
Lecture 21: Complete statistics

A statistic V (X) is ancillary if its distribution does not depend on the population P
V (X) is first-order ancillary if E[V (X)] is independent of P .
A trivial ancillary statistic is the constant statistic V (X) ≡ c ∈ R.
If V (X) is a nontrivial ancillary statistic, then σ(V (X)) ⊂ σ(X) is a nontrivial σ-field that
does not contain any information about P .
Hence, if S(X) is a statistic and V (S(X)) is a nontrivial ancillary statistic, it indicates that
σ(S(X)) contains a nontrivial σ-field that does not contain any information about P and,
hence, the “data” S(X) may be further reduced.
A sufficient statistic T appears to be most successful in reducing the data if no nonconstant
function of T is ancillary or even first-order ancillary.

Definition 2.6 (Completeness). A statistic T (X) is said to be complete for P ∈ P if and
only if, for any Borel f , E[f(T )] = 0 for all P ∈ P implies f = 0 a.s. P. T is said to be
boundedly complete if and only if the previous statement holds for any bounded Borel f .

A complete statistic is boundedly complete.
If T is complete (or boundedly complete) and S = ψ(T ) for a measurable ψ, then S is
complete (or boundedly complete).
Intuitively, a complete and sufficient statistic should be minimal sufficient (Exercise 48).
A minimal sufficient statistic is not necessarily complete; for example, the minimal sufficient
statistic (X(1), X(n)) in Example 2.13 is not complete (Exercise 47).

Finding a complete and sufficient statistic

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.’s given by

fη(x) = exp{ητT (x) − ζ(η)}h(x),

then T (X) is complete and sufficient for η ∈ Ξ.
Proof. We have shown that T is sufficient. Suppose that there is a function f such that
E[f(T )] = 0 for all η ∈ Ξ. By Theorem 2.1(i),

∫

f(t) exp{ητ t− ζ(η)}dλ = 0 for all η ∈ Ξ,

where λ is a measure on (Rp,Bp). Let η0 be an interior point of Ξ. Then
∫

f+(t)eητ tdλ =
∫

f−(t)eητ tdλ for all η ∈ N(η0), (1)

where N(η0) = {η ∈ Rp : ‖η − η0‖ < ǫ} for some ǫ > 0. In particular,
∫

f+(t)eητ

0
tdλ =

∫

f−(t)eητ

0
tdλ = c.

If c = 0, then f = 0 a.e. λ. If c > 0, then c−1f+(t)eητ

0
t and c−1f−(t)eητ

0
t are p.d.f.’s w.r.t. λ

and (1) implies that their m.g.f.’s are the same in a neighborhood of 0. By Theorem 1.6(ii),
c−1f+(t)eητ

0
t = c−1f−(t)eητ

0
t, i.e., f = f+ − f− = 0 a.e. λ. Hence T is complete.
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Example 2.15. Suppose that X1, ..., Xn are i.i.d. random variables having the N(µ, σ2)
distribution, µ ∈ R, σ > 0. From Example 2.6, the joint p.d.f. of X1, ..., Xn is

(2π)−n/2 exp {η1T1 + η2T2 − nζ(η)} ,

where T1 =
∑n

i=1Xi, T2 = −
∑n

i=1X
2
i , and η = (η1, η2) =

(

µ
σ2 ,

1
2σ2

)

. Hence, the family

of distributions for X = (X1, ..., Xn) is a natural exponential family of full rank (Ξ =
R × (0,∞)). By Proposition 2.1, T (X) = (T1, T2) is complete and sufficient for η. Since
there is a one-to-one correspondence between η and θ = (µ, σ2), T is also complete and
sufficient for θ. It can be shown that any one-to-one measurable function of a complete and
sufficient statistic is also complete and sufficient (exercise). Thus, (X̄, S2) is complete and
sufficient for θ, where X̄ and S2 are the sample mean and sample variance, respectively.

Example 2.16. Let X1, ..., Xn be i.i.d. random variables from Pθ, the uniform distribution
U(0, θ), θ > 0. The largest order statistic, X(n), is complete and sufficient for θ ∈ (0,∞).
The sufficiency of X(n) follows from the fact that the joint Lebesgue p.d.f. of X1, ..., Xn is
θ−nI(0,θ)(x(n)). From Example 2.9, X(n) has the Lebesgue p.d.f. (nxn−1/θn)I(0,θ)(x) on R.
Let f be a Borel function on [0,∞) such that E[f(X(n))] = 0 for all θ > 0. Then

∫ θ

0
f(x)xn−1dx = 0 for all θ > 0.

Let G(θ) be the left-hand side of the previous equation. Applying the result of differentiation
of an integral (see, e.g., Royden (1968, §5.3)), we obtain thatG′(θ) = f(θ)θn−1 a.e.m+, where
m+ is the Lebesgue measure on ([0,∞),B[0,∞)). Since G(θ) = 0 for all θ > 0, f(θ)θn−1 = 0
a.e. m+ and, hence, f(x) = 0 a.e. m+. Therefore, X(n) is complete and sufficient for θ ∈
(0,∞).

Example 2.17. In Example 2.12, we showed that the order statistics T (X) = (X(1), ..., X(n))
of i.i.d. random variables X1, ..., Xn is sufficient for P ∈ P, where P is the family of distri-
butions on R having Lebesgue p.d.f.’s. We now show that T (X) is also complete for P ∈ P.
Let P0 be the family of Lebesgue p.d.f.’s of the form

f(x) = C(θ1, ..., θn) exp{−x2n + θ1x+ θ2x
2 + · · ·+ θnx

n},

where θj ∈ R and C(θ1, ..., θn) is a normalizing constant such that
∫

f(x)dx = 1. Then
P0 ⊂ P and P0 is an exponential family of full rank. Note that the joint distribution of
X = (X1, ..., Xn) is also in an exponential family of full rank. Thus, by Proposition 2.1,
U = (U1, ..., Un) is a complete statistic for P ∈ P0, where Uj =

∑n
i=1X

j
i . Since a.s. P0

implies a.s. P, U(X) is also complete for P ∈ P.

The result follows if we can show that there is a one-to-one correspondence between T (X)
and U(X). Let V1 =

∑n
i=1Xi, V2 =

∑

i<j XiXj, V3 =
∑

i<j<kXiXjXk,..., Vn = X1 · · ·Xn.
From the identities

Uk − V1Uk−1 + V2Uk−2 − · · · + (−1)k−1Vk−1U1 + (−1)kkVk = 0,
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k = 1, ..., n, there is a one-to-one correspondence between U(X) and V (X) = (V1, ..., Vn).
From the identity

(t−X1) · · · (t−Xn) = tn − V1t
n−1 + V2t

n−2 − · · ·+ (−1)nVn,

there is a one-to-one correspondence between V (X) and T (X). This completes the proof
and, hence, T (X) is sufficient and complete for P ∈ P. In fact, both U(X) and V (X) are
sufficient and complete for P ∈ P.

The relationship between an ancillary statistic and a complete and sufficient statistic is
characterized in the following result.

Theorem 2.4 (Basu’s theorem). Let V and T be two statistics of X from a population
P ∈ P. If V is ancillary and T is boundedly complete and sufficient for P ∈ P, then V and
T are independent w.r.t. any P ∈ P.
Proof. Let B be an event on the range of V . Since V is ancillary, P (V −1(B)) is a constant.
Since T is sufficient, E[IB(V )|T ] is a function of T (independent of P ). Since

E{E[IB(V )|T ] − P (V −1(B))} = 0 for all P ∈ P ,

P (V −1(B)|T ) = E[IB(V )|T ] = P (V −1(B)) a.s. P, by the bounded completeness of T . Let
A be an event on the range of T . Then,

P (T−1(A) ∩ V −1(B))=E{E[IA(T )IB(V )|T ]} = E{IA(T )E[IB(V )|T ]}

= E{IA(T )P (V −1(B))} = P (T−1(A))P (V −1(B)).

Hence T and V are independent w.r.t. any P ∈ P.

Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that X1, ..., Xn are i.i.d. random variables having the N(µ, σ2)
distribution, with µ ∈ R and a known σ > 0. It can be easily shown that the family
{N(µ, σ2) : µ ∈ R} is an exponential family of full rank with natural parameter η = µ/σ2.
By Proposition 2.1, the sample mean X̄ is complete and sufficient for η (and µ). Let S2 be
the sample variance. Since S2 = (n− 1)−1∑n

i=1(Zi − Z̄)2, where Zi = Xi −µ is N(0, σ2) and
Z̄ = n−1∑n

i=1 Zi, S
2 is an ancillary statistic (σ2 is known). By Basu’s theorem, X̄ and S2

are independent w.r.t. N(µ, σ2) with µ ∈ R. Since σ2 is arbitrary, X̄ and S2 are independent
w.r.t. N(µ, σ2) for any µ ∈ R and σ2 > 0.

Using the independence of X̄ and S2, we now show that (n − 1)S2/σ2 has the chi-square
distribution χ2

n−1. Note that

n

(

X̄ − µ

σ

)2

+
(n− 1)S2

σ2
=

n
∑

i=1

(

Xi − µ

σ

)2

.

From the properties of the normal distributions, n(X̄−µ)2/σ2 has the chi-square distribution
χ2

1 with the m.g.f. (1−2t)−1/2 and
∑n

i=1(Xi −µ)2/σ2 has the chi-square distribution χ2
n with
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the m.g.f. (1−2t)−n/2, t < 1/2. By the independence of X̄ and S2, the m.g.f. of (n−1)S2/σ2

is
(1 − 2t)−n/2/(1 − 2t)−1/2 = (1 − 2t)−(n−1)/2

for t < 1/2. This is the m.g.f. of the chi-square distribution χ2
n−1 and, therefore, the result

follows.
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