
Le
ture 20: Minimal suÆ
ien
yThere are many suÆ
ient statisti
s for a given family P.In fa
t, X (the whole data set) is suÆ
ient.If T is a suÆ
ient statisti
 and T =  (S), where  is measurable and S is another statisti
,then S is suÆ
ient.This is obvious from Theorem 2.2 if the population has a p.d.f., but it 
an be proved dire
tlyfrom De�nition 2.4 (Exer
ise 25).For instan
e, if X1; :::; Xn are iid with P (Xi = 1) = � and P (Xi = 0) = 1 � �, then(Pmi=1Xi;Pni=m+1Xi) is suÆ
ient for �, where m is any �xed integer between 1 and n.If T is suÆ
ient and T =  (S) with a measurable  that is not one-to-one, then �(T ) � �(S)and T is more useful than S, sin
e T provides a further redu
tion of the data (or �-�eld)without loss of information.Is there a suÆ
ient statisti
 that provides \maximal" redu
tion of the data?If a statement holds ex
ept for out
omes in an event A satisfying P (A) = 0 for all P 2 P,then we say that the statement holds a.s. P.De�nition 2.5 (Minimal suÆ
ien
y). Let T be a suÆ
ient statisti
 for P 2 P. T is 
alleda minimal suÆ
ient statisti
 if and only if, for any other statisti
 S suÆ
ient for P 2 P,there is a measurable fun
tion  su
h that T =  (S) a.s. P.If both T and S are minimal suÆ
ient statisti
s, then by de�nition there is a one-to-onemeasurable fun
tion  su
h that T =  (S) a.s. P.Hen
e, the minimal suÆ
ient statisti
 is unique in the sense that two statisti
s that areone-to-one measurable fun
tions of ea
h other 
an be treated as one statisti
.Example 2.13. Let X1; :::; Xn be i.i.d. random variables from P�, the uniform distributionU(�; � + 1), � 2 R. Suppose that n > 1. The joint Lebesgue p.d.f. of (X1; :::; Xn) isf�(x) = nYi=1 I(�;�+1)(xi) = I(x(n)�1;x(1))(�); x = (x1; :::; xn) 2 Rn;where x(i) denotes the ith smallest value of x1; :::; xn. By Theorem 2.2, T = (X(1); X(n)) issuÆ
ient for �. Note thatx(1) = supf� : f�(x) > 0g and x(n) = 1 + inff� : f�(x) > 0g:If S(X) is a statisti
 suÆ
ient for �, then by Theorem 2.2, there are Borel fun
tions h andg� su
h that f�(x) = g�(S(x))h(x). For x with h(x) > 0,x(1) = supf� : g�(S(x)) > 0g and x(n) = 1 + inff� : g�(S(x)) > 0g:Hen
e, there is a measurable fun
tion  su
h that T (x) =  (S(x)) when h(x) > 0. Sin
eh > 0 a.s. P, we 
on
lude that T is minimal suÆ
ient.Minimal suÆ
ient statisti
s exist under weak assumptions, e.g., P 
ontains distributions onRk dominated by a �-�nite measure (Bahadur, 1957).1



Useful tools for �nding minimal suÆ
ient statisti
s.Theorem 2.3. Let P be a family of distributions on Rk.(i) Suppose that P0 � P and a.s. P0 implies a.s. P. If T is suÆ
ient for P 2 P and minimalsuÆ
ient for P 2 P0, then T is minimal suÆ
ient for P 2 P.(ii) Suppose that P 
ontains p.d.f.'s f0; f1; f2; :::, w.r.t. a �-�nite measure. Let f1(x) =P1i=0 
ifi(x), where 
i > 0 for all i and P1i=0 
i = 1, and let Ti(X) = fi(x)=f1(x) whenf1(x) > 0, i = 0; 1; 2; :::. Then T (X) = (T0; T1; T2; :::) is minimal suÆ
ient for P 2 P.Furthermore, if fx : fi(x) > 0g � fx : f0(x) > 0g for all i, then we may repla
e f1 by f0, inwhi
h 
ase T (X) = (T1; T2; :::) is minimal suÆ
ient for P 2 P.(iii) Suppose that P 
ontains p.d.f.'s fP w.r.t. a �-�nite measure and that there exists asuÆ
ient statisti
 T (X) su
h that, for any possible values x and y of X, fP (x) = fP (y)�(x; y)for all P implies T (x) = T (y), where � is a measurable fun
tion. Then T (X) is minimalsuÆ
ient for P 2 P.Proof. (i) If S is suÆ
ient for P 2 P, then it is also suÆ
ient for P 2 P0 and, therefore,T =  (S) a.s. P0 holds for a measurable fun
tion  . The result follows from the assumptionthat a.s. P0 implies a.s. P.(ii) Note that f1 > 0 a.s. P. Let gi(T ) = Ti, i = 0; 1; 2; :::. Then fi(x) = gi(T (x))f1(x)a.s. P. By Theorem 2.2, T is suÆ
ient for P 2 P. Suppose that S(X) is another suÆ
ientstatisti
. By Theorem 2.2, there are Borel fun
tions h and ~gi su
h that fi(x) = ~gi(S(x))h(x),i = 0; 1; 2; :::. Then Ti(x) = ~gi(S(x))=P1j=0 
j~gj(S(x)) for x's satisfying f1(x) > 0. ByDe�nition 2.5, T is minimal suÆ
ient for P 2 P. The proof for the 
ase where f1 isrepla
ed by f0 is the same.(iii) From Bahadur (1957), there exists a minimal suÆ
ient statisti
 S(X). The result followsif we 
an show that T (X) =  (S(X)) a.s. P for a measurable fun
tion  . By Theorem2.2, there are Borel fun
tions gP and h su
h that fP (x) = gP (S(x))h(x) for all P . LetA = fx : h(x) = 0g. Then P (A) = 0 for all P . For x and y su
h that S(x) = S(y), x 62 Aand y 62 A, fP (x)= gP (S(x))h(x)= gP (S(y))h(x)h(y)=h(y)= fP (y)h(x)=h(y)for all P . Hen
e T (x) = T (y). This shows that there is a fun
tion  su
h that T (x) = (S(x)) ex
ept for x 2 A. It remains to show that  is measurable. Sin
e S is minimalsuÆ
ient, g(T (X)) = S(X) a.s. P for a measurable fun
tion g. Hen
e g is one-to-one and = g�1. The measurability of  follows from Theorem 3.9 in Parthasarathy (1967).
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Example 2.14. Let P = ff� : � 2 �g be an exponential family with p.d.f.'sf�(x) = expf[�(�)℄�T (x)� �(�)gh(x)Suppose that there exists �0 = f�0; �1; :::; �pg � � su
h that the ve
tors �i = �(�i)� �(�0),i = 1; :::; p, are linearly independent in Rp. (This is true if the family is of full rank.) Wehave shown that T (X) is suÆ
ient for � 2 �. We now show that T is in fa
t minimalsuÆ
ient for � 2 �. Let P0 = ff� : � 2 �0g. Note that the set fx : f�(x) > 0g does notdepend on �. It follows from Theorem 2.3(ii) with f1 = f�0 thatS(X) = �expf��1T (x)� �1g; :::; expf��pT (x)� �pg�is minimal suÆ
ient for � 2 �0, where �i = �(�i)� �(�0). Sin
e �i's are linearly independent,there is a one-to-one measurable fun
tion  su
h that T (X) =  (S(X)) a.s. P0. Hen
e, T isminimal suÆ
ient for � 2 �0. It is easy to see that a.s. P0 implies a.s. P. Thus, by Theorem2.3(i), T is minimal suÆ
ient for � 2 �.The results in Examples 2.13 and 2.14 
an also be proved by using Theorem 2.3(iii).The suÆ
ien
y (and minimal suÆ
ien
y) depends on the postulated family P of populations(statisti
al models).It may not be a useful 
on
ept if the proposed statisti
al model is wrong or at least one hassome doubts about the 
orre
tness of the proposed model.From the examples in this se
tion and some exer
ises in x2.6, one 
an �nd that for a widevariety of models, statisti
s su
h as the sample mean �X, the sample varian
e S2, (X(1); X(n))in Example 2.11, and the order statisti
s in Example 2.9 are suÆ
ient.Thus, using these statisti
s for data redu
tion and summarization does not lose any infor-mation when the true model is one of those models but we do not know exa
tly whi
h modelis 
orre
t.A minimal statisti
 is not always the \simplest suÆ
ient statisti
".For example, if �X is minimal suÆ
ent, then so is ( �X; expf �Xg).
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