
11 Regression

• The Correlation Coefficient

• The Least-Squares Regression Line

The Correlation Coefficient

Introduction

A bivariate data set consists of n , (x1, y1), · · · , (xn, yn).

A scatterplot is a of a bivariate data set.

e.g. Here are data for 13 sparrowhawk colonies relating the % of adult sparrowhawks in a colony
that return from the previous year and the number of new adults that join the colony:

%Returning adults 74 66 81 52 73 62 52 45 62 46 60 46 38
#New adults 5 6 8 11 12 15 16 17 18 18 19 20 20

The right-hand scatterplot, below, is from these data. It shows · · ·
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The Correlation Coefficient

The correlation coefficient, r, measures the and of the linear
relationship (if any) between x and y:

r =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)

An Informal Explanation of r

• Start with a scatterplot.

• Shift reference point to by subtracting x̄ from each xi and ȳ from each yi.

• Rescale the x-axis by dividing each x coordinate by , and rescale the y-axis by
dividing each y coordinate by sy.

Now x coordinates, xi−x̄
sx

, have mean and standard deviation . y coordinates,
yi−ȳ
sy

, have the same mean and standard deviation.

• Analyze the sign of the ith term in the sum above,
(
xi−x̄
sx

)(
yi−ȳ
sy

)
, by quadrant:
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e.g. For the sparrowhawk data, r = . For the random data, r = .
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Properties of r

• −1 ≤ r ≤ 1, and

r = ±1 =⇒ data are ; r ≈ ±1 =⇒ data are

r 6≈ 0 =⇒ some linear relationship: x and y are correlated

r > 0 =⇒ slope of line is

r < 0 =⇒ slope of line is

r ≈ 0 =⇒ no linear relationship: x and y are

• r doesn’t distinguish between and

• r doesn’t depend on or

http://imgs.xkcd.com/comics/correlation.png
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Cautions

• r measures strength of a linear relationship; check scatterplot to avoid using r for a

e.g. The data { (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4) } fit , but r = 0 because
the data have no relationship (draw).

e.g. (from http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient)

• r is not resistant to the influence of : don’t use it for a data set with

e.g. Adding (0, 0) to the sparrowhawk data changes r to .

• Correlation does not imply causation:

A (or lurking) variable is one under consideration that
correlates with both the independent and dependent variables of interest.

e.g.

– Increasing ice cream sales are correlated with increasing rates. Does ice
cream cause ?

The confounding variable is .

– Sleeping with shoes on is correlated with .
Does sleeping with shoes on cause ?

The confounding variable is .

If either the independent variable under study, or a confounding variable,
affects the dependent variable, then both will seem to by the ( ) criterion of
correlation.

cartoon

4



The Least-Squares Regression Line

A line is one that describes how a dependent variable, y, changes as an independent
variable, x, changes in a data set (x1, y1), · · · , (xn, yn). We use it to predict y for a given x.

The least-squares regression line is the line that the data (according to a
reasonable criterion).

Notation includes:

• yi = β0 + β1xi + εi: an unknown true (model) regression line,
where β0 is the y-intercept, β1 is the slope,
and εi is the ith random error

• y = β̂0 + β̂1x: estimated regression line, where

– x: variable

– y: dependent variable

– β̂0: estimated y-intercept

– β̂1: estimated

• (xi, yi): i
th data point

• ŷi = β̂0 + β̂1xi: value of y given x = xi:

• ei = yi − ŷi: residual, the difference between observed yi and predicted ŷi; estimates εi

We predict y from x, so minimize vertical error in the “least squares” sense by minimizing a “sum
of squared errors”

SSE =
∑

e2
i =

∑
(yi − ŷi)2 =

∑
(yi − β̂0 − β̂1xi)

2

(Alas, really it should be called a “sum of squared .”) Ten lines of calculus gives:

For the data set (x1, y1), · · · , (xn, yn), the least-squares line is y = β̂0 + β̂1x, where

β̂1 =
sy
sx
r (slope)

β̂0 = ȳ − β̂1x̄ (y-intercept)
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e.g. Here again are data for 13 sparrowhawk colonies relating the % of adults in a colony that
return from the previous year and the number of new adults that join the colony:

x = %Returning adults 74 66 81 52 73 62 52 45 62 46 60 46 38
y = #New adults 5 6 8 11 12 15 16 17 18 18 19 20 20

Use a calculator to find the least-squares line (recall slope β̂1 =
sy
sx
r, y-intercept β̂0 = ȳ − β̂1x̄):

• x̄ =

• ȳ =

• sx =

• sy =

• r =

=⇒

• β̂1 =

• β̂0 =
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So our model is y =

Or we can do it more directly. (Figure out your labels.)

e.g. Predict the number of new adults in a colony to which 60% of last year’s adults return.

ŷ =

R code for correlation and regression

returning = c(74,66,81,52,73,62,52,45,62,46,60,46,38)

new = c( 5,6,8,11,12,15,16,17,18,18,19,20,20)

cor(x=returning, y=new) # cor() gives correlation

model = lm(new ~ returning) # lm(y ~ x) gives linear model

model

plot(x=returning, y=new, xlim=c(0, 85), ylim=c(0, 35)) # scatterplot

abline(model) # abline() adds line

summary(model) # test H_0: beta_i = 0

confint(model) # CIs for beta_i
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