
Lecture 24: Bayes rules, minimax rules, point estimators, and hypothesis tests

The second approach to finding a good decision rule is to consider some characteristic RT of
RT (P ), for a given decision rule T , and then minimize RT over T ∈ ℑ.
The following are two popular ways to carry out this idea.
The first one is to consider an average of RT (P ) over P ∈ P:

r
T
(Π) =

∫

P

RT (P )dΠ(P ),

where Π is a known probability measure on (P,FP) with an appropriate σ-field FP .
r

T
(Π) is called the Bayes risk of T w.r.t. Π.

If T∗ ∈ ℑ and r
T∗

(Π) ≤ r
T
(Π) for any T ∈ ℑ, then T∗ is called a ℑ-Bayes rule (or Bayes rule

when ℑ contains all possible rules) w.r.t. Π.
The second method is to consider the worst situation, i.e., supP∈P RT (P ).
If T∗ ∈ ℑ and

sup
P∈P

RT∗(P ) ≤ sup
P∈P

RT (P )

for any T ∈ ℑ, then T∗ is called a ℑ-minimax rule (or minimax rule when ℑ contains all
possible rules).
Bayes and minimax rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayes rule or a minimax rule in a parametric
problem where P = Pθ for a θ ∈ Rk.
Consider the special case of k = 1 and L(θ, a) = (θ − a)2, the squared error loss.
Note that

r
T
(Π) =

∫

R

E[θ − T (X)]2dΠ(θ),

which is equivalent to E[θ − T (X)]2, where θ is a random variable having the distribution
Π and, given θ = θ, the conditional distribution of X is Pθ.
Then, the problem can be viewed as a prediction problem for θ using functions of X.
Using the result in Example 1.22, the best predictor is E(θ|X), which is the ℑ-Bayes rule
w.r.t. Π with ℑ being the class of rules T (X) satisfying E[T (X)]2 < ∞ for any θ.

As a more specific example, let X = (X1, ..., Xn) with i.i.d. components having the N(µ, σ2)
distribution with an unknown µ = θ ∈ R and a known σ2, and let Π be the N(µ0, σ

2
0)

distribution with known µ0 and σ2
0 .

Then the conditional distribution of θ given X = x is N(µ∗(x), c2) with

µ∗(x) =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x̄ and c2 =
σ2

0σ
2

nσ2
0 + σ2

(1)

The Bayes rule w.r.t. Π is E(θ|X) = µ∗(X).

In this special case we can show that the sample mean X̄ is minimax.
For any decision rule T ,
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sup
θ∈R

RT (θ)≥
∫

R

RT (θ)dΠ(θ)

≥
∫

R

Rµ∗(θ)dΠ(θ)

= E
{

[θ − µ∗(X)]2
}

= E
{

E{[θ − µ∗(X)]2|X}
}

= E(c2)

= c2,

where µ∗(X) is the Bayes rule given in (1) and c2 is also given in (1).
Since this result is true for any σ2

0 > 0 and c2 → σ2/n as σ2
0 → ∞,

sup
θ∈R

RT (θ) ≥ σ2

n
= sup

θ∈R
RX̄(θ),

where the equality holds because the risk of X̄ under the squared error loss is σ2/n and
independent of θ = µ.
Thus, X̄ is minimax.

A minimax rule in a general case may be difficult to obtain. It can be seen that if both µ
and σ2 are unknown in the previous discussion, then

sup
θ∈R×(0,∞)

RX̄(θ) = ∞, (2)

where θ = (µ, σ2).
Hence X̄ cannot be minimax unless (2) holds with X̄ replaced by any decision rule T , in
which case minimaxity becomes meaningless.

Statistical inference: Point estimators, hypothesis tests, and confidence sets

Point estimators

Let T (X) be an estimator of ϑ ∈ R
Bias: bT (P ) = E[T (X)] − ϑ
Mean squared error (mse):

mseT (P ) = E[T (X) − ϑ]2 = [bT (P )]2 + Var(T (X)).

Bias and mse are two common criteria for the performance of point estimators.

Example 2.26. Let X1, ..., Xn be i.i.d. from an unknown c.d.f. F .
Suppose that the parameter of interest is ϑ = 1 − F (t) for a fixed t > 0.
If F is not in a parametric family, then a nonparametric estimator of F (t) is the empirical

c.d.f.

Fn(t) =
1

n

n
∑

i=1

I(−∞,t](Xi), t ∈ R.
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Since I(−∞,t](X1), ..., I(−∞,t](Xn) are i.i.d. binary random variables with P (I(−∞,t](Xi) = 1) =
F (t), the random variable nFn(t) has the binomial distribution Bi(F (t), n).
Consequently, Fn(t) is an unbiased estimator of F (t) and Var(Fn(t)) = mseFn(t)(P ) =
F (t)[1 − F (t)]/n.
Since any linear combination of unbiased estimators is unbiased for the same linear combi-
nation of the parameters (by the linearity of expectations), an unbiased estimator of ϑ is
U(X) = 1 − Fn(t), which has the same variance and mse as Fn(t).
The estimator U(X) = 1 − Fn(t) can be improved in terms of the mse if there is further
information about F .
Suppose that F is the c.d.f. of the exponential distribution E(0, θ) with an unknown θ > 0.
Then ϑ = e−t/θ.
The sample mean X̄ is sufficient for θ > 0.
Since the squared error loss is strictly convex, an application of Theorem 2.5(ii) (Rao-
Blackwell theorem) shows that the estimator T (X) = E[1−Fn(t)|X̄], which is also unbiased,
is better than U(X) in terms of the mse.
Figure 2.1 shows graphs of the mse’s of U(X) and T (X), as functions of θ, in the special
case of n = 10, t = 2, and F (x) = (1 − e−x/θ)I(0,∞)(x).

Hypothesis tests

To test the hypotheses
H0 : P ∈ P0 versus H1 : P ∈ P1,

there are two types of statistical errors we may commit: rejecting H0 when H0 is true (called
the type I error) and accepting H0 when H0 is wrong (called the type II error).
A test T : a statistic from X to {0, 1}. Pprobabilities of making two types of errors:

αT (P ) = P (T (X) = 1) P ∈ P0 (3)

and
1 − αT (P ) = P (T (X) = 0) P ∈ P1, (4)

which are denoted by αT (θ) and 1 − αT (θ) if P is in a parametric family indexed by θ.
Note that these are risks of T under the 0-1 loss in statistical decision theory.
Error probabilities in (3) and (4) cannot be minimized simultaneously.
Furthermore, these two error probabilities cannot be bounded simultaneously by a fixed
α ∈ (0, 1) when we have a sample of a fixed size.

A common approach to finding an “optimal” test is to assign a small bound α to one of the
error probabilities, say αT (P ), P ∈ P0, and then to attempt to minimize the other error
probability 1 − αT (P ), P ∈ P1, subject to

sup
P∈P0

αT (P ) ≤ α. (5)

The bound α is called the level of significance.
The left-hand side of (5) is called the size of the test T .
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The level of significance should be positive, otherwise no test satisfies (5) except the silly
test T (X) ≡ 0 a.s. P.

Example 2.28. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with an unknown
µ ∈ R and a known σ2.
Consider the hypotheses H0 : µ ≤ µ0 versus H1 : µ > µ0, where µ0 is a fixed constant.
Since the sample mean X̄ is sufficient for µ ∈ R, it is reasonable to consider the following
class of tests: Tc(X) = I(c,∞)(X̄), i.e., H0 is rejected (accepted) if X̄ > c (X̄ ≤ c), where
c ∈ R is a fixed constant.
Let Φ be the c.d.f. of N(0, 1). Then, by the property of the normal distributions,

αTc
(µ) = P (Tc(X) = 1) = 1 − Φ

(√
n(c − µ)

σ

)

.

Figure 2.2 provides an example of a graph of two types of error probabilities, with µ0 = 0.
Since Φ(t) is an increasing function of t,

sup
P∈P0

αTc
(µ) = 1 − Φ

(√
n(c − µ0)

σ

)

.

In fact, it is also true that

sup
P∈P1

[1 − αTc
(µ)] = Φ

(√
n(c − µ0)

σ

)

.

If we would like to use an α as the level of significance, then the most effective way is to
choose a cα (a test Tcα

(X)) such that

α = sup
P∈P0

αTcα
(µ),

in which case cα must satisfy

1 − Φ

(√
n(cα − µ0)

σ

)

= α,

i.e., cα = σz1−α/
√

n + µ0, where za = Φ−1(a).
In Chapter 6, it is shown that for any test T (X) satisfying (5),

1 − αT (µ) ≥ 1 − αTcα
(µ), µ > µ0.
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