1.3 Definitions and Examples

Definition: A random variable, usually denoted by X, Y, Z,..., is a rule that assigns a number to each outcome of an experiment. (Examples: X = mass, pulse rate, gender)

Definition: Statistics is a collection of formal computational techniques that are designed to test and derive a (reject or “accept”) conclusion about a null hypothesis for a random variable defined on a population, based on experimental data taken from a random sample.

- Example: Blood sample taken from a patient for medical testing purposes, and results compared with ideal reference values, to see if differences are significant.

- Example: “Goldilocks Principle”

\[\text{POPULATION} = \text{swimming pool} \]

Random Variable

X = Water Temperature (°F)

(Informal) Null Hypothesis

H_0: “(The mean of) X is okay for swimming.” (e.g., $\mu = 80^\circ\text{F}$)

(Informal) Experiment

Select a random sample by sticking in foot and swishing water around.

(Informal) Analysis

Determine if the difference between the observed temperature and expected temperature under H_0 is significant.

Conclusion

If not, then accept H_0… Jump in!
If so, then reject H_0… Go jogging instead.

The following example illustrates the general approach used in formal hypothesis testing.

- Example: United States criminal justice system

\[\text{Null Hypothesis } H_0: \text{ “Defendant is innocent.”} \]

The burden of proof is on the prosecution to collect enough empirical evidence to try to reject this hypothesis, “beyond a reasonable doubt” (i.e., at some significance level).

Jodi Arias
CONVICTED
H_0 rejected
May 8, 2013

Casey Anthony
ACQUITTED
H_0 “accepted”
July 5, 2011
Example: Pharmaceutical Application

Phase III Randomized Clinical Trial (RCT)

- Used to compare “drug vs. placebo,” “new treatment vs. standard treatment,” etc., via randomization (to eliminate bias) of participants to either a treatment arm or control arm. Moreover, randomization is often “blind” (i.e., “masked”), and implemented by computer, especially in multicenter collaborative studies. Increasing use of the Internet!
- Standard procedure used by FDA to approve pharmaceuticals and other medical treatments for national consumer population.

POPULATION

Random Variable “\(X = \) cholesterol level (mg/dL)”

Drug \(\mu_1 \)
Placebo \(\mu_2 \)

RANDOM SAMPLES

Size \(n_1 \)
Size \(n_2 \)

\(\bar{x}_1 = 225 \)
\(\bar{x}_2 = 240 \)

Null Hypothesis

\(H_0: \) There is no difference in population mean cholesterol levels between the two groups, i.e.,
\[\mu_1 - \mu_2 = 0. \]

Is the mean difference statistically significant, (e.g., at the \(\alpha = .05 \) level)?
- If so, then reject \(H_0 \).
- If not, then “accept” \(H_0 \). There is not enough evidence of a genuine treatment difference.

More study needed?

\(\bar{x}_1 - \bar{x}_2 = -15 \)