Lecture 21: Complete statistics

A statistic V(X) is ancillary if its distribution does not depend on the population PV(X) is first-order ancillary if E[V(X)] is independent of P.

A trivial ancillary statistic is the constant statistic $V(X) \equiv c \in \mathcal{R}$.

If V(X) is a nontrivial ancillary statistic, then $\sigma(V(X)) \subset \sigma(X)$ is a nontrivial σ -field that does not contain any information about P.

Hence, if S(X) is a statistic and V(S(X)) is a nontrivial ancillary statistic, it indicates that $\sigma(S(X))$ contains a nontrivial σ -field that does not contain any information about P and, hence, the "data" S(X) may be further reduced.

A sufficient statistic T appears to be most successful in reducing the data if no nonconstant function of T is ancillary or even first-order ancillary.

Definition 2.6 (Completeness). A statistic T(X) is said to be *complete* for $P \in \mathcal{P}$ if and only if, for any Borel f, E[f(T)] = 0 for all $P \in \mathcal{P}$ implies f = 0 a.s. \mathcal{P} . T is said to be *boundedly complete* if and only if the previous statement holds for any bounded Borel f.

A complete statistic is boundedly complete.

If T is complete (or boundedly complete) and $S = \psi(T)$ for a measurable ψ , then S is complete (or boundedly complete).

Intuitively, a complete and sufficient statistic should be minimal sufficient (Exercise 48).

A minimal sufficient statistic is not necessarily complete; for example, the minimal sufficient statistic $(X_{(1)}, X_{(n)})$ in Example 2.13 is not complete (Exercise 47).

Finding a complete and sufficient statistic

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.'s given by

$$f_{\eta}(x) = \exp\{\eta^{\tau} T(x) - \zeta(\eta)\}h(x),$$

then T(X) is complete and sufficient for $\eta \in \Xi$.

Proof. We have shown that T is sufficient. Suppose that there is a function f such that E[f(T)] = 0 for all $\eta \in \Xi$. By Theorem 2.1(i),

$$\int f(t) \exp\{\eta^{\tau} t - \zeta(\eta)\} d\lambda = 0 \quad \text{for all } \eta \in \Xi,$$

where λ is a measure on $(\mathcal{R}^p, \mathcal{B}^p)$. Let η_0 be an interior point of Ξ . Then

$$\int f_{+}(t)e^{\eta^{\tau}t}d\lambda = \int f_{-}(t)e^{\eta^{\tau}t}d\lambda \quad \text{for all } \eta \in N(\eta_{0}),$$
(1)

where $N(\eta_0) = \{\eta \in \mathcal{R}^p : ||\eta - \eta_0|| < \epsilon\}$ for some $\epsilon > 0$. In particular,

$$\int f_+(t)e^{\eta_0^{\tau}t}d\lambda = \int f_-(t)e^{\eta_0^{\tau}t}d\lambda = c.$$

If c = 0, then f = 0 a.e. λ . If c > 0, then $c^{-1}f_+(t)e^{\eta_0^{\tau}t}$ and $c^{-1}f_-(t)e^{\eta_0^{\tau}t}$ are p.d.f.'s w.r.t. λ and (1) implies that their m.g.f.'s are the same in a neighborhood of 0. By Theorem 1.6(ii), $c^{-1}f_+(t)e^{\eta_0^{\tau}t} = c^{-1}f_-(t)e^{\eta_0^{\tau}t}$, i.e., $f = f_+ - f_- = 0$ a.e. λ . Hence T is complete.

Example 2.15. Suppose that $X_1, ..., X_n$ are i.i.d. random variables having the $N(\mu, \sigma^2)$ distribution, $\mu \in \mathcal{R}, \sigma > 0$. From Example 2.6, the joint p.d.f. of $X_1, ..., X_n$ is

$$(2\pi)^{-n/2} \exp \left\{ \eta_1 T_1 + \eta_2 T_2 - n\zeta(\eta) \right\}$$

where $T_1 = \sum_{i=1}^n X_i$, $T_2 = -\sum_{i=1}^n X_i^2$, and $\eta = (\eta_1, \eta_2) = \left(\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2}\right)$. Hence, the family of distributions for $X = (X_1, ..., X_n)$ is a natural exponential family of full rank ($\Xi = \mathcal{R} \times (0, \infty)$). By Proposition 2.1, $T(X) = (T_1, T_2)$ is complete and sufficient for η . Since there is a one-to-one correspondence between η and $\theta = (\mu, \sigma^2)$, T is also complete and sufficient for θ . It can be shown that any one-to-one measurable function of a complete and sufficient statistic is also complete and sufficient (exercise). Thus, (\bar{X}, S^2) is complete and sufficient for θ , where \bar{X} and S^2 are the sample mean and sample variance, respectively.

Example 2.16. Let $X_1, ..., X_n$ be i.i.d. random variables from P_{θ} , the uniform distribution $U(0, \theta), \theta > 0$. The largest order statistic, $X_{(n)}$, is complete and sufficient for $\theta \in (0, \infty)$. The sufficiency of $X_{(n)}$ follows from the fact that the joint Lebesgue p.d.f. of $X_1, ..., X_n$ is $\theta^{-n}I_{(0,\theta)}(x_{(n)})$. From Example 2.9, $X_{(n)}$ has the Lebesgue p.d.f. $(nx^{n-1}/\theta^n)I_{(0,\theta)}(x)$ on \mathcal{R} . Let f be a Borel function on $[0, \infty)$ such that $E[f(X_{(n)})] = 0$ for all $\theta > 0$. Then

$$\int_0^\theta f(x)x^{n-1}dx = 0 \quad \text{for all } \theta > 0.$$

Let $G(\theta)$ be the left-hand side of the previous equation. Applying the result of differentiation of an integral (see, e.g., Royden (1968, §5.3)), we obtain that $G'(\theta) = f(\theta)\theta^{n-1}$ a.e. m_+ , where m_+ is the Lebesgue measure on $([0, \infty), \mathcal{B}_{[0,\infty)})$. Since $G(\theta) = 0$ for all $\theta > 0$, $f(\theta)\theta^{n-1} = 0$ a.e. m_+ and, hence, f(x) = 0 a.e. m_+ . Therefore, $X_{(n)}$ is complete and sufficient for $\theta \in (0, \infty)$.

Example 2.17. In Example 2.12, we showed that the order statistics $T(X) = (X_{(1)}, ..., X_{(n)})$ of i.i.d. random variables $X_1, ..., X_n$ is sufficient for $P \in \mathcal{P}$, where \mathcal{P} is the family of distributions on \mathcal{R} having Lebesgue p.d.f.'s. We now show that T(X) is also complete for $P \in \mathcal{P}$. Let \mathcal{P}_0 be the family of Lebesgue p.d.f.'s of the form

$$f(x) = C(\theta_1, ..., \theta_n) \exp\{-x^{2n} + \theta_1 x + \theta_2 x^2 + \dots + \theta_n x^n\},\$$

where $\theta_j \in \mathcal{R}$ and $C(\theta_1, ..., \theta_n)$ is a normalizing constant such that $\int f(x)dx = 1$. Then $\mathcal{P}_0 \subset \mathcal{P}$ and \mathcal{P}_0 is an exponential family of full rank. Note that the joint distribution of $X = (X_1, ..., X_n)$ is also in an exponential family of full rank. Thus, by Proposition 2.1, $U = (U_1, ..., U_n)$ is a complete statistic for $P \in \mathcal{P}_0$, where $U_j = \sum_{i=1}^n X_i^j$. Since a.s. \mathcal{P}_0 implies a.s. $\mathcal{P}, U(X)$ is also complete for $P \in \mathcal{P}$.

The result follows if we can show that there is a one-to-one correspondence between T(X)and U(X). Let $V_1 = \sum_{i=1}^n X_i$, $V_2 = \sum_{i < j} X_i X_j$, $V_3 = \sum_{i < j < k} X_i X_j X_k$,..., $V_n = X_1 \cdots X_n$. From the identities

$$U_k - V_1 U_{k-1} + V_2 U_{k-2} - \dots + (-1)^{k-1} V_{k-1} U_1 + (-1)^k k V_k = 0,$$

k = 1, ..., n, there is a one-to-one correspondence between U(X) and $V(X) = (V_1, ..., V_n)$. From the identity

$$(t - X_1) \cdots (t - X_n) = t^n - V_1 t^{n-1} + V_2 t^{n-2} - \cdots + (-1)^n V_n,$$

there is a one-to-one correspondence between V(X) and T(X). This completes the proof and, hence, T(X) is sufficient and complete for $P \in \mathcal{P}$. In fact, both U(X) and V(X) are sufficient and complete for $P \in \mathcal{P}$.

The relationship between an ancillary statistic and a complete and sufficient statistic is characterized in the following result.

Theorem 2.4 (Basu's theorem). Let V and T be two statistics of X from a population $P \in \mathcal{P}$. If V is ancillary and T is boundedly complete and sufficient for $P \in \mathcal{P}$, then V and T are independent w.r.t. any $P \in \mathcal{P}$.

Proof. Let B be an event on the range of V. Since V is ancillary, $P(V^{-1}(B))$ is a constant. Since T is sufficient, $E[I_B(V)|T]$ is a function of T (independent of P). Since

$$E\{E[I_B(V)|T] - P(V^{-1}(B))\} = 0 \text{ for all } P \in \mathcal{P},$$

 $P(V^{-1}(B)|T) = E[I_B(V)|T] = P(V^{-1}(B))$ a.s. \mathcal{P} , by the bounded completeness of T. Let A be an event on the range of T. Then,

$$P(T^{-1}(A) \cap V^{-1}(B)) = E\{E[I_A(T)I_B(V)|T]\} = E\{I_A(T)E[I_B(V)|T]\}$$
$$= E\{I_A(T)P(V^{-1}(B))\} = P(T^{-1}(A))P(V^{-1}(B)).$$

Hence T and V are independent w.r.t. any $P \in \mathcal{P}$.

Basu's theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that $X_1, ..., X_n$ are i.i.d. random variables having the $N(\mu, \sigma^2)$ distribution, with $\mu \in \mathcal{R}$ and a known $\sigma > 0$. It can be easily shown that the family $\{N(\mu, \sigma^2) : \mu \in \mathcal{R}\}$ is an exponential family of full rank with natural parameter $\eta = \mu/\sigma^2$. By Proposition 2.1, the sample mean \bar{X} is complete and sufficient for η (and μ). Let S^2 be the sample variance. Since $S^2 = (n-1)^{-1} \sum_{i=1}^n (Z_i - \bar{Z})^2$, where $Z_i = X_i - \mu$ is $N(0, \sigma^2)$ and $\bar{Z} = n^{-1} \sum_{i=1}^n Z_i$, S^2 is an ancillary statistic (σ^2 is known). By Basu's theorem, \bar{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ with $\mu \in \mathcal{R}$. Since σ^2 is arbitrary, \bar{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ for any $\mu \in \mathcal{R}$ and $\sigma^2 > 0$.

Using the independence of \bar{X} and S^2 , we now show that $(n-1)S^2/\sigma^2$ has the chi-square distribution χ^2_{n-1} . Note that

$$n\left(\frac{\bar{X}-\mu}{\sigma}\right)^2 + \frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i-\mu}{\sigma}\right)^2$$

From the properties of the normal distributions, $n(\bar{X}-\mu)^2/\sigma^2$ has the chi-square distribution χ_1^2 with the m.g.f. $(1-2t)^{-1/2}$ and $\sum_{i=1}^n (X_i - \mu)^2/\sigma^2$ has the chi-square distribution χ_n^2 with

the m.g.f. $(1-2t)^{-n/2}$, t < 1/2. By the independence of \bar{X} and S^2 , the m.g.f. of $(n-1)S^2/\sigma^2$ is

$$(1-2t)^{-n/2}/(1-2t)^{-1/2} = (1-2t)^{-(n-1)/2}$$

for t < 1/2. This is the m.g.f. of the chi-square distribution χ^2_{n-1} and, therefore, the result follows.