
5 Estimation

Simple random sample

A simple random sample (SRS) of size n is a sample chosen so that each subset of n individuals is
. To draw a simple random sample of size n from a population of size N ,

• number individuals in population with 1 through N

• generate n distinct random integers in , and use the corresponding individuals

Each sample in this course is (assumed to be) a simple random sample. (Was the sample in the
article you just read an SRS? If not, the conclusion may be .)

A note on independence in an SRS

Many theorems require the independence of items in a random sample. Two random variables
are independent if the realization of either one does not change the distribution of the other. e.g.

• Independent RVs:

• Dependent RVs:

An SRS is drawn , that is, an item is not replaced in the population
after it is selected (so it cannot be selected more than once).

Note: Items in an SRS are not independent, but they’re approximately independent if the sample
size is relative to the population size (which it should always be in this course).

Estimating a population mean, µ

e.g. A car manufacturer uses an automatic device to paint engine blocks. Since engine blocks get
hot, the paint must be heat-resistant and thin. A warehouse contains thousands of painted blocks.
The manufacturer wants to know the average amount of paint applied, so 16 blocks are selected at
random, and the paint thickness is measured in mil ( 1

1000 inch):

1.29, 1.12, 0.88, 1.65, 1.48, 1.59, 1.04, 0.83, 1.76, 1.31, 0.88, 1.71, 1.83, 1.09, 1.62, 1.49

0.0 0.5 1.0 1.5 2.0

Paint thickness (mil)

●●● ●● ●●● ●●● ● ●● ●●



Before sampling, we regardX1, . . . , X16 as independent and identically distributed with
mean µ and variance σ2. How should we estimate µ? Estimator µ̂= .

Note that an is the formula that describes how the sample will be used to compute
a guess about µ; it’s a random variable. The number computed from the actual sample data is an

, a realization of that RV. Our estimate is (draw).

Theorem: If X1, . . . , Xn are independent and identically distributed with mean µ and variance σ2,
then X̄ = 1

n

∑n
i=1Xi has mean E(X̄) = , variance VAR(X̄) = , and standard

deviation SD(X̄) = .

Proof:

A point estimate alone isn’t very useful. Reporting it with its estimated standard deviation is
useful, but it’s more common to report a around a point estimate:
coming soon.

Did our sample come from a normal distribution?

In many common situations, it is reasonable to assume that our sample is from a
population. This leads to a strong statement about the distribution of the sample mean:

Theorem: If X1, . . . , Xn is a simple random sample from a normal population with mean µ and

variance σ2 (so Xi ∼ N(µ, σ2)), then X̄ ∼ N
(
µ, σ

2

n

)
.

(The proof is omitted.)

Soon we will use this theorem to derive a confidence interval. First, let’s look at one way to assess
whether a particular sample came from a normal population.



Normal probability plots

Many textbooks and statisticians use a normal probability plot (or normal quantile-quantile plot or
normal QQ plot) to decide whether a data set is plausibly a simple random sample of size n from
a . This plot depicts the 1

n ,
2
n ,

3
n , . . . ,

n
n quantiles from N(0, 12) on

the x-axis against the sorted data set (≈ the corresponding quantiles of the population from which
the sample was drawn) on the y-axis. The idea is that, if the points more-or-less ,
the data are from a normal distribution. If the points do not line up, the data are

a normal distribution. Here are some details:

normal: N(0, 1)
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right−skewed: e.g. exp(N(0, 1))
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For large samples, this seems . For small samples, I’m , as I can’t
tell the difference between in sampling and non-normality in the
population.

e.g. In R, try n = 1000; x = rnorm(n); qqnorm(x). Then try n = 10 or n = 30 many times.
Also try replacing rnorm with runif (thin tails, uniform(0, 1)) and rlnorm (right-skewed, exp(N(0, 1))).



The Central Limit Theorem

The Central Limit Theorem (CLT) says that the mean, X̄, of a large enough sample from (almost)
distribution with finite µ and σ, is ≈ :

If X1, · · · , Xn is a simple random sample from almost any population with finite mean µ and

standard deviation σ, and n is , then X̄ ∼ N
(
µ, σ

2

n

)
(≈).

(The proof is omitted. Don’t miss the .)

(n > 30 often counts as “large enough”.)

e.g. Here is a simulation of the generation of many random samples from the discrete distribution
with mass function p(x) = 1

10 for x ∈ {0, 1, · · · , 9} (and 0 otherwise):
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(0) uniform distribution of X = random digit; mu=4.50, sigma=2.87
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(1) histogram of X−bar for sample size 1 (nTrials=1000); mean=4.38, std=2.8
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(2) histogram of X−bar for sample size 5 (nTrials=1000); mean=4.54, std=1.3
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(3) histogram of X−bar for sample size 30 (nTrials=1000); mean=4.49, std=0.5
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(4) histogram of X−bar for sample size 100 (nTrials=1000); mean=4.50, std=0.3

e.g. An insurance company knows that in the population of millions of homeowners, the mean
annual loss from fire is µ = $250 and the standard deviation is σ = $1000. (The loss distribution is
strongly right-skewed, since most policies have no loss but a few have large losses.) If the company
sells 10,000 policies, can it safely base its rates on the assumption that the average loss will be no
greater than $275?



Confidence Intervals for an Unknown Population Mean µ

We have two situations in which X̄ ∼ N(µ, σ2/n): (1) the population is N(µ, σ2), for small or large
n; then “∼”, above, is exact. (2) The sample size n is large enough that CLT applies: then “∼”

above is approximate. Suppose, then, that X̄ ∼ N(µ, σ
2

n ).

Here we construct an interval around X̄ which contains µ for a proportion 1−α of random samples,
where α ∈ (0, 1). 100%(1− α) is the confidence level of the interval.

Let zα/2 = z-score cutting off right tail area from N(0, 1) (draw).

e.g. For the conventional confidence level 95%, α = and zα/2 = .

Then P (−zα/2 < Z < zα/2) = 1− α (draw). Substitute Z = X̄−µ
σX̄

(where σX̄ = σ√
n

) to get

P (−zα/2 < X̄−µ
σX̄

< zα/2) = 1− α, which we solve in two ways:

• for X̄ in the middle: P (µ− zα/2σX̄ < X̄ < µ+ zα/2σX̄) = 1− α (see picture)

• for µ: P (X̄ − zα/2σX̄ < µ < X̄ + zα/2σX̄) = 1− α (see picture)

For this x̄, µ is the confidence interval. This happens with probability .
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µ− zα/2 σ√
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X̄ ∼ N(µ, σ2/n)
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For this x̄, µ is the confidence interval. This happens with probability .
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n

x̄+ zα/2
σ√
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Summary:

If X1, . . . , Xn is a simple random sample from N(µ, σ2) or n is large (say n > 30), and σ is known,
then X̄ ± zα/2

σ√
n

contains µ for a proportion 1 − α of random samples. It’s the 100%(1 − α)

confidence interval for µ.

This form is useful when we know σ, which is .

e.g. Suppose we know σpaint thickness = 0.30 mil. Find a 95% CI for µ.

n = ; Is n large enough or is sample from normal population? (Try qqnorm(paint).)

1− α = =⇒ α = =⇒ zα/2 =

x̄ = , error margin =

x̄± zα/2 σ√
n

=

With what probability does our interval contain µ?

How Confidence Intervals Behave

• X̄ ± σ√
n

is a 68% confidence interval for µ

• X̄ ± 1.96 σ√
n

is a 95% confidence interval for µ (and 1.96 ≈ )

• X̄ ± σ√
n

is a 99% confidence interval for µ

• X̄ ± σ√
n

is a 99.7% confidence interval for µ

We want high confidence and a small margin of error, but the margin is zα/2
σ√
n

, which gets smaller

when zα/2 gets smaller, which corresponds to (1 − α) getting smaller too. Extreme cases are that
we can have confidence approaching 100% as the margin approaches , or we can
have confidence approaching as the margin approaches 0.

Choosing the Sample Size

Good news is that the margin also gets smaller as . For a desired
margin of error m, we can find the required sample size:

m = zα/2
σ√
n

=⇒

(Use σ ≈ s in the usual case where we don’t know σ.)

e.g. What sample size is required to reduce the error margin of the paint thickness 95% confidence
interval, above, to 0.1 mil?


