable)

Examples
If F is the collection of all subsets of Ω, then any function f is measurable
Indicator function for A ⊂ Ω:

IA(ω) =











1 ω ∈ A

0 ω 6∈ A.

For any B ⊂ R,

I−1

A (B) =







































∅ 0 6∈ B, 1 6∈ B

A 0 6∈ B, 1 ∈ B

Ac 0 ∈ B, 1 6∈ B

Ω 0 ∈ B, 1 ∈ B.

Then, σ(IA) = {∅, A, Ac, Ω} and IA is Borel iff A ∈ F
σ(f) is much simpler than F
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Simple function

ϕ(ω) =
k

∑

i=1

aiIAi
(ω),

where A1, ..., Ak are measurable sets on Ω and a1, ..., ak are real numbers. Let A1, ..., Ak be
a partition of Ω, i.e., Ai’s are disjoint and A1 ∪ · · · ∪ Ak = Ω. Then the simple function ϕ
with distinct ai’s exactly characterizes this partition and σ(ϕ) = σ({A1, ..., Ak}).

Proposition 1.4. Let (Ω,F) be a measurable space.
(i) f is Borel if and only if f−1(a,∞) ∈ F for all a ∈ R.
(ii) If f and g are Borel, then so are fg and af + bg, where a and b are real numbers; also,
f/g is Borel provided g(ω) 6= 0 for any ω ∈ Ω.
(iii) If f1, f2, ... are Borel, then so are supn fn, infn fn, lim supn fn, and lim infn fn. Further-
more, the set

A =
{

ω ∈ Ω : lim
n→∞

fn(ω) exists
}

is an event and the function

h(ω) =











limn→∞ fn(ω) ω ∈ A

f1(ω) ω 6∈ A

is Borel.
(iv) Suppose that f is measurable from (Ω,F) to (Λ,G) and g is measurable from (Λ,G) to
(∆,H). Then the composite function g ◦ f is measurable from (Ω,F) to (∆,H).
(v) Let Ω be a Borel set in Rp. If f is a continuous function from Ω to Rq, then f is
measurable.

Distribution (law)

Let (Ω,F , ν) be a measure space and f be a measurable function from (Ω,F) to (Λ,G). The
induced measure by f , denoted by ν ◦ f−1, is a measure on G defined as

ν ◦ f−1(B) = ν(f ∈ B) = ν
(

f−1(B)
)

, B ∈ G

If ν = P is a probability measure and X is a random variable or a random vector, then
P ◦ X−1 is called the law or the distribution of X and is denoted by PX .
The c.d.f. of PX is also called the c.d.f. or joint c.d.f. of X and is denoted by FX .

Examples 1.3 and 1.4
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