7. Correlation and Regression

7.1 Motivation

Exercise: Algebraically expand the expression $(X - \mu_X)(Y - \mu_Y)$, and use the properties of mathematical expectation given in 3.1. This motivates an alternate formula for s_{xy}.

Exercise:
For the sake of simplicity, let us assume that the **predictor variable** X is nonrandom (i.e., deterministic), and that the **response variable** Y is random. (Although, the subsequent techniques can be extended to random X as well.)

Example: $X =$ fat (grams), $Y =$ cholesterol level (mg/dL)

Suppose the following sample of $n = 5$ data pairs (i.e., points) is obtained and graphed in a **scatterplot**, along with some accompanying summary statistics:

<table>
<thead>
<tr>
<th>X</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>210</td>
<td>200</td>
<td>220</td>
<td>280</td>
<td>290</td>
</tr>
</tbody>
</table>

$\bar{X} = 80 \quad s^2_x = 250$

$\bar{Y} = 240 \quad s^2_y = 1750$

Sample Covariance

$$s_{xy} = \frac{1}{5-1} \left[(60 - 80)(210 - 240) + (70 - 80)(200 - 240) + (80 - 80)(220 - 240) + (90 - 80)(280 - 240) + (100 - 80)(290 - 240) \right] = 600$$

As the name implies, the **variance** measures the extent to which a single variable varies (about its mean). Similarly, the **covariance** measures the extent to which two variables vary (about their individual means), *with respect to each other*.
Ideally, if there is no association of any kind between two variables X and Y (as in the case where they are independent), then a scatterplot would reveal no organized structure, and covariance = 0; e.g., $X =$ adult head size, $Y =$ IQ. Clearly, in a case such as this, the variable X is not a good predictor of the response Y. Likewise, if the variables $X =$ age, $Y =$ body temperature ($^\circ$F) are measured in a group of healthy individuals, then the resulting scatterplot would consist of data points that are very nearly lined up horizontally (i.e., zero slope), reflecting a constant mean response value of $Y = 98.6^\circ$F, regardless of age X. Here again, covariance = 0 (or nearly so); X is not a good predictor of the response Y. See figures.

However, in the preceding “fat vs. cholesterol” example, there is a clear “positive trend” exhibited in the scatterplot. Overall, it seems that as X increases, Y increases, and inversely, as X decreases, Y decreases. The simplest mathematical object that has this property is a straight line with positive slope, and so a linear description can be used to capture such “first-order” properties of the association between X and Y. The two questions we now ask are…

1) How can we measure the strength of the linear association between X and Y?

 Answer: Linear Correlation Coefficient

2) How can we model the linear association between X and Y, essentially via an equation of the form $Y = mX + b$?

 Answer: Simple Linear Regression

Caution: The covariance can equal zero under other conditions as well; see Exercise in the next section.
Before moving on to the next section, some important details are necessary in order to provide a more formal context for this type of problem. In our example, the response variable of interest is cholesterol level \(Y \), which presumably has some overall probability distribution in the study population. The mean cholesterol level of this population can therefore be denoted \(\mu_Y \) – or, recall, expectation \(E[Y] \) – and estimated by the “grand mean” \(\bar{Y} = 240 \). Note that no information about \(X \) is used.

Now we seek to characterize the relation (if any) between cholesterol level \(Y \) and fat intake \(X \) in this population, based on a random sample using \(n = 5 \) fat intake values (i.e., \(x_1 = 60, x_2 = 70, x_3 = 80, x_4 = 90, x_5 = 100 \)). Each of these fixed \(x_i \) values can be regarded as representing a different amount of fat grams consumed by a subpopulation of individuals, whose cholesterol levels \(Y \), conditioned on that value of \(X = x_i \), are assumed to be normally distributed. The conditional mean cholesterol level of each of these distributions could therefore be denoted \(\mu_{Y|x_i} \) – equivalently, conditional expectation \(E[Y|X = x_i] \) – for \(i = 1, 2, 3, 4, 5 \). (See figure; note that, in addition, we will assume that the variances “within groups” are all equal (to \(\sigma^2 \)), and that they are independent of one another.) If no relation between \(X \) and \(Y \) exists, we would expect to see no organized variation in \(Y \) as \(X \) changes, and all of these conditional means would either be uniformly “scattered” around – or exactly equal to – the unconditional mean \(\mu_Y \); recall the discussion on the preceding page. But if there is a true relation between \(X \) and \(Y \), then it becomes important to characterize and model the resulting (nonzero) variation.