S	urvey
	is "the most important science in the whole world: for it gives the results of our experience." rence Nightingale (1820-1910)
1 Intro	oduction and Vocabulary
• Pop	ulation and parameter vs. sample and statistic
_	A population is the set of objects being studied. A is a numeric summary of a population. e.g.
_	A is an observed subset of a population. A <i>statistic</i> is a numeric
	summary of a sample. e.g.
• Dat	a types
_	With numeric data, each item is assigned The possible values of discrete data can be arranged in a (finite or infinite) The possible values of continuous data: between any two there's a third. e.g.
_	With data, each item is assigned a category. Ordinal values have a natural order, while nominal do not. e.g.

- Use ______ statistics (§2) consisting of graphical and numeric summaries to describe observed data. e.g. - Use ______ statistics to make probabilistic claims ($\S 3,\,4$) about a population, in light of a sample drawn from it. * A point estimate (§5) is a ______ used to estimate a _____. e.g. * A confidence interval (§5, 7-9) is a range of ______ for a parameter in light of a sample. e.g. * In a hypothesis ______ (§6-12), we write a hypothesis and then evaluate a sample. We then reject the hypothesis as unbelievable or retain it as plausible in light of the data. e.g. * In a linear ______ model (§11) we estimate and make claims about the slope and intercept of a line relating one variable, y, to another, x. e.g.

• Statistical methods

Course outline:

- 1 Introduction
- 2 Descriptive statistics
- 3 Probability
- 4 Random Variables and Distributions
- 5 Estimation and Known- σ Confidence Interval for μ
- 6 Hypothesis Testing: Definitions and a Known- σ Test for μ
- 7 More One-Sample Confidence Intervals and Tests
- 8 Comparing Two Populations via Independent Samples
- 9 Comparing Two Populations via a Paired Sample
- 10 Comparing Several Populations via Several Independent Samples (ANOVA)
- 11 Correlation and Regression
- 12 Goodness-of-Fit and Independence Tests

Syl	la	bı	18
\sim . $^{\circ}$		\sim	

•	Bring your	$_$ and		to discussion.
---	------------	----------	--	----------------