Lecture 2: Product measure, measurable function and distribution

Product space $\mathcal{I} = \{1, ..., k\}, k \text{ is finite or } \infty$ $\Gamma_i, i \in \mathcal{I}, \text{ are sets}$ $\prod_{i \in \mathcal{I}} \Gamma_i = \Gamma_1 \times \cdots \times \Gamma_k = \{(a_1, ..., a_k) : a_i \in \Gamma_i, i \in \mathcal{I}\}$ $\mathcal{R} \times \mathcal{R} = \mathcal{R}^2, \, \mathcal{R} \times \mathcal{R} \times \mathcal{R} = \mathcal{R}^3$

Let $(\Omega_i, \mathcal{F}_i)$, $i \in \mathcal{I}$, be measurable spaces $\prod_{i \in \mathcal{I}} \mathcal{F}_i$ is not necessarily a σ -field $\sigma (\prod_{i \in \mathcal{I}} \mathcal{F}_i)$ is called the *product* σ -field on the *product space* $\prod_{i \in \mathcal{I}} \Omega_i$ $(\prod_{i \in \mathcal{I}} \Omega_i, \sigma (\prod_{i \in \mathcal{I}} \mathcal{F}_i))$ is denoted by $\prod_{i \in \mathcal{I}} (\Omega_i, \mathcal{F}_i)$

Example: $\prod_{i=1,\dots,k} (\mathcal{R}, \mathcal{B}) = (\mathcal{R}^k, \mathcal{B}^k)$

Product measure

Consider a rectangle $[a_1, b_1] \times [a_2, b_2] \subset \mathcal{R}^2$. The usual area of $[a_1, b_1] \times [a_2, b_2]$ is

$$(b_1 - a_1)(b_2 - a_2) = m([a_1, b_1])m([a_2, b_2])$$

Is $m([a_1, b_1])m([a_2, b_2])$ the same as the value of a measure defined on the product σ -field?

A measure ν on (Ω, \mathcal{F}) is said to be σ -finite if and only if there exists a sequence $\{A_1, A_2, ...\}$ such that $\cup A_i = \Omega$ and $\nu(A_i) < \infty$ for all i

Any finite measure (such as a probability measure) is clearly σ -finite

The Lebesgue measure on \mathcal{R} is σ -finite, since $\mathcal{R} = \bigcup A_n$ with $A_n = (-n, n), n = 1, 2, ...$ The counting measure in is σ -finite if and only if Ω is countable

Proposition 1.3 (Product measure theorem). Let $(\Omega_i, \mathcal{F}_i, \nu_i)$, i = 1, ..., k, be measure spaces with σ -finite measures, where $k \geq 2$ is an integer. Then there exists a unique σ -finite measure on the product σ -field $\sigma(\mathcal{F}_1 \times \cdots \times \mathcal{F}_k)$, called the *product measure* and denoted by $\nu_1 \times \cdots \times \nu_k$, such that

 $\nu_1 \times \cdots \times \nu_k (A_1 \times \cdots \times A_k) = \nu_1 (A_1) \cdots \nu_k (A_k)$

for all $A_i \in \mathcal{F}_i$, i = 1, ..., k.

Let P be a probability measure on $(\mathcal{R}^k, \mathcal{B}^k)$. The c.d.f. (or *joint* c.d.f.) of P is defined by

$$F(x_1, ..., x_k) = P((-\infty, x_1] \times \cdots \times (-\infty, x_k]), \quad x_i \in \mathcal{R}$$

There is a one-to-one correspondence between probability measures and joint c.d.f.'s on \mathcal{R}^k If $F(x_1, ..., x_k)$ is a joint c.d.f., then

$$F_i(x) = \lim_{x_j \to \infty, j=1, \dots, i-1, i+1, \dots, k} F(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_k)$$

is a c.d.f. and is called the *i*th marginal c.d.f.

Marginal c.d.f.'s are determined by their joint c.d.f.

But a joint c.d.f. cannot be determined by k marginal c.d.f.'s.

If

 $F(x_1, ..., x_k) = F_1(x_1) \cdots F_k(x_k), \quad (x_1, ..., x_k) \in \mathcal{R}^k,$

then the probability measure corresponding to F is the product measure $P_1 \times \cdots \times P_k$ with P_i being the probability measure corresponding to F_i

Measurable function

f: a function from Ω to Λ (often $\Lambda = \mathcal{R}^k$) Inverse image of $B \subset \Lambda$ under f:

$$f^{-1}(B) = \{ f \in B \} = \{ \omega \in \Omega : f(\omega) \in B \}.$$

The inverse function f^{-1} need not exist for $f^{-1}(B)$ to be defined. $f^{-1}(B^c) = (f^{-1}(B))^c$ for any $B \subset \Lambda$; $f^{-1}(\cup B_i) = \cup f^{-1}(B_i)$ for any $B_i \subset \Lambda$, i = 1, 2, ...Let \mathcal{C} be a collection of subsets of Λ . Define $f^{-1}(\mathcal{C}) = \{f^{-1}(C) : C \in \mathcal{C}\}$

Definition 1.3. Let (Ω, \mathcal{F}) and (Λ, \mathcal{G}) be measurable spaces and f a function from Ω to Λ . The function f is called a *measurable function* from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) if and only if $f^{-1}(\mathcal{G}) \subset \mathcal{F}$.

If f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) , then $f^{-1}(\mathcal{G})$ is a sub- σ -field of \mathcal{F} (verify). It is called the σ -field generated by f and is denoted by $\sigma(f)$.

If f is measurable from (Ω, \mathcal{F}) to $(\mathcal{R}, \mathcal{B})$, it is called a Borel function or a random variable A random vector $(X_1, ..., X_n)$ is measurable from (Ω, \mathcal{F}) to $(\mathcal{R}^n, \mathcal{B}^n)$ (each X_i is a random variable)

Examples

If \mathcal{F} is the collection of all subsets of Ω , then any function f is measurable Indicator function for $A \subset \Omega$:

$$I_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A. \end{cases}$$

For any $B \subset \mathcal{R}$,

$$I_A^{-1}(B) = \begin{cases} \emptyset & 0 \notin B, 1 \notin B \\ A & 0 \notin B, 1 \in B \\ A^c & 0 \in B, 1 \notin B \\ \Omega & 0 \in B, 1 \in B \end{cases}$$

Then, $\sigma(I_A) = \{\emptyset, A, A^c, \Omega\}$ and I_A is Borel iff $A \in \mathcal{F}$ $\sigma(f)$ is much simpler than \mathcal{F} Simple function

$$\varphi(\omega) = \sum_{i=1}^{k} a_i I_{A_i}(\omega)$$

where $A_1, ..., A_k$ are measurable sets on Ω and $a_1, ..., a_k$ are real numbers. Let $A_1, ..., A_k$ be a partition of Ω , i.e., A_i 's are disjoint and $A_1 \cup \cdots \cup A_k = \Omega$. Then the simple function φ with distinct a_i 's exactly characterizes this partition and $\sigma(\varphi) = \sigma(\{A_1, ..., A_k\})$.

Proposition 1.4. Let (Ω, \mathcal{F}) be a measurable space.

(i) f is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

(ii) If f and g are Borel, then so are fg and af + bg, where a and b are real numbers; also, f/g is Borel provided $g(\omega) \neq 0$ for any $\omega \in \Omega$.

(iii) If f_1, f_2, \dots are Borel, then so are $\sup_n f_n$, $\inf_n f_n$, $\lim \sup_n f_n$, and $\liminf_n f_n$. Furthermore, the set

$$A = \left\{ \omega \in \Omega : \lim_{n \to \infty} f_n(\omega) \text{ exists} \right\}$$

is an event and the function

$$h(\omega) = \begin{cases} \lim_{n \to \infty} f_n(\omega) & \omega \in A \\ f_1(\omega) & \omega \notin A \end{cases}$$

is Borel.

(iv) Suppose that f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and g is measurable from (Λ, \mathcal{G}) to (Δ, \mathcal{H}) . Then the composite function $g \circ f$ is measurable from (Ω, \mathcal{F}) to (Δ, \mathcal{H}) .

(v) Let Ω be a Borel set in \mathcal{R}^p . If f is a continuous function from Ω to \mathcal{R}^q , then f is measurable.

Distribution (law)

Let $(\Omega, \mathcal{F}, \nu)$ be a measure space and f be a measurable function from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) . The *induced measure* by f, denoted by $\nu \circ f^{-1}$, is a measure on \mathcal{G} defined as

$$\nu \circ f^{-1}(B) = \nu(f \in B) = \nu\left(f^{-1}(B)\right), \quad B \in \mathcal{G}$$

If $\nu = P$ is a probability measure and X is a random variable or a random vector, then $P \circ X^{-1}$ is called the *law* or the *distribution* of X and is denoted by P_X .

The c.d.f. of P_X is also called the c.d.f. or joint c.d.f. of X and is denoted by F_X .

Examples 1.3 and 1.4