
Leture 20: Minimal suÆienyThere are many suÆient statistis for a given family P.In fat, X (the whole data set) is suÆient.If T is a suÆient statisti and T =  (S), where  is measurable and S is another statisti,then S is suÆient.This is obvious from Theorem 2.2 if the population has a p.d.f., but it an be proved diretlyfrom De�nition 2.4 (Exerise 25).For instane, if X1; :::; Xn are iid with P (Xi = 1) = � and P (Xi = 0) = 1 � �, then(Pmi=1Xi;Pni=m+1Xi) is suÆient for �, where m is any �xed integer between 1 and n.If T is suÆient and T =  (S) with a measurable  that is not one-to-one, then �(T ) � �(S)and T is more useful than S, sine T provides a further redution of the data (or �-�eld)without loss of information.Is there a suÆient statisti that provides \maximal" redution of the data?If a statement holds exept for outomes in an event A satisfying P (A) = 0 for all P 2 P,then we say that the statement holds a.s. P.De�nition 2.5 (Minimal suÆieny). Let T be a suÆient statisti for P 2 P. T is alleda minimal suÆient statisti if and only if, for any other statisti S suÆient for P 2 P,there is a measurable funtion  suh that T =  (S) a.s. P.If both T and S are minimal suÆient statistis, then by de�nition there is a one-to-onemeasurable funtion  suh that T =  (S) a.s. P.Hene, the minimal suÆient statisti is unique in the sense that two statistis that areone-to-one measurable funtions of eah other an be treated as one statisti.Example 2.13. Let X1; :::; Xn be i.i.d. random variables from P�, the uniform distributionU(�; � + 1), � 2 R. Suppose that n > 1. The joint Lebesgue p.d.f. of (X1; :::; Xn) isf�(x) = nYi=1 I(�;�+1)(xi) = I(x(n)�1;x(1))(�); x = (x1; :::; xn) 2 Rn;where x(i) denotes the ith smallest value of x1; :::; xn. By Theorem 2.2, T = (X(1); X(n)) issuÆient for �. Note thatx(1) = supf� : f�(x) > 0g and x(n) = 1 + inff� : f�(x) > 0g:If S(X) is a statisti suÆient for �, then by Theorem 2.2, there are Borel funtions h andg� suh that f�(x) = g�(S(x))h(x). For x with h(x) > 0,x(1) = supf� : g�(S(x)) > 0g and x(n) = 1 + inff� : g�(S(x)) > 0g:Hene, there is a measurable funtion  suh that T (x) =  (S(x)) when h(x) > 0. Sineh > 0 a.s. P, we onlude that T is minimal suÆient.Minimal suÆient statistis exist under weak assumptions, e.g., P ontains distributions onRk dominated by a �-�nite measure (Bahadur, 1957).1



Useful tools for �nding minimal suÆient statistis.Theorem 2.3. Let P be a family of distributions on Rk.(i) Suppose that P0 � P and a.s. P0 implies a.s. P. If T is suÆient for P 2 P and minimalsuÆient for P 2 P0, then T is minimal suÆient for P 2 P.(ii) Suppose that P ontains p.d.f.'s f0; f1; f2; :::, w.r.t. a �-�nite measure. Let f1(x) =P1i=0 ifi(x), where i > 0 for all i and P1i=0 i = 1, and let Ti(X) = fi(x)=f1(x) whenf1(x) > 0, i = 0; 1; 2; :::. Then T (X) = (T0; T1; T2; :::) is minimal suÆient for P 2 P.Furthermore, if fx : fi(x) > 0g � fx : f0(x) > 0g for all i, then we may replae f1 by f0, inwhih ase T (X) = (T1; T2; :::) is minimal suÆient for P 2 P.(iii) Suppose that P ontains p.d.f.'s fP w.r.t. a �-�nite measure and that there exists asuÆient statisti T (X) suh that, for any possible values x and y of X, fP (x) = fP (y)�(x; y)for all P implies T (x) = T (y), where � is a measurable funtion. Then T (X) is minimalsuÆient for P 2 P.Proof. (i) If S is suÆient for P 2 P, then it is also suÆient for P 2 P0 and, therefore,T =  (S) a.s. P0 holds for a measurable funtion  . The result follows from the assumptionthat a.s. P0 implies a.s. P.(ii) Note that f1 > 0 a.s. P. Let gi(T ) = Ti, i = 0; 1; 2; :::. Then fi(x) = gi(T (x))f1(x)a.s. P. By Theorem 2.2, T is suÆient for P 2 P. Suppose that S(X) is another suÆientstatisti. By Theorem 2.2, there are Borel funtions h and ~gi suh that fi(x) = ~gi(S(x))h(x),i = 0; 1; 2; :::. Then Ti(x) = ~gi(S(x))=P1j=0 j~gj(S(x)) for x's satisfying f1(x) > 0. ByDe�nition 2.5, T is minimal suÆient for P 2 P. The proof for the ase where f1 isreplaed by f0 is the same.(iii) From Bahadur (1957), there exists a minimal suÆient statisti S(X). The result followsif we an show that T (X) =  (S(X)) a.s. P for a measurable funtion  . By Theorem2.2, there are Borel funtions gP and h suh that fP (x) = gP (S(x))h(x) for all P . LetA = fx : h(x) = 0g. Then P (A) = 0 for all P . For x and y suh that S(x) = S(y), x 62 Aand y 62 A, fP (x)= gP (S(x))h(x)= gP (S(y))h(x)h(y)=h(y)= fP (y)h(x)=h(y)for all P . Hene T (x) = T (y). This shows that there is a funtion  suh that T (x) = (S(x)) exept for x 2 A. It remains to show that  is measurable. Sine S is minimalsuÆient, g(T (X)) = S(X) a.s. P for a measurable funtion g. Hene g is one-to-one and = g�1. The measurability of  follows from Theorem 3.9 in Parthasarathy (1967).
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Example 2.14. Let P = ff� : � 2 �g be an exponential family with p.d.f.'sf�(x) = expf[�(�)℄�T (x)� �(�)gh(x)Suppose that there exists �0 = f�0; �1; :::; �pg � � suh that the vetors �i = �(�i)� �(�0),i = 1; :::; p, are linearly independent in Rp. (This is true if the family is of full rank.) Wehave shown that T (X) is suÆient for � 2 �. We now show that T is in fat minimalsuÆient for � 2 �. Let P0 = ff� : � 2 �0g. Note that the set fx : f�(x) > 0g does notdepend on �. It follows from Theorem 2.3(ii) with f1 = f�0 thatS(X) = �expf��1T (x)� �1g; :::; expf��pT (x)� �pg�is minimal suÆient for � 2 �0, where �i = �(�i)� �(�0). Sine �i's are linearly independent,there is a one-to-one measurable funtion  suh that T (X) =  (S(X)) a.s. P0. Hene, T isminimal suÆient for � 2 �0. It is easy to see that a.s. P0 implies a.s. P. Thus, by Theorem2.3(i), T is minimal suÆient for � 2 �.The results in Examples 2.13 and 2.14 an also be proved by using Theorem 2.3(iii).The suÆieny (and minimal suÆieny) depends on the postulated family P of populations(statistial models).It may not be a useful onept if the proposed statistial model is wrong or at least one hassome doubts about the orretness of the proposed model.From the examples in this setion and some exerises in x2.6, one an �nd that for a widevariety of models, statistis suh as the sample mean �X, the sample variane S2, (X(1); X(n))in Example 2.11, and the order statistis in Example 2.9 are suÆient.Thus, using these statistis for data redution and summarization does not lose any infor-mation when the true model is one of those models but we do not know exatly whih modelis orret.A minimal statisti is not always the \simplest suÆient statisti".For example, if �X is minimal suÆent, then so is ( �X; expf �Xg).
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