1.2 The Classical Scientific Method and Statistical Inference

“The whole of science is nothing more than a refinement of everyday thinking.”

- Albert Einstein

Population of units

Random Variable X

$Hypothesis$ (about X)

EXPERIMENT

“What actually happens this time, regardless of hypothesis.”

THEORY

“What ideally must follow, if hypothesis is true.”

Random Sample (empirical data)

$n = \# \text{ observations}$

- x_1
- x_2 \ldots x_n
- x_3

Mathematical Theorem (formal proof)

Proof: If $Hypothesis$ (about X), then $Conclusion$ (about X).

QED

Decision: Accept or Reject $Hypothesis$

Analysis: Observed vs. Expected, under $Hypothesis$

“Is the difference statistically significant? Or just due to random, chance variation alone?”
Example:

Population of individuals

Hypothesis: “The prevalence (proportion) of a certain disease is 10%.”

Decision:
Reject Hypothesis

Based on our sample, the prevalence of this disease in the population is significantly higher than 10%, around 12%.

Theory
“What ideally must follow, if hypothesis is true.”

Experiment
“What actually happens this time, regardless of hypothesis.”

Random Sample
(empirical data)

\[n = 2500 \text{ individuals} \]

- Yes/No
- Yes/No
- Yes/No

Mathematical Theorem
(formal proof)

Suppose random variable \(X = \# \text{ Yes} = 300 \), i.e., estimated prevalence = \(\frac{300}{2500} = 0.12 \), or 12%.

If Hypothesis of 10% prevalence is true, then the “expected value” of \(X \) would be 250 out of a random sample of 2500.

Moreover, under these conditions, it can (and later will) be mathematically proved that the probability of obtaining a sample result that is as, or more, extreme than 12%, is only .00043 (the “p-value”), or less than one-twentieth of one percent. EXTREMELY RARE!!! Thus, our sample evidence is indeed statistically significant; it tends to strongly refute the original Hypothesis.