1. Two male ladybugs are sitting at opposite corners of a large window composed of individual square glass panes, as shown. At the same instant, they start walking at the same rate along the pane edges, one edge at a time, in the hope of eventually reaching the female sitting at the center of the window. At the start of every “move” along a single edge, each male randomly – and independently – selects only either the horizontal or vertical direction shown, each with the probability indicated. However, the female is only willing to wait for each male to complete a total of $n = 5$ horizontal and vertical moves along the edges, before she becomes impatient and flies away. Given this information, answer each of the following.

[Hint: Let the random variable $X_1 =$ “number of ‘→’ moves in $n = 5$ independent moves by Male 1,” and $X_2 =$ “number of ‘←’ moves in $n = 5$ independent moves by Male 2.”]

In order for either male to reach the female in $n = 5$ moves, he must make $X = 3$ horizontal moves and $5 − X = 2$ vertical moves, in any combination.

Let event $M_1 =$ “$X_1 = 3$” = “Male 1 reaches the female in $n = 5$ moves,” and likewise, let event $M_2 =$ “$X_2 = 3$” = “Male 2 reaches the female in $n = 5$ moves.”

(a) Calculate the probability that Male 1 meets the female in $n = 5$ moves. (5 pts)

$$P(M_1) = P(X_1 = 3) = \binom{5}{3} 0.6^3 0.4^2 = 0.3456$$

(b) Calculate the probability that Male 2 meets the female in $n = 5$ moves. (5 pts)

$$P(M_2) = P(X_2 = 3) = \binom{5}{3} 0.4^3 0.6^2 = 0.2304$$

(c) Calculate the probability that both males meet the female in $n = 5$ moves. (5 pts)

Via independence, $P(M_1 \cap M_2) = P(M_1)P(M_2) = 0.3456 \times 0.2304 = 0.0796$.

(d) Calculate the probability that neither male meets the female in $n = 5$ moves. (5 pts)

Via independence,

$$P(M_1^c \cap M_2^c) = P(M_1^c)P(M_2^c) = 1 − 0.3456 \times 1 − 0.2304 = 0.6544 \times 0.7696 = 0.5036.$$
(e) Calculate the probability that only Male 1 meets the female in $n = 5$ moves. (5 pts)

\[P(M_1 \cap M_2^c) = P(M_1^c) P(M_2^c) = 0.3456 \times 1 - 0.2304 = 0.3456 	imes 0.7696 = 0.2660 \]

(f) Calculate the probability that only Male 2 meets the female in $n = 5$ moves. (5 pts)

\[P(M_1^c \cap M_2) = P(M_1^c) P(M_2) = 1 - 0.3456 \times 0.2304 = 0.6544 \times 0.2304 = 0.1508 \]
2. (a) An experiment involving a fair deck of 52 cards is to be conducted. Cards will be randomly selected from the deck \textit{with replacement}. The random variable of interest is $X =$ “Number of trials until a ‘face card’ (i.e., Jack, Queen, or King) first appears.”

Can the resulting outcomes be considered a sequence of Bernoulli trials? Be specific!

\textbf{Yes!} Each outcome is independent of the others; since this is conducted \textit{with replacement}, the probability of “Success” (i.e., “face card”) does not change!

Which probability distribution is the most appropriate to model this experiment? Determine all parameter values. That is, $X \sim ?$

\textbf{Geometric distribution, with $P(\text{Success}) = \frac{12}{52}$}.

Calculate the probability that a face card will first appear on the fourth trial. Show all work…

\begin{align*}
p(4) &= P(X = 4) = \left(\frac{40}{52} \right)^3 \left(\frac{12}{52} \right) = 0.10504
\end{align*}

(b) A second experiment involving the same deck is to be conducted. Cards will be randomly selected from the deck, but \textit{without replacement}, until a “face card” (i.e., Jack, Queen, or King) first appears.

Can the resulting outcomes be considered a sequence of Bernoulli trials? Be specific!

\textbf{No!} Each outcome is not independent of the others; since this is conducted \textit{without replacement}, the probability of “Success” (i.e., “face card”) on each trial affects that of the next trial.

Calculate the probability that a face card will first appear on the fourth trial. Show all work…

\begin{align*}
\text{Now, } P(X = 4) &= \left(\frac{40}{52} \right) \left(\frac{39}{51} \right) \left(\frac{38}{50} \right) \left(\frac{12}{49} \right) = 0.10948
\end{align*}

(c) Suppose that in general, a population of finite size N units contains s “Successes.” Units are to randomly drawn from the population \textit{without replacement}.

Formally prove that the random variable $X =$ “Number of trials until the first Success appears” has pmf

\begin{align*}
p(x) &= P(X = x) = \binom{N - x}{s - 1} \binom{s}{x} \quad \text{for } x = 1, 2, 3, 4, \ldots
\end{align*}

\textbf{Hint:} Start by generalizing the procedure in (b), then apply some algebra.
Proof: For $x = 1, 2, 3, 4, \ldots$ the probability of achieving the first Success after $(x-1)$ Failures without replacement would be

\[p(x) = \frac{(N-s)!}{N!/(N-s)!} \times \frac{(N-s-x+1)!}{(N-x)!} \times \frac{s}{(s-1)!/N!/(N-s)!} \]

\[= \frac{(N-x)!}{(N-s-x+1)!} \times \frac{s}{N!/(N-s)!} \]

\[= \frac{(N-x)!}{(N-s-x+1)!} \times \frac{s!}{(s-1)!/N!/(N-s)!} \]

\[= \frac{(N-x)!}{(N-s-x+1)!} \times \frac{s!}{(s-1)!/N!/(N-s)!} \]

\[= \left(\frac{N-x}{s-1} \right) \frac{1}{\binom{N}{s}} \times \frac{n!}{k!(n-k)!} \]

QED

(d) Use this formula to recalculate the probability in (b), and show agreement in your answers.

\[N = 52, s = 12, x = 4: \quad p(4) = P(X = 4) = \frac{\binom{48}{11}}{\binom{52}{12}} = \frac{22595200368}{206379406870} = 0.10948, \text{ which agrees with (b).} \]
3.

(a) Starting from 0, a flea randomly jumps either one unit or three units to the right, with fixed probability p or $1 - p$ respectively, as shown in the probability histogram below.* Also shown is the accompanying pmf chart, for the random variable $X = \text{“Number of units jumped.”}$

\[
\begin{array}{c|c}
 x & p(x) \\
\hline
1 & p \\
3 & 1 - p \\
\end{array}
\]

\[E[X] = \sum x p(x) = 1(p) + 3(1 - p) = 3 - 2p \]

(b) Starting from 0, an ant crawls horizontally, and can randomly stop anywhere (Y) in the interval $[0, 4]$, with corresponding probability given by the piecewise uniform pdf $f(y) = \begin{cases}
\frac{p}{2}, & 0 \leq y < 2 \\
1 - \frac{p}{2}, & 2 \leq y \leq 4
\end{cases}$ (and 0 elsewhere), as illustrated below.*

* As usual, $0 < p < 1$. The illustration shown is for $0 < p < 0.5$ without loss of generality, for if $0.5 < p < 1$, the heights are just reversed.
Calculate the expected distance crawled, i.e., the mean of \(Y \), in terms of \(p \). Verify that this mean is the same as in (a), and give a brief explanation for why this should be. (It does not have to be mathematically rigorous.) Show all work! (5 pts)

\[
\mu_y = E[Y] = \int_{-\infty}^{\infty} y f(y) \, dy = \int_{0}^{2} y \left(\frac{p}{2} \right) \, dy + \int_{2}^{4} y \left(\frac{1-p}{2} \right) \, dy
\]

\[
= \left(\frac{p}{2} \right) \int_{0}^{2} y \, dy + \left(\frac{1-p}{2} \right) \int_{2}^{4} y \, dy
\]

\[
= \left(\frac{p}{2} \right) \left[\frac{y^2}{2} \right]_{0}^{2} + \left(\frac{1-p}{2} \right) \left[\frac{y^2}{2} \right]_{2}^{4}
\]

\[
= \frac{p}{2} \left[\frac{2^3}{3} \right] + \frac{1-p}{2} \left[\frac{4^3}{2} \right] = p + 3(1-p) = \frac{3}{2} - 2p, \text{ which agrees with } \mu_x \text{ in (a}).
\]

This is not surprising, since from a physical perspective, both systems have their total mass \(1 \) distributed in exactly the same way. Hence the “balance point” must be the same for both.

Calculate the variance of \(Y \), in terms of \(p \). Express in simplest possible form. Show all work! (5 pts)

\[
\sigma_y^2 = E[Y^2] - (E[Y])^2 = \int_{-\infty}^{\infty} y^2 f(y) \, dy - \mu_y^2
\]

\[
= \int_{0}^{2} y^2 \left(\frac{p}{2} \right) \, dy + \int_{2}^{4} y^2 \left(\frac{1-p}{2} \right) \, dy - (3-2p)^2
\]

\[
= \frac{p}{2} \int_{0}^{2} y^2 \, dy + \frac{1-p}{2} \int_{2}^{4} y^2 \, dy - (3-2p)^2
\]

\[
= \frac{p}{2} \left[\frac{y^3}{3} \right]_{0}^{2} + \frac{1-p}{2} \left[\frac{y^3}{3} \right]_{2}^{4} - (3-2p)^2
\]

\[
= \frac{8}{3} \frac{p}{2} + \frac{28}{3} \frac{1-p}{2} - (3-2p)^2
\]

\[
= \frac{4}{3} p + \frac{28}{3} (1-p) - (9 - 12p + 4p^2)
\]

\[
= \frac{1}{3} + 4p - 4p^2 = \frac{1}{3} + 4p(1-p) \text{ (compare with } \sigma_x^2 \text{)}.
\]
Determine the cdf \(F(y) = P(Y \leq y) \), for all \(y \) in [0, 4], in terms of \(p \). Show all work! (10 pts)

- Clearly, since \(f(y) = 0 \) for all \(y < 0 \), it follows that \(F(y) = 0 \) there as well.
- Therefore, for any fixed but arbitrary \(0 \leq y < 2 \), it follows that \(F(y) = 0 + \) the area under \(f(y) = \frac{p}{2} \) from 0 to \(y \). Since this is a simple rectangular area, it can be found directly, without the use of calculus: base \(\times \) height = \((y-0)\left(\frac{p}{2}\right) \). Alternatively, \(F(y) = \int_0^y f(t) \, dt = \int_0^y \left(\frac{p}{2}\right) \, dt = \left[\frac{p}{2}t\right]_0^y = \left[\frac{p}{2}y\right] \). Note that \(F(0) = 0 \) and \(F(2) = p \), hence this is the equation of a straight line from (0, 0) to \((2, p)\), as shown below.

- Now for any fixed but arbitrary \(2 \leq y \leq 4 \), it follows that \(F(y) = F(2) + \int_2^y f(t) \, dt = p + \left(1 - \frac{p}{2}\right)(y-2) \) or written more conventionally, \(\left(1 - \frac{p}{2}\right)y + (2p - 1) \). Note that \(F(2) = p \) and \(F(4) = 1 \), hence this is the equation of a straight line from \((2, p)\) to \((4, 1)\), as shown below.

- Finally, \(f(y) = 0 \) for all \(y > 4 \), therefore \(F(y) = 1 \) there.

Combining these into a single formal statement, the complete description appears below:

\[
F(y) = \begin{cases}
0, & y < 0 \\
\frac{p}{2}y, & 0 \leq y < 2 \\
p + \left(1 - \frac{p}{2}\right)(y-2), & 2 \leq y \leq 4 \\
1, & y > 4
\end{cases}
\]

Sketch a labeled graph of the cdf below, for \(0 < p < 0.5 \). (5 pts)
(d) For all $0 < h < 2$, consider the interval $[2-h, 2+h]$, symmetric about $Y = 2$. Using the cdf found in (c), compute the probability $P(2-h \leq Y \leq 2+h)$ in terms of h, and confirm that it does not depend on the value of p. Show all work!

$$P(2-h \leq Y \leq 2+h) = P(Y \leq 2+h) - P(Y \leq 2-h)$$
$$= F(2+h) - F(2-h)$$
$$= \left[p + \left(\frac{1-p}{2}\right)h\right] - \left[\frac{p}{2}(2-h)\right]$$
$$= \frac{h}{2} \text{ for all } p.$$
4. The relation between the *continuous* variable “$X = \text{Foot Length (inches)}$” and the *discrete* variable “$Y = \text{Men’s Shoe Size}$” is shown in the two horizontal scales below. (For example, men’s shoe size 9 corresponds to foot length between $10\frac{2}{6}$ and $10\frac{3}{6}$ inches.) Suppose that in a certain population of men, X is normally distributed with mean $\mu = 11$ inches, and standard deviation $\sigma = \frac{2}{3}$ inches, i.e., $X \sim N(11, \frac{2}{3})$, as illustrated.

(a) Calculate the probability that a randomly selected man has a shoe size of 12 or larger. Show all work!

$Y = \text{Men’s Shoe Size (discrete)}$; $X = \text{Foot Length (continuous)} \sim N(11, \frac{2}{3})$.

$P(Y \geq 12) = P(X \geq 11\frac{2}{6}) = P\left(Z \geq \frac{11\frac{2}{6} - 11}{\frac{2}{3}}\right) = P(Z \geq 0.5) = 1 - 0.69146 = \boxed{0.30854}$

(b) Calculate the probability that a randomly selected man has a shoe size larger than 12. Show all work!

$P(Y > 12) = P(Y \geq 12\frac{1}{2}) = P(X \geq 11\frac{1}{2}) = P\left(Z \geq \frac{11\frac{1}{2} - 11}{\frac{2}{3}}\right) = P(Z \geq 0.75) = 1 - 0.77337 = \boxed{0.22663}$

(c) Calculate the probability that a randomly selected man has a shoe size of exactly 12. Show all work!

$P(Y = 12) = P(Y \geq 12) - P(Y > 12) = 0.30854 - 0.22663 = \boxed{0.08191}$

(d) Calculate the probability that a randomly selected man has a shoe size of exactly 12, given that his shoe size is 12 or larger. Show all work!

$P(Y = 12 \mid Y \geq 12) = \frac{P(Y = 12 \cap Y \geq 12)}{P(Y \geq 12)} = \frac{0.08191}{0.30854} = \boxed{0.2658}$