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Summary

Abdominal aortic aneurysm (AAA) is a pervasive condition with
high morbidity, affecting 2-4% of adults in the U.S., with 85-90%
mortality in ruptured AAA cases. Surgical repair can mitigate
the risk of rupture, however open surgery is associated with high
risk of complication. Endovascular aneurysm repair (EVAR) is a
less invasive repair procedure, and is associated with lower short-
term mortality, but it is not clear whether it has long-term benefits.
There are concerns that EVAR is less effective in the long-term,
leading to reinterventions. Clinical trials comparing the proce-
dures are limited in size, scope, or follow-up. Hence we utilize
a large Medicare enrollment dataset with long-term follow-up in
our analysis. In order to establish causal estimates of the differ-
ences in long-term mortality outcomes, we develop novel instru-
mental variable approaches to survival analysis. In particular, we
analyze the Medicare data based on the semiparametric acceler-
ated failure time model. Inference regarding the causal effects is
carried out using a weighted bootstrap approach.

Motivation
Abdominal Aortic Aneurysm

• Surgical repair options
– Open repair - conventional treatment, more invasive, long recovery

– Endovascular repair - less invasive, concerns about efficacy

• Little convincing comparative effectiveness research
– Few randomized controlled trials enacted

• Very small (10 AAA-related deaths) (Lederle et al., 2012)
• Short follow-up (Prinssen et al., 2004)

– Analysis of observational studies does not account for unmeasured
confounding

Challenges of IVs in Survival Analysis

• Traditional IV methods rely on linearity

• For nonlinear models, other strong assumptions are necessary

• How to relax IV assumptions while retaining modeling
flexibility?

Previous Work

• Fully specified parametric structural equation models: (Tang and
Lee, 1998), (Muthen and Masyn, 2005), and (Chen et al., 2011)

• Two-stage residual inclusion-based approaches allow for
consistent estimation for nonlinear models, with strong
assumptions on endogenous variable

• Additive hazards instrumental variable approach of (Li et al.,
2015) relies on linear structure for endogenous variable
X = αc + αZZ + α′oXo + α′uU + ε
and utilizes a two-stage procedure: estimate effects of Z and Xo

on X using a linear model and use X̂ in place of X in an additive
hazards model

• There remains a need for IV methods which do not impose
strong IV assumptions and still allow flexible survival modeling

Instrumental Variable Estimation in Censored Regression

• The linearity of the semiparametric accelerate
failure time makes it suitable for IV estimation

• Relies only on core IV assumptions, no structural
assumptions needed

Assumptions

• True data-generating model:
log T̃i = βXi + Ui, i = 1, . . . , n

• Where
1 Zi ⊥⊥ Ui
2 T̃i ⊥⊥ Zi|Xi, Ui
3 Xi 6⊥⊥ Zi

A key difference from typical survival assumptions:
4 Ci ⊥⊥ (Xi, Zi, Ui, T̃i) (The typical assumption is Ci ⊥⊥ T̃i|Xi)

• No structural assumptions regarding the relationship between X
and Z
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Rank-based IV estimator for the AFT model

Key Difference: instead of comparingXi with the averageX in the
residual risk set, we compare Zi with the average Z in the residual
risk set

UIV−IPCWn (β) =
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and

ε
β
i = log Ti − βXi is the residual for subject i

and GC is the Kaplan-Meier estimator for the
survival function of C

We need to use inverse probility of censoring weighting to account
for induced dependence of Ci on εβi

Inference via Bootstrap

Challenge: Too computationally demanding to resample the data
and solve a resampled equation many times
Instead: Relate the variance of

√
n(β̂ − β) to the variance of

n−1/2UIV−IPCWn (β)
The approach of (Zeng and Lin, 2008) only involves evaluations of
the estimating equation

Simulation

• T = exp {X + βUU + ε}
where

• X = αZ exp {Z} + αUU + ε∗ where ε, ε∗ ∼ N(0, 1), ε ⊥⊥ ε∗

• C ∼ exponential with rate parameter 1

Nonlinearity between Z and X to demonstrate structural
assumptions not necessary

Two other methods investigated:
• Rank-based IV estimator without inverse weighting (not

theoretically justified)
• Two stage procedure; replace X with predictions of X using

linear model with Z

αU = 0.5 αU = 1 αU = 1.5
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Method ● ● ● ●AFT AFT−IV AFT−2SLS AFT−IPCW

AFT AFT IV AFT 2SLS AFT IPCW
Sample Size Sample Size Sample Size Sample Size

αu βu αI 500 5000 500 5000 500 5000 500 5000

0.5 0.5 0.5 0.542 0.000 0.848 0.874 0.902 0.296 0.928 0.970

1 0.742 0.026 0.844 0.920 0.762 0.012 0.936 0.970

1 0.5 0.100 0.000 0.838 0.852 0.912 0.544 0.924 0.938

1 0.422 0.000 0.880 0.888 0.842 0.086 0.906 0.966

1 0.5 0.5 0.146 0.000 0.798 0.858 0.938 0.638 0.910 0.960

1 0.406 0.000 0.840 0.866 0.808 0.050 0.924 0.968

1 0.5 0.002 0.000 0.826 0.774 0.964 0.808 0.920 0.948

1 0.054 0.000 0.856 0.786 0.872 0.184 0.906 0.938

Table: Empirical Coverage, 95% Level. Simulations based on 500 simulated
datasets, 1000 bootstrap replications

Analysis of Medicare Enrollment Data

• Approximately 100k patients
• Approximately 44k deaths
• Surgeries performed between 2001 and 2008

and followed up until 2009

• Data includes 2,853 cases of abdominal aortic
rupture

• Primary outcome is all-cause survival time
• Demographic information as well as medical

information, including chronic conditions

• AAA Background
– Randomized controlled trials suggest

• a short term mortality reduction for EVAR (Prinssen et al., 2004)
• little difference long-term (Lederle et al., 2012)

– Observational studies utilizing propensity score-matched cohorts
(Schermerhorn et al., 2008) suggest
• EVAR has short-term benefits
• older patients benefit more from EVAR
• reinterventions are more common after EVAR

• Instrumental variable
– Proportion of EVAR surgeries to open surgeries at the institution in

which the patient received treatment

– Predictive of actual surgery received, indicating moderate instrument
strength

– Potential weaknesses:
• possibly institutions which perform one type of surgery often see more ill patients
• institutions which perform one type of surgery more often could perform them

better than other institutions

Analysis

Four approaches:
• Standard AFT

• AFT with IV and no inverse probability of censoring
weighting

• AFT two stage procedure (analogous to 2SLS)

• AFT with IV and inverse probability of censoring weighting
(our proposed method)

Estimates of EVAR Effect

Estimator β̂EV AR (95% Conf. Interval)

AFT 0.047 −0.063 0.144

AFT-IV −0.169 −0.420 0.080

AFT-2SLS −0.175 −0.432 0.074

AFT-IV-IPCW −0.156 −0.364 0.052

Table: Estimates of the effect of EVAR vs. open repair for rupture cases

Conclusions

• Analysis adjusting for unmeasured confounding suggests
there may be some benefit for open repair for rupture cases

• Suggests that more comprehensive treatment provided by
open repair leads to reduction in mortality for more serious
AAA cases

• Rupture cases are more serious than typical AAA cases;
conclusion may be different for non-rupture cases

• Our analysis is consistent with a recent study of ruptured
AAA which provides sensitivity analysis to bias due to
unmeasured confounding (Edwards et al., 2014)

Remaining Challenges

• Our estimating equation is not monotone and often has poor
behavior in small samples
– Monotonicity would also improve computation dramatically
– Could alleviate difficulties in analyzing entire dataset

• Sensitivity of the bootstrap procedure
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