11 Regression

- The Correlation Coefficient
- The Least-Squares Regression Line

The Correlation Coefficient

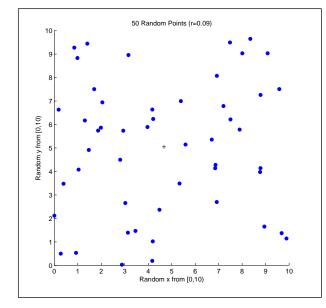
Introduction

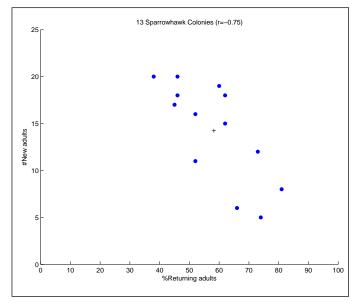
A bivariate data set consists of n ______, $(x_1, y_1), \cdots, (x_n, y_n)$. A scatterplot is a ______ of a bivariate data set.

e.g. Here are data for 13 sparrowhawk colonies relating the % of adult sparrowhawks in a colony that return from the previous year and the number of new adults that join the colony:

%Returning adults	74	66	81	52	73	62	52	45	62	46	60	46	38
#New adults	5	6	8	11	12	15	16	17	18	18	19	20	20

The right-hand scatterplot, below, is from these data. It shows \cdots





The Correlation Coefficient

The correlation coefficient, r, measures the _____ and ____ of the linear relationship (if any) between x and y:

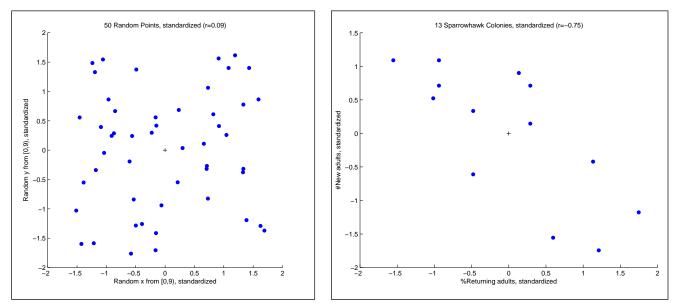
$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

An Informal Explanation of r

- Start with a scatterplot.
- Shift reference point to _____ by subtracting \bar{x} from each x_i and \bar{y} from each y_i .
- Rescale the x-axis by dividing each x coordinate by _____, and rescale the y-axis by dividing each y coordinate by s_y .

Now x coordinates, $\frac{x_i - \bar{x}}{s_x}$, have mean _____ and standard deviation _____. y coordinates, $\frac{y_i - \bar{y}}{s_y}$, have the same mean and standard deviation.

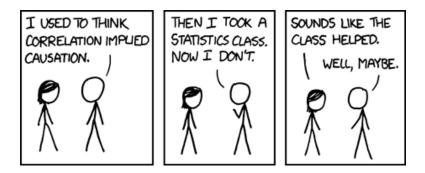
• Analyze the sign of the i^{th} term in the sum above, $\left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)$, by quadrant:



e.g. For the sparrowhawk data, r =_____. For the random data, r =_____.

Properties of r

- $-1 \le r \le 1$, and
 - $r = \pm 1 \implies \text{data are}$; $r \approx \pm 1 \implies \text{data are}$
 - $r \not\approx 0 \implies$ some linear relationship: x and y are correlated
 - $r > 0 \implies$ slope of line is _____
 - $r < 0 \implies$ slope of line is _____
 - $r \approx 0 \implies$ no linear relationship: x and y are _____
- r doesn't distinguish between _____ and _____
- r doesn't depend on _____ or _____



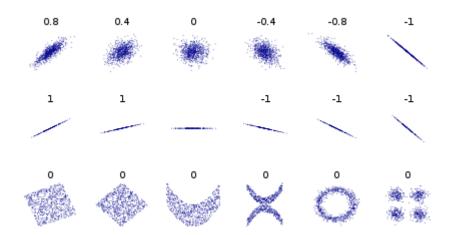
http://imgs.xkcd.com/comics/correlation.png

Cautions

• r measures strength of a *linear* relationship; check scatterplot to avoid using r for a _____

e.g. The data { (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4) } fit _____, but r = 0 because the data have no _____ relationship (draw).

e.g. (from http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient)



• r is not resistant to the influence of _____: don't use it for a data set with _____

e.g. Adding (0,0) to the sparrowhawk data changes r to _____.

• Correlation does not imply causation:

A _____ (or lurking) variable is one _____ under consideration that correlates with both the independent and dependent variables of interest.

e.g.

- Increasing ice cream sales are correlated with increasing ______ rates. Does ice cream cause _____? ____
- The confounding variable is _____.
- Sleeping with shoes on is correlated with ________.
 Does sleeping with shoes on cause _______? ______.
 The confounding variable is _______.

If either the independent variable under study, or a _____ confounding variable, affects the dependent variable, then both will seem to by the (_____) criterion of correlation.

____ cartoon

The Least-Squares Regression Line

A ______ line is one that describes how a dependent variable, y, changes as an independent variable, x, changes in a data set $(x_1, y_1), \dots, (x_n, y_n)$. We use it to predict y for a given x.

The *least-squares regression line* is the line that ______ the data (according to a reasonable criterion).

Notation includes:

- $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$: an unknown true (model) regression line, where β_0 is the *y*-intercept, β_1 is the slope, and ϵ_i is the *i*th random error
- $y = \hat{\beta}_0 + \hat{\beta}_1 x$: estimated regression line, where
 - -x: _________ variable
 - -y: dependent variable
 - $-\hat{\beta}_0$: estimated *y*-intercept
 - $-\hat{\beta}_1$: estimated _____
- (x_i, y_i) : i^{th} data point
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$: _______ value of y given $x = x_i$:
- $e_i = y_i \hat{y}_i$: residual, the difference between observed y_i and predicted \hat{y}_i ; estimates ϵ_i

We predict y from x, so minimize vertical error in the "least squares" sense by minimizing a "sum of squared errors"

$$SSE = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

(Alas, really it should be called a "sum of squared _____.") Ten lines of calculus gives:

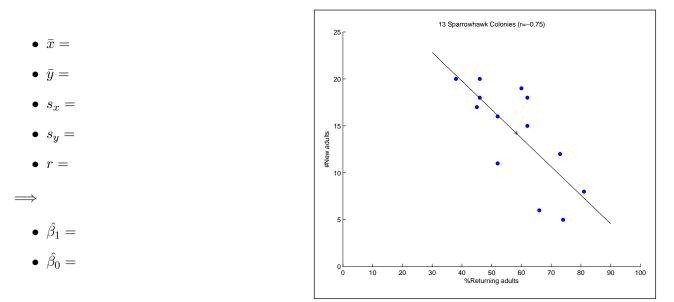
For the data set $(x_1, y_1), \dots, (x_n, y_n)$, the least-squares line is $y = \hat{\beta}_0 + \hat{\beta}_1 x$, where

$$\hat{\beta}_1 = \frac{s_y}{s_x} r \text{ (slope)}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \text{ (y-intercept)}$$

e.g. Here again are data for 13 sparrowhawk colonies relating the % of adults in a colony that return from the previous year and the number of new adults that join the colony:

x = %Returning adults	74	66	81	52	73	62	52	45	62	46	60	46	38
y = Wew adults	5	6	8	11	12	15	16	17	18	18	19	20	20

Use a calculator to find the least-squares line (recall slope $\hat{\beta}_1 = \frac{s_y}{s_x}r$, y-intercept $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$):



So our model is y =

Or we can do it more directly. (Figure out your _____ labels.)

e.g. Predict the number of new adults in a colony to which 60% of last year's adults return.

 $\hat{y} =$ _____

R code for correlation and regression