Lecture 24: Bayes rules, minimax rules, point estimators, and hypothesis tests

The second approach to finding a good decision rule is to consider some characteristic Ry of
Ry (P), for a given decision rule 7', and then minimize Ry over T' € .

The following are two popular ways to carry out this idea.

The first one is to consider an average of Ry (P) over P € P:

ro (1) = | Re(P)aIL(P),

where II is a known probability measure on (P, Fp) with an appropriate o-field Fp.
r,(II) is called the Bayes risk of T' w.r.t. 1.
If T, € S and 7, (II) <7, (II) for any T' € S, then T, is called a 3-Bayes rule (or Bayes rule
when < contains all possible rules) w.r.t. II.
The second method is to consider the worst situation, i.e., sup pep Rr(P).
If T, € S and
sup Rr, (P) < sup Rp(P)
PeP PeP
for any T' € S, then T, is called a S-minimaz rule (or minimax rule when & contains all
possible rules).
Bayes and minimax rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayes rule or a minimax rule in a parametric
problem where P = P, for a § € RF.
Consider the special case of k =1 and L(6,a) = (6 — a)?, the squared error loss.
Note that
rp(I) = [ Bl —T(X)d1i(6).

which is equivalent to E[@ — T'(X)]?, where 0 is a random variable having the distribution
IT and, given 8 = 0, the conditional distribution of X is Fj.

Then, the problem can be viewed as a prediction problem for 8 using functions of X.
Using the result in Example 1.22, the best predictor is E(6|X), which is the 3-Bayes rule
w.r.t. IT with § being the class of rules T'(X) satisfying E[T(X)]? < oo for any 6.

As a more specific example, let X = (X1, ..., X,,) with i.i.d. components having the N (u, c?)
distribution with an unknown g = 6 € R and a known o2, and let IT be the N(uq,o?)
distribution with known p and o3.

Then the conditional distribution of 8 given X = z is N(u.(z),c?) with
o? nod and s 0p0°

o+ =
nog + o2 nog + o2 nog + o2

ps(@) =
The Bayes rule w.r.t. Il is E(0]|X) = u.(X).

In this special case we can show that the sample mean X is minimax.
For any decision rule 7',



where p,(X) is the Bayes rule given in (1) and ¢? is also given in (1).

Since this result is true for any 02 > 0 and ¢ — 0?/n as 02 — o0,

2
sup Rp(0) > — = sup Rx (6),
R n R

where the equality holds because the risk of X under the squared error loss is 0%/n and
independent of 6 = .
Thus, X is minimax.

A minimax rule in a general case may be difficult to obtain. It can be seen that if both u

and o2 are unknown in the previous discussion, then

sup  Rg(0) = oo, (2)
0eR % (0,00)

where 6 = (u,0?). )
Hence X cannot be minimax unless (2) holds with X replaced by any decision rule 7', in
which case minimaxity becomes meaningless.

Statistical inference: Point estimators, hypothesis tests, and confidence sets
Point estimators

Let T'(X) be an estimator of ¥ € R
Bias: br(P) = E[T(X)] -9
Mean squared error (mse):

mser(P) = E[T(X) — 9)? = [by(P)])* + Var(T(X)).
Bias and mse are two common criteria for the performance of point estimators.

Example 2.26. Let X, ..., X, beii.d. from an unknown c.d.f. F.
Suppose that the parameter of interest is ¢ = 1 — F'(¢) for a fixed ¢ > 0.

If F'is not in a parametric family, then a nonparametric estimator of F(t) is the empirical
c.d.f.

1 n
Fn(t) = — ZI(—OOﬂf] (XZ), teR.
=1

n .
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Since I(—oo(X1), ..; [(—00,(Xy) are i.i.d. binary random variables with P(/(_s 4(X;) = 1) =
F(t), the random variable nF,,(t) has the binomial distribution Bi(F'(t),n).

Consequently, F,(t) is an unbiased estimator of F(t) and Var(F,(t)) = msep,)(P) =
F(t)[1 = F(t)]/n.

Since any linear combination of unbiased estimators is unbiased for the same linear combi-
nation of the parameters (by the linearity of expectations), an unbiased estimator of ¥ is
U(X) =1-— F,(t), which has the same variance and mse as F},(t).

The estimator U(X) = 1 — F,(t) can be improved in terms of the mse if there is further
information about F.

Suppose that F' is the c.d.f. of the exponential distribution £(0,#) with an unknown 6 > 0.
Then ¥ = e~*/?.

The sample mean X is sufficient for § > 0.

Since the squared error loss is strictly convex, an application of Theorem 2.5(ii) (Rao-
Blackwell theorem) shows that the estimator T'(X) = E[1 — F,,(¢)| X], which is also unbiased,
is better than U(X) in terms of the mse.

Figure 2.1 shows graphs of the mse’s of U(X) and T'(X), as functions of #, in the special
case of n =10, t = 2, and F(z) = (1 — /%) [y o) ().

Hypothesis tests

To test the hypotheses
Hy:PePy versus H;:P e Py,

there are two types of statistical errors we may commit: rejecting Hy when Hy is true (called
the type I error) and accepting Hy when Hj is wrong (called the type II error).
A test T a statistic from X to {0, 1}. Pprobabilities of making two types of errors:

and
1—ar(P)=P(T(X)=0) P e Py, (4)

which are denoted by ar(0) and 1 — ap(0) if P is in a parametric family indexed by 6.
Note that these are risks of 7" under the 0-1 loss in statistical decision theory.

Error probabilities in (3) and (4) cannot be minimized simultaneously.

Furthermore, these two error probabilities cannot be bounded simultaneously by a fixed
a € (0,1) when we have a sample of a fixed size.

A common approach to finding an “optimal” test is to assign a small bound « to one of the
error probabilities, say ar(P), P € Py, and then to attempt to minimize the other error
probability 1 — az(P), P € Py, subject to

sup ar(P) < a. (5)
PePy

The bound « is called the level of significance.
The left-hand side of (5) is called the size of the test 7.



The level of significance should be positive, otherwise no test satisfies (5) except the silly
test T(X) =0 a.s. P.

Example 2.28. Let Xi,...,X,, be i.i.d. from the N(u,oc?) distribution with an unknown
i € R and a known o2.

Consider the hypotheses Hy : p < pg versus Hy : > pg, where pg is a fixed constant.
Since the sample mean X is sufficient for u € R, it is reasonable to consider the following
class of tests: T.(X) = I(;00)(X), L., Hy is rejected (accepted) if X > ¢ (X < ¢), where
c € R is a fixed constant.

Let ® be the c.d.f. of N(0,1). Then, by the property of the normal distributions,

\/ﬁ(c—u))

o

an (1) = PT(X) = 1) =1 — @ (

Figure 2.2 provides an example of a graph of two types of error probabilities, with po = 0.
Since ®(t) is an increasing function of ¢,

sup ar,(p) =1

PePy g

<\/ﬁ(c - Mo))
In fact, it is also true that

sup 1 = ar ()] = @ (

V(e — Mo)> .

g

If we would like to use an « as the level of significance, then the most effective way is to
choose a ¢, (a test T, (X)) such that

a = sup ar,, (1),
PePy

in which case ¢, must satisfy

1_(1)(\/5(%—#0)) W

g

i.e., Co = 021_o/\/N + o, Where z, = ®1(a).
In Chapter 6, it is shown that for any test T'(X) satisfying (5),

l—ar(p) =1—ar, (1),  pw> po



