The simplest way to understand computer code is by example. As an illustration, in order to run an independent two-sample \textit{t-test} on the example on page 6.3-12, copy and paste the following in \texttt{R}:

\begin{verbatim}
x1 = c(50, 53, 71)
x2 = c(1, 4, 25)
t.test(x1, x2, var.equal = T)
\end{verbatim}

You should obtain the following output:

\texttt{Two Sample t-test}
\texttt{data: x1 and x2}
\texttt{t = 4.8, df = 4, p-value = 0.008648}
\texttt{alternative hypothesis: true difference in means is not equal to 0}
\texttt{95 percent confidence interval:}
\texttt{20.23555 75.76445}
\texttt{sample estimates:}
\texttt{mean of x mean of y}
\texttt{58 10}

The option \texttt{var.equal = T} (True) specified in the command line indicates that we have equivariance, so that the \textit{t}-test can indeed be used (\texttt{var.equal = F} is the default, in which case the Satterwaithe test is used; see bottom of page 6.2-4).

Note that the highlighted portion above agrees exactly with the values in the notes, and \texttt{R} gives us the 95\% confidence interval as well. If we had wanted to run this as a \textit{paired} two-sample \textit{t-test} (not done in the notes), we would have typed the following.

\begin{verbatim}
t.test(x1, x2, var.equal = T, paired = T)
\end{verbatim}

\texttt{paired = F} is the default. There are also additional options for changing the confidence level from .95 (the default) to something else, the null value 0 (default) to some other value \(\mu_0\), etc. These and other options may be viewed by typing either \texttt{?t.test} or \texttt{help(t.test)}, and reading \textbf{Usage} and \textbf{Arguments} for the proper syntax, format, etc.