QUIZ – Basic Algebra

1. For any two nonzero values a and b, the expression $\frac{1}{a} + \frac{1}{b} = ?$
 (a) $\frac{2}{a+b}$
 (b) $\frac{1}{ab}$
 (c) $\frac{ab}{a+b}$
 (d) $\frac{a+b}{ab}$
 (e) None of the above

2. For any real value x, the expression $\sqrt{x^2} = ?$
 (a) x
 (b) $-x$
 (c) $\pm x$
 (d) $|x|$
 (e) None of the above

3. For any two real values x and y, the expression $\sqrt{x^2 + y^2} = ?$
 (a) $x+y$
 (b) $\pm(x+y)$
 (c) $|x+y|$
 (d) $|x|+|y|$
 (e) None of the above

4. Solve for p: $|p - 2| \leq 7$
 (a) 9
 (b) -5 and 9 are both solutions
 (c) $[-5,9]$
 (d) $(-\infty,-5] \cup [9,\infty)$
 (e) None of the above

5. Solve for p: $|p - 2| \leq -7$
 (a) 9
 (b) -5 and 9 are both solutions
 (c) $[-5,9]$
 (d) $(-\infty,-5] \cup [9,\infty)$
 (e) None of the above
6. Solve for z: $e^z = e^x + e^y$
 (a) $z = x + y$
 (b) $z = \ln(e^x + e^y)$
 (c) $z = \ln(x + y)$
 (d) $z = \ln(x) + \ln(y)$
 (e) None of the above

7. For any real value x, the expression $3\sqrt{-x^3} =$?
 (a) $-x$
 (b) $-|x|$
 (c) $|x|$
 (d) Does not exist
 (e) None of the above

8. Which of the following statements about logarithms is (are) TRUE?
 (a) $\log_b a = -\log_a b$
 (b) $\ln(x^r) = r \ln(x)$ for any value of r and nonnegative value x.
 (c) $\ln(x^r) = \ln(x)^r$ for any value of r and nonnegative value x.
 (d) Both (b) and (c)
 (e) None of the above

9. Which of the following statements is (are) TRUE about $f(x) = \frac{3x + 8}{x^2 - 4}$?
 (a) The graph of $f(x)$ passes through the origin.
 (b) $f(x)$ has vertical asymptotes at $x = \pm 2$.
 (c) The X-axis is a horizontal asymptote for $f(x)$.
 (d) Both (b) and (c)
 (e) None of the above

10. Which of the following statements is (are) TRUE about $g(x) = \frac{3x + 8}{x^2 + 4}$?
 (a) The graph of $g(x)$ passes through the origin.
 (b) $g(x)$ has vertical asymptotes at $x = \pm 2$.
 (c) The X-axis is a horizontal asymptote for $g(x)$.
 (d) Both (b) and (c)
 (e) None of the above