# 12 Chi-squared ( $\chi^2$ ) Tests for Goodness-of-fit and Independence

The chi-squared tests are for  $H_0$ : "The frequency distribution of \_\_\_\_\_\_ events observed in a sample is \_\_\_\_\_\_ with a particular distribution" against  $H_A$ : "Not  $H_0$ ". We consider two of its forms: the test for goodness-of-fit of counts for one categorical variable to a distribution and the test for independence of two categorical variables.

Each uses a *chi-square* statistic of the form

$$X^{2} = \sum \frac{\left[ \text{(observed count)} - (\text{expected count})\right]^{2}}{\text{expected count}}$$

This is a measure of \_\_\_\_\_

If expected counts are all at least \_\_\_\_\_, and under a suitable  $H_0$ , then  $X^2$  fits a  $\chi^2$  distribution.

#### The Chi-Square Distributions

(Background: if  $Z_1, \dots, Z_{\nu}$  are independent, N(0, 1) random variables, then  $X^2 = \sum_{i=1}^{\nu} Z_i^2 \sim \chi_{\nu}^2$ .) A  $\chi^2$  distribution is specified by its degrees of freedom,  $\nu$ . Here are some of its properties:

- $X^2 \ge 0$  (it's a measure of distance)
- $X^2 = 0 \implies$  observed and expected counts are \_\_\_\_\_
- Large  $X^2 \implies$  observed counts aren't \_\_\_\_\_
- Each  $\chi^2_{\nu}$  density function is skewed \_\_\_\_\_



• The  $\chi^2$  table gives, in row \_\_\_\_ and column \_\_\_\_, the point  $\chi^2_{\nu,\alpha}$  with area  $\alpha$  to its right. e.g.  $\chi^2_{6,05} = \_____$  (draw)

#### The Chi-Square Test For Goodness-of-Fit

Recall the z-test for a population proportion,  $H_0: \pi = \pi_0$  vs.  $H_A: \pi \neq \pi_0$ , for which an outcome takes one of \_\_\_\_\_\_ values, success or failure. The *chi-square test for goodness-of-fit* generalizes to the case of an outcome taking any of \_\_\_\_\_\_ values of a categorical variable, testing  $H_0$ : "These categorical data came from the specified distribution" vs.  $H_A$ : \_\_\_\_\_\_.

e.g. The Nice family gives trick-or-treaters a scoop of \_\_\_\_\_\_ M&Ms. The Naughty family gives \_\_\_\_\_\_ M&Ms. Anna, Teresa, Margaret, Monica, Andrew, Mary, and Philip return from trick-or-treating, and their father says, "Where did you get the M&Ms?" They know they visited only one of the Nice and Naughty homes, but can't remember which one. Their father says, "Throw away the M&Ms." The children \_\_\_\_\_. Their mother (a \_\_\_\_\_\_) says, "Let's figure out their source." She investigates and finds these color distributions:

|                          | Brown | Yellow | Green | Red | Total      |
|--------------------------|-------|--------|-------|-----|------------|
| Nice supply              | 20%   | 25%    | 40%   | 15% | 100%       |
| Naughty supply           | 50%   | 20%    | 10%   | 20% | 100%       |
| Anna,, & Philip (sample) | 12    | 15     | 17    | 6   | <i>n</i> = |

From which family did the kids get their M&Ms?

Test  $H_0$ : "The kids got M&Ms from the Nice family" vs.  $H_A$ : "They did not".

### **Expected Counts**

Let k = #category values = \_\_\_\_\_. If n is the sample size and  $\pi_i$  is the expected proportion in category i under  $H_0$ , the *expected count* of each type is  $E_i = \____$ . The test statistic is  $X^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$ , whose value for the M&Ms is  $\chi^2 =$ 

Under  $H_0$ ,  $X^2 \sim \chi^2_{\nu}$ , where  $\nu = k - 1 =$ \_\_\_\_\_. The *P*-value is  $P(X_3^2 >$ \_\_\_\_\_) = \_\_\_\_\_. Conclusion:

Next, test  $H_0$ : "The kids got M&Ms from the Naughty family" vs.  $H_A$ : "They did not". Here  $\chi^2 =$ 

The *P*-value is  $P(X_3^2 > \__) = \____$ . Conclusion:

### The Chi-Square Test for Independence

The chi-square test for independence tests  $H_0$ : "Categorical variables A and B are independent" against  $H_A$ : "There is \_\_\_\_\_\_ between A and B".

e.g. Here is a *contingency table* of \_\_\_\_\_\_ that relates the education level and smoking status of a SRS of 459 French men. Are education and smoking related?

|            | Smoking status |        |          |       |       |
|------------|----------------|--------|----------|-------|-------|
| Education  | Nonsmoker      | Former | Moderate | Heavy | Total |
| Primary    | 56             | 54     | 41       | 36    |       |
| Secondary  | 37             | 43     | 27       | 32    | 139   |
| University | 53             | 28     | 36       | 16    | 133   |
| Total      |                | 125    | 104      | 84    |       |

Test  $H_0$ : "Education and smoking \_\_\_\_\_" vs.  $H_A$ : "There's \_\_\_\_\_" between education and smoking".

#### **Expected Counts**

| Under $H_0$ , $P(Primary and Nonsmoker) =$ | <br>, so the expected |
|--------------------------------------------|-----------------------|
| count in the Primary / Nonsmoker cell is   |                       |

More generally, let

- $O_{ij} =$ \_\_\_\_\_ count in row *i* and column *j*
- $O_{i.} = \_$  *i* total,  $O_{.j} = \_$  *j* total
- $O_{\ldots} =$ \_\_\_\_\_\_ total
- *I* = #\_\_\_\_, *J* = #\_\_\_\_\_

Then, under  $H_0$ , the *expected cell count* in row *i* and column *j* is  $E_{ij} = \frac{O_{i.}O_{.j}}{O_{..}} = \frac{(\text{row total})(\text{column total})}{\text{table total}}$ . Here are the 12 expected counts:

|            | Smoking status |        |          |       |       |
|------------|----------------|--------|----------|-------|-------|
| Education  | Nonsmoker      | Former | Moderate | Heavy | Total |
| Primary    |                | 50.9   | 42.4     | 34.2  | 187   |
| Secondary  | 44.2           | 37.9   | 31.5     | 25.4  | 139   |
| University | 42.3           | 36.2   | 30.1     |       | 133   |
| Total      | 146            | 125    | 104      | 84    | 459   |

The chi-square statistic is  $X^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$ . For the smokers, its value  $\chi^2$  has 12 terms:

|            | Smoking status |        |          |       |  |
|------------|----------------|--------|----------|-------|--|
| Education  | Nonsmoker      | Former | Moderate | Heavy |  |
| Primary    |                | .19    | .04      | .09   |  |
| Secondary  | 1.2            | .7     | .6       | 1.7   |  |
| University | 2.7            | 1.9    | 1.1      |       |  |

The table sum is  $\chi^2 = 13.3$ . The required degrees of freedom is  $\nu = (\# \text{rows - 1})(\# \text{columns - 1}) =$ \_\_\_\_\_, and the *P*-value is  $P(X_6^2 > 13.3) =$ \_\_\_\_\_.

Conclusion:

## ${\bf R}$ for $\chi^2$ tests

rm(list=ls()) # Remove all variables to start with a clean slate.

# Test goodness-of-fit of kids' sample of M&Ms to Nice distribution. kids.sample = c(12,15,17,6) Nice.population = c(.20, .25, .40, .15) chisq.test(x=kids.sample, p=Nice.population)

```
# Make comparative bar plots.
colors = c("Brown", "Yellow", "Green", "Red")
layout(matrix(data=1:2, nrow=2, ncol=1)) # Allow two graphs in one plot.
barplot(height=kids.sample, names.arg=colors, main="M&M's sample")
barplot(height=Nice.population, names.arg=colors, main="Nice population")
layout(1) # Return to one graph per plot.
```

```
# Do it again for the Naughty population.
Naughty.population = c(.50, .20, .10, .20)
```

```
layout(matrix(data=1:2, nrow=2, ncol=1)) # Allow two graphs in one plot.
barplot(height=kids.sample, names.arg=colors, main="M&M's sample")
barplot(height=Naughty.population, names.arg=colors, main="Naughty population")
layout(1) # Return to one graph per plot.
```

```
chisq.test(x=kids.sample, p=Naughty.population)
```

```
# Test independence of education and smoking.
```