
7 More One-Sample Confidence Intervals and Tests, Part 1 of 2

We already have a Z confidence interval (§5) and a Z test (§6) for an unknown mean µ for when
we know σ and have a normal population or large n. In this unit we study:

• the Student’s tn−1 distribution of T = X̄−µ
S/
√
n

, useful with (compare T to Z =

X̄−µ
σ/
√
n

); and a T CI and test for µ for a normal population or large n and an unknown σ

• the relationship between a two-sided confidence interval and a

• power = P (reject H0| )

• a bootstrap CI and test for µ requiring only a simple random sample

• a sign test for an unknown M requiring only a simple random sample

• a Z CI and test for an unknown proportion π

• extra examples (if time allows)
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The Student’s t Distribution

Now suppose we have a normal X̄ ∼ N(µ, σ2/n) are interested in µ but don’t know σ. Define the

random variable T = X̄−µ
S/
√
n

. T ’s distribution isn’t normal; it’s the Student’s t distribution with n−1

degrees of freedom, denoted tn−1. (“Student” is a pseudonym for William Gosset, a statistician at
.)

• Properties of T ∼ tn−1:

– T is a sample version of a , estimating how far X̄ is from ,
in

– tn−1 looks like N(0, 1): symmetric about , -peaked, and -
shaped

– T ’s variance is than Z’s because estimating σ ( ) by S ( )
gives T more variation than Z: tn−1 is shorter with thicker tails (draw N(0, 1) and t6−1)

– As n increases, tn−1 gets closer to (S becomes a
of σ); in the limit as n→∞, they’re

• t table:

Let tn−1,α = the critical value t cutting off a area of α from tn−1

(draw). The posted Student’s t table gives tail probabilities.

H
H

H
HH

H

H
HH

H
HH

T ∼ tn−1

0

α = shaded area

tn−1,α

e.g. Use the t table to find the critical value t

– cutting off a right tail area of .05 from the t6−1 distribution: t5,.05 =

– such that the area under the t22−1 curve between −t and t is 98%

– such that the area under the t25−1 curve left of t is .025
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Confidence interval using the Student’s t distribution

Theorem:

If X1, . . . , Xn is a simple random sample, from N(µ, σ2) or where n is large (say n > 30), then
X̄ ± tn−1,α/2

S√
n

contains µ for a proportion 1− α of random samples.

Proof:

e.g. Recall §5 example with a warehouse of thousands of painted engine blocks; a random 16 have
paint thickness measured, with x̄ = 1.348 and s = .339. Make a 95% confidence interval for µ, the
unknown population mean thickness (supposing now we don’t know σ).

n = ; Is n large enough or is sample from normal population? Try qqnorm(paint):Histogram of Paint Thickness

paint thickness (mil)
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We have 1−α = =⇒ α = =⇒ tn−1,α/2 = ,

so x̄± tn−1,α/2
s√
n

=

With what probability does our interval contain µ?

e.g. In a sample of 100 boxes of a certain type, the average compressive strength was 6230 N, and
the standard deviation was 221 N.

a. Find a 95% confidence interval for the mean compressive strength.

b. Find a 99% confidence interval for the mean compressive strength.
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Hypothesis test using the Student’s t distribution

Now suppose an engine design specification says the paint thickness should be 1.50 mil. We want
to know whether the device is off this mark on average, so that it should be re-calibrated to correct
its population mean thickness, µ. We test H0 : vs. HA : .

0.0 0.5 1.0 1.5 2.0

Paint thickness (mil)

●●● ●● ●●● ●●● ● ●● ●●

If the population is normal or n is large enough that the CLT applies, and if H0 is true, then
X̄ ∼ N(µ0,

σ2

n )(≈), where µ0 is the value of µ under

H0 : X̄ ∼ N(µ0, σ
2/n)

µ0

That means T =
X̄ − µ0

S/
√
n
∼ tn−1:

T ∼ tn−1

0

Values of X̄ far from µ0 (in ), or equivalently, values of t far from
indicate strong evidence against H0.

Let’s use significance level α = .05. We have three options for completing the test.
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• Find the rejection region corresponding to a chosen significance level α = P (type I error) =
. This region is T < −tn−1,α/2 or T > tn−1,α/2

(draw). Compute t and reject H0 if it is in the region.

For the paint, we have n = 16, so we need t16−1,0.025 = . Our rejection
region is . Our observed t is

tobs =
x̄− µ0

s/
√
n

=

Conclusion:

• Compute the p-value and compare it to α.

We have tobs = −1.796, so our p-value is (draw)

p-value = P (T is as extreme or more extreme than tobs|H0 is true) =

– from the t table, , or

– from R, use 2 * pt(q = -1.796, df=15) =

Conclusion:

• Compute a confidence interval and check whether µ0 is in it (below).
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Summary:

Suppose X1, · · · , Xn is a simple random sample from N(µ, σ2) or n is large.

• To test that µ has a specified value, H0 : µ = µ0,

1. State null and alternative hypotheses, H0 and HA

2. Check assumptions

3. Find the test statistic, T =
X̄ − µ0

S/
√
n

4. Find the p-value, which is an area under tn−1 depending on HA:

HA : µ > µ0 =⇒ p-value = P (T > t), the area right of t (where T ∼ tn−1)
HA : µ < µ0 =⇒ p-value = P (T < t), the area left of t
HA : µ 6= µ0 =⇒ p-value = P (T < −|t|) + P (T > |t|), the sum of areas

left of −|t| and right of |t|

5. Draw a conclusion:

{
p-value ≤ α (where α is the level, .05 by default) =⇒ reject H0

p-value > α =⇒ retain H0 as plausible

• A (100%)(1− α) confidence interval for µ is X̄ ± tn−1,α/2
S√
n

.

The relationship between a two-sided test and a confidence interval

Recall our 95% CI for µpaint, x̄ ± tn−1,α/2
s√
n
≈ 1.348 ± .181 = (1.167, 1.529). A CI is a range of

for µ in light of the data. Our interval contains µ0 = 1.5, so H0 : µ = 1.5 is
, and we would H0. More generally, these two statements are equivalent:

• A level-α test of H0 : µ = µ0 vs. HA : µ 6= µ0 H0 (because it’s
that µ = µ0, in light of the sample mean x̄).

• µ0 falls a 1−α confidence interval for µ (a range of values for
µ, in light of the sample mean x̄).

Here’s a picture from §5 (well, I added “H0 :”, changed µ to µ0, σ to S, and zα/2 to tn−1,α/2):
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µ0 − tn−1,α/2
S√
n

H0 : X̄ ∼ N(µ0, σ
2/n)

µ0

α
2

1− α α
2

µ0 + tn−1,α/2
S√
n

x̄x̄− tn−1,α/2
S√
n

x̄+ tn−1,α/2
S√
n

On the other hand, for an x̄ in the tails, we H0 and µ0 would be the CI.
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e.g. Two-sided CI vs. test

1. A researcher interested in the aluminum recycling market collects 20 cans that he regards as
a simple random sample from the local population of cans. He finds a 99% confidence interval
for µ, the population mean weight of cans, as 14.2± .04 g.

(a) What decision should he make about H0 : µ = 14.3 vs. HA : µ 6= 14.3 at level α = .01?

(b) What decision should he make about H0 : µ = 14.22 vs. HA : µ 6= 14.22 at level α = .01?

2. The P -value for a two-sided test of H0 : µ = 10 vs. HA : µ 6= 10 is 0.06.

(a) Does the 95% confidence interval for µ include 10? Why?

(b) Does the 90% confidence interval for µ include 10? Why?
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Power (for the known-σ case)

Recall:

• β = P (type error) = P (do not reject H0|H0 is false)

• power = 1− β = P (reject H0|H0 is false)

Neither is well-defined until we choose a particular value, , in the region specified by HA.

e.g. For the paint test of H0 : µ = 1.5 vs. HA : µ 6= 1.5, suppose we know σpaint thickness = 0.30 mil.
Find powerµA=1.4.

1. Use H0 : µ = 1.5 and α = .05 to find the rejection region: .

By unstandardizing from Z = X̄−µ0
σ/
√
n

, find the equivalent rejection region in X̄ as

X̄ < or X̄ > (draw)

1.2 1.3 1.4 1.5 1.6 1.7 1.8

X ~ N(µ, (σ n)2) for two values of µ

µ0 = 1.5µA = 1.4

µ0µA

2. Now use the particular HA value µA to find powerµA=1.4 =

This power is : if the true mean were µ = 1.4, we would probably
H0 based on a sample of size 16, even though H0 is .
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To increase power,

• |µ0 − µA|

• the type-I error rate, α

• the sample size, n

• the population standard deviation, σ

Here we find formulas to do similar power calculations more generally.

• For a one-sided test, HA : µ < µ0 (or HA : µ > µ0), power =

X ~ N(µ, (σ n)2) for two values of µ

µ0µA

µ0µA

• For a two-sided test, HA : µ 6= µ0 power =

X ~ N(µ, (σ n)2) for two values of µ

µ0µA

µ0µA

Power of a test of H0 : µ = µ0 when H0 is false because µ = µA:

• For a one-sided test, HA : µ < µ0 or HA : µ > µ0, powerµA = P

(
Z <

|µ0 − µA|
σ/
√
n
− zα

)
.

• For a two-sided test, HA : µ 6= µ0, powerµA ≈ P
(
Z <

|µ0 − µA|
σ/
√
n
− zα/2

)
.

e.g. Check that the formula gives the same power for the paint test as we found earlier.
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Power and sample size

Now we find the sample size n required to achieve power 1 − β to reject H0 at level α when a
particular HA is true:

Z =
X − µ0

σ n
~ N(0, 1); rejection region for level α uses zα 2

0− zα 2 zα 2

Z =
X − µA

σ n
~ N(0, 1); power 1 − β uses zβ

0 zβ

X ~ N(µ, (σ n)2) for two values of µ; set X−zα 2
= Xzβ and solve for n

µ0µA

For a test of H0 : µ = µ0 vs. HA : µ 6= µ0 at level α, the sample size n required to have power 1−β

when the true µ is µA is n ≈
(
σ(zα/2 + zβ)

µ0 − µA

)2

.

e.g. For the paint, suppose σ = 0.30 is known, and we seek the sample size n required to have power
0.8 to reject H0 at level α = .05 when the true mean is µA = 1.4. We need n =
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7 More One-Sample Confidence Intervals and Tests, Part 2 of 2

Bootstrap for a confidence interval or test for µ

So far, our discussion of estimating the population mean µ has assumed either the population is
normal, so that X̄ is also , or the sample size is for the
CLT to indicate that X̄ is approximately normal. What if neither is true?

e.g. Secondhand smoke presents health risks, especially to children. A SRS was taken of 15 children
exposed to secondhand smoke, and the amount of cotanine (a metabolite of nicotine) in their urine
was measured. The data were: 29, 30, 53, 75, 34, 21, 12, 58, 117, 119, 115, 134, 253, 289, 287.
Are these data strong evidence the mean cotanine is above 75 units in kids exposed to secondhand
smoke? (It is below 75 in unexposed kids.)

First, check graphs to see whether an assumption of a normal population is :

Secondhand smoke and children
(histogram and density plot)

Cotanine level
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This looks pretty bad, so we worry about a normality assumption. The sample is small, so the
CLT may not help. Without a normal X̄, the quantity

T = X̄−µ
S/
√
n

will not have a distribution. The bootstrap is a sneaky way to estimate
the true distribution of this T . It estimates the of a statistic
by sampling with replacement from a simple random sample from a popluation. e.g. Here’s a
hand-waving account . . .
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To use the bootstrap to make a confidence interval or do a hypothesis test for a mean µ,

1. Collect one simple random sample of size n from the population. Compute the sample mean,
x̄ (an estimate of the population mean, µ) and the sample standard deviation, s (an estimate
of the population standard deviation, σ).

2. Draw a random sample of size n, , from the data. Call
these observations x∗1, x∗2, ..., x∗n. Some data may appear more than once in this resampling,
and some not at all.

3. Compute the and of the resampled data. Call these x̄∗ and s∗.

4. Compute the statistic t̂ =
x̄∗ − x̄
s∗/
√
n

5. Repeat steps 2-4 a large number of times, accumulating many t̂’s. They approximate the

(unknown) sampling distribution of T = X̄−µ
S/
√
n

.

6. To find a (100%)(1 − α) confidence interval for µ, find the 1 − α/2 and α/2 upper critical
values of the approximate sampling distribution, calling them t̂(1−α/2) and t̂(α/2). The

bootstrap 100(1− α)% confidence interval is

(
x̄− t̂(α/2)

s√
n
, x̄− t̂(1−α/2)

s√
n

)
.

7. To test H0 : µ = µ0, compute tobs = x̄−µ0
s/
√
n

. Find the p-value, an area under the approximate

sampling distribution density curve given by , where m depends on HA:

HA : µ > µ0 =⇒ m is the number of values of t̂ for which t̂ tobs

HA : µ < µ0 =⇒ m is the number of values of t̂ for which t̂ < tobs

HA : µ µ0 =⇒ m is the number of values of t̂ for which t̂ < −|tobs| or t̂ > |tobs|

Draw a conclusion as usual:

{
p-value ≤ α (where α is the level, .05 by default) =⇒ reject H0

p-value > α =⇒ retain H0 as plausible
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e.g. For the secondhand smoke data, we find x̄ = 108.4 and s = 95.6. Bootstrapping 5000 times
yields the following approximate distribution of t (draw for interval on left and for test on right):

Approximate Sampling Distribution of T

Bootstrap t̂  values
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Approximate Sampling Distribution of T

Bootstrap t̂  values
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Unlike a t or normal distribution, this distribution is symmetric.

Make a bootstrap confidence interval for µ = population mean cotanine in smoky kids

The upper critical values, from R, are t̂(1−α/2) = −3.56 and t̂α/2 = 1.86 (draw, above left), so the
interval is(

108.4− ( ) 95.6√
15
, 108.4− ( ) 95.6√

15

)
≈ (62.5, 196.3).

This interval is not symmetric about x̄. It would on bootstrapping again.

Run a bootstrap test for µ

We wish to know whether µ is greater than 75, so we test H0 : µ = 75 vs. HA : .

Find tobs = .

Draw the p-value, above right.

Here (from R) m = 348 of the bootstrap values were greater than 1.353, so the p-value is
, and, at level α = .05, we would H0.
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Here is one way to do this bootstrap using R:

# Create a new function, bootstrap(x, n.boot), having two inputs:

# - x is a data vector

# - n.boot is the desired number of resamples from x

# It returns a vector of n.boot t-hat values.

bootstrap = function(x, n.boot) {

n = length(x)

x.bar = mean(x)

t.hat = numeric(n.boot) # create vector of length n.boot zeros

for(i in 1:n.boot) {

x.star = sample(x, size=n, replace=TRUE)

x.bar.star = mean(x.star)

s.star = sd(x.star)

t.hat[i] = (x.bar.star - x.bar) / (s.star / sqrt(n))

}

return(t.hat)

}

# Use the bootstrap() function to get an approximate sampling

# distribution of T for the smoke data.

data = c(29, 30, 53, 75, 34, 21, 12, 58, 117, 119, 115, 134, 253, 289, 287)

B = 5000

t.hats = bootstrap(data, B)

# Plot the approximate sampling distribution.

hist(t.hats, freq=FALSE, xlab = "Bootstrap t-hat values",

main = "Approximate Sampling Distribution of T")

n = length(data) # Get summary statistics.

x.bar = mean(data)

s = sd(data)

cat(sep="", "n=", n, ", x.bar=", x.bar, ", s=", s, "\n")

# Make a CI for mu. First find quantiles for a 95% interval.

t.lower = quantile(t.hats, probs=.025) # This is our t_{1 - alpha.2}.

t.upper = quantile(t.hats, probs=.975) # This is our t_{alpha/2}.

cat(sep="", "t.lower=", t.lower, ", t.upper=", t.upper, "\n")

ci.low = x.bar - t.upper * s / sqrt(n) # This is our lower interval endpoint.

ci.high = x.bar - t.lower * s / sqrt(n) # This is our upper interval endpoint.

cat(sep="", "confidence interval: (", ci.low, ", ", ci.high, ")\n")

# Run a test of H_0: mu = m_0. First find t_{obs}.

mu.0 = 75

t.obs = (x.bar - mu.0) / (s / sqrt(n))
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cat(sep="", "t.obs=", t.obs, "\n")

# sum() counts the TRUE values by first converting TRUE / FALSE values to 1 / 0.

m.left = sum(t.hats < t.obs) # This is for H_A: mu < mu_0.

p.value.left = m.left / B

cat(sep="", "m.left=", m.left, ", B=", B, ", p.value.left=", p.value.left, "\n")

m.right = sum(t.hats > t.obs) # This is for H_A: mu > mu_0.

p.value.right = m.right / B

cat(sep="", "m.right=", m.right, ", B=", B, ", p.value.right=", p.value.right, "\n")

# This is for H_A: mu != mu_0. ("!=" means "is not equal to.")

m.left.abs = sum(t.hats < -abs(t.obs))

m.right.abs = sum(t.hats > abs(t.obs))

p.value.two.sided = (m.left.abs + m.right.abs) / B

cat(sep="", "m.left.abs=", m.left.abs, ", m.right.abs=", m.right.abs,

", B=", B, ", p.value.two.sided=", p.value.two.sided, "\n")
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Sign test for an unknown median M

If the data do not seem to be from a normal population and the sample size is small, an alternative
to the bootstrap is the sign test. It is a test for a . If the population is roughly

, the sign test is equivalent to a test for a .

e.g. A city trash department is considering separating recyclables from trash to save landfill space
and sell the recyclables. Based on data from other cities, if more than half the city’s households
produce 6 lbs or more of recyclable material per collection period, the separation will be profitable.
A random sample of 11 households yields these data on material per household in pounds:

14.2, 5.3, 2.9, 4.2, 1.8, 6.3, 1.1, 2.6, 6.7, 7.8, 25.9

We start with plotting. Here are a histogram and QQ plot:

Histogram Recyclable Material
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Neither plot suggests a normal population: both show . Since we have n = 11,
the CLT is , and, in any case, our question is really about a . So, letting
M be the population , we test:

H0 : M = 6
HA :

We need a test statistic. If H0 is true, the sample should have about of the
observations greater than 6 and less than 6. The probability of observing a value
greater than 6 in the sample should be . A natural choice of test statistic is the number, B,
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of observations greater than 6. Under H0, B ∼ . (Note: n is the number
of observations the null value of the median. If any of the observations were
equal to 6, we would .)

The value of the test statistic is b =

(Equivalently, this is the number of positive differences from M0. These differences are:

, ,−3.1,−1.8,−4.2, 0.3,−4.9,−3.4, 0.7, 1.8,

Of these differences, are positive. The sign test counts the number of “+” signs.)

The p-value is

R can find this p-value via sum(dbinom(x=5:11, size=11, prob=.5)).

Our conclusion is:

For a two-sided test, find P (B ≥ b) and P (B ≤ b) and use .

Summary:

Suppose X1, . . . , Xn is a simple random sample from a population with median M . To test that
M has a specified value, M0,

0. (First discard any data equal to M0, reducing n accordingly.)

1. State null and alternative hypotheses, H0 : M = M0 and HA

2. Check assumptions

3. Find differences from the median, X1−M0, . . . , Xn−M0, and the test statistic, B = number
of positive differences

4. Find the p-value, which is a probability for B ∼ Bin(n, .5) depending on HA:

HA : M > M0 =⇒ p-value = P (B ≥ b)
HA : M < M0 =⇒ p-value = P (B ≤ b)
HA : M 6= M0 =⇒ p-value = minimum{2P (B ≤ b), 2P (B ≥ b), 1}

5. Draw a conclusion:

{
p-value ≤ α (where α is the level, .05 by default) =⇒ reject H0

p-value > α =⇒ retain H0 as plausible
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Estimation of an unknown population proportion π

e.g. An accounting firm has a large list of clients (the population), with an information file on each
client. The firm has noticed errors in some files and wishes to know the proportion of files that
contain an error. Call the population proportion of files in error π. An SRS of size n = 50 is taken
and used to estimate π. Now the firm will decide whether it is worth the cost to examine and fix
all the files. Each file sampled was classified as containing an error (call this 1), or not (call this
0). The results are:

Files with an error: 10; files without errors, 40.

To develop an estimator of π, recall the binomial distribution: X ∼ Bin(n, π) is the
in independent trials, each having possible outcomes (success and fail-
ure), and each having probability of success. We found E(X) = , V AR(X) =

.

Our estimator of the population proportion is the sample proportion P = Here are some of its
properties:

• E(P ) =

• V AR(P ) =

• SD(P ) =

√
π(1−π)

n

This tells us our estimator P is for π, and gives a measure of precision. As in the
discussion of X̄, we can estimate the standard deviation by plugging in our estimator of π:

To make a confidence interval or do a test for π, we need the distribution of P . Its exact distribution
is related to the binomial distribution, which is difficult to use in this context. However, the CLT
can help. If n is large enough, the conditions of the CLT are met, because X =

∑
Yi (where Yi is

a Bernoulli trial, either 0 or 1), so P = X
n = 1

n

∑
Yi is a . . Thus, for large

samples, P is approximately distributed:

P ∼ N

(
π,

[√
π(1−π)

n

]2
)

(≈)

We want to use this distribution to make a confidence interval for π and do a test on π, but we

don’t know π, so we have to estimate the standard deviation,

√
π(1−π)

n .
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• For the interval, use the sample proportion P to estimate π, so the standard deviation of P

is about SP =

√
P (1−P )

n . A rule of thumb says we need the numbers of successes and failures,
and , each to be greater than 5 for the CLT approximation to be reasonable.

The 100%(1− α) confidence interval for π is then P ± zα/2
√

P (1−P )
n .

Proof:

e.g. Find a 95% CI for the unknown proportion π of defective files.

• The test comes with a null hypothesis, H0 : π = π0, so we should use π0 for π in the

standard deviation of P and say, if H0 is true, then P ∼ N

(
π,

[√
π0(1−π0)

n

]2
)

(≈). A rule

of thumb says we need the expected numbers of successes and failures, and ,
each to be greater than 5 for the CLT approximation to be reasonable. Standardizing gives
Z = P−π0√

π0(1−π0)
n

∼ N(0, 1), which we can use as a test statistic.

e.g. The CEO decides that if π > .12, it will be worthwhile to review and fix every file. Run
a test to help the CEO decide.

We test: H0 : π = (π0 = 0.12) vs. HA : .

In our example we have nπ0 = and n(1−π0) = .

We observed zobs =

Our p-value =

Our conclusion is
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Summary:

Let X be the number of successes in a large number n of independent Bernoulli trials, each having
probability π of success. Let P = X

n .

• To test that π has a specified value, π0, where nπ0 > 5 and n(1− π0) > 5,

1. State null and alternative hypotheses, H0 : π = π0 and HA

2. Check assumptions

3. Find the test statistic Z =
P − π0√

π0(1− π0)/n

4. Find the p-value, which depends on HA:

HA : π > π0 =⇒ p-value = P (Z > z), the area right of z
HA : π < π0 =⇒ p-value = P (Z < z), the area left of z
HA : π 6= π0 =⇒ p-value = P (Z < −|z|) + P (Z > |z|), the sum of the ares

left of −|z| and right of |z|

5. Draw a conclusion:

{
p-value ≤ α (where α is the level, .05 by default) =⇒ reject H0

p-value > α =⇒ retain H0 as plausible

• An approximate 100%(1− α) confidence interval for π is P ± zα/2
√

P (1−P )
n , provided X > 5

and n−X > 5.

Demonstrate that P ∼ N(. . .)

Our CI and test for π relied on the CLT to say P = X
n ∼ N(. . .)(≈) because P is a sample mean.

X is a sample sum, which is also N(. . .). In particular, X ∼ Bin(n, π) ≈ N(nπ, nπ(1− π)).

Here is a graphical comparison of Bin(n, π) with N(nπ, nπ(1−pi)) for n = 20 and several values of π
to help with understanding the CLT claim and our rule-of-thumb requiring nπ > 5 and n(1−π) > 5.
(You may ignore the code. I’ll run it and discuss it.)

n=20

delta.p=.1

for (p in seq(from=delta.p, to=1-delta.p, by=delta.p)) {

Sys.sleep(3)

y=dbinom(x=0:n, size=n, prob=p)

curve(dnorm(x, mean=n*p, sd=sqrt(n*p*(1-p))), 0, n, ylab="",

main=bquote("n=" * .(n) * ", " * pi * "=" * .(p) *

", " * n * pi * "=" * .(n*p) * ", " * n * (1- pi) *

"=" * .(n*(1-p))))

segments(x0=0:n, y0=0, y1=y)

}

In §8, we compare populations via independent samples.
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Extra examples (if time allows)

Extra confidence intervals for µ with known or unknown σ

The basal diameter of a sea anemone indicates its age. Suppose the population mean (µ) and
standard deviation (σ) are unknown.

1. Here are the diameters of a simple random sample of 40 anemones: 4.3, 5.7, 3.9, 4.8, 3.5, 3.5,
1.3, 4.6, 4.4, 3.7, 4.9, 5.6, 5.1, 2.3, 2.3, 6.9, 5.4, 3.6, 4.3, 4.1, 3.2, 4.6, 2.8, 4.9, 4.5, 4.4, 5.8, 3.6,
5.6, 2.6, 1.5, 4.1, 4.7, 6.5, 5.4, 3.8, 3.4, 4.9, 5.5, 7.2. These data have x̄ = 4.33 and s = 1.329.
Find a 95% confidence interval for µ or explain why you cannot.

2. Here is a simple random sample of 12 anemone diameters: 5.3, 2.8, 5.2, 2.9, 2.5, 2.9, 3.0, 2.9,
5.2, 4.3, 3.7, 2.7. Find a 95% confidence interval for µ or explain why you cannot.

3. Here is a simple random sample of 12 anemone diameters: 3.5, 6.5, 3.6, 2.8, 4.2, 4.2, 1.8, 5.7,
2.6, 4.7, 4.9, 4.4. Find a 95% confidence interval for µ or explain why you cannot.

4. (Inference) Now suppose the population mean (µ) is unknown but σ = 1.4 cm is known.
What changes in the intervals above?
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Extra bootstrap sanity check

• Bootstrap confidence interval for an unknown mean

Let’s do “sanity check” computer simulations to see whether the bootstrap does something
reasonable when we know what to expect. Suppose X1, . . . , Xn is a SRS from N(0, 12), a

normal population. In this case, we know that T = X̄−µ
S/
√
n
∼ tn−1.

– Do a bootstrap to get an approximate sampling distribution (labeled “bootstrap t’s” in
the graphs) for T and see whether it looks like tn−1.

– How do the results depend on n?

∗ Resampling with replacement from a large sample seems like a good approximation
to repeated sampling from the population.

∗ Resampling with replacement from a small sample seems like a lousy approximation
to repeated sampling from the population.
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Extra sign test for M

e.g. A clinical trial measured survival time in weeks for 10 lymphoma patients as 49, 58, 75, 110,
112, 132, 151, 276, 281, 362+, where “+” indicates a patient still alive at the end of the study.
Are these data strong evidence the population median survival time M for lymphoma patients is
is different than 200?

Extra inference for one proportion π

e.g. Monica learned in first grade that about 71% of Earth’s surface is covered in water. To see
whether this made sense, she asked her brother to toss her a spinning inflatable globe 100 times.
For 66 of her catches, her right pointer finger tip was on water, while for 34 it was on land. Now
she’s stuck. Help her by finding and interpreting a 99% confidence interval for the proportion of
Earth covered by water in light of her data.

e.g. Do children prefer vanilla or chocolate ice cream? To test this, a teacher gave a random sample
of 33 students the choice. 24 of 33 chose chocolate, and the other 9 chose vanilla. Use these data
to test the hypothesis that, in the population, students have no preference.
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Here is a supplement to §7 on hypothesis testing and power. It’s p. 10.5 or p. 25 in the §7 notes.

Suppose the engine painter sells engines to General Motors (GM), promising mean thickness µ = 1.5
for a truckload of engines. GM doesn’t want to use the engines if µ = 1.4 because they will rust
too quickly. (GM wants the engines for µ = 1.5 and for very close values; it doesn’t want them for
values far from 1.5. This page focuses on the fact that GM doesn’t want them if µ = 1.4.)

An independent lab measures the paint thickness for a random sample of n of the engines. It tests
H0 : µ = 1.5 vs. HA : µ 6= 1.5. There are four possible outcomes:

reject H0 do not reject H0

H0 is true because µ = µ0 P(type I Error) = α P(correct) = 1− α
H0 is false because µ = µA P(correct) = powerµA = (1− βµA) P(type II Error) = βµA

• Suppose the engine painter ships a good truckload with µ = 1.5.

– α = P (type I error) = P (reject H0|H0 is true) is the engine painter’s risk, due to an
unlucky sample, of having the lab say it’s a bad truckload, so the engine painter does
not get paid. The engine painter wants α .

– 1− α = P (do not reject H0|H0 is true) is probability of the lab result matching reality.
GM pays for and uses correctly-painted engines.

• Suppose the engine painter ships a bad truckload with µ = 1.4.

– βµ=1.4 = P (type II error) = P (do not reject H0|H0 is false because µ = 1.4) is GM’s
risk, due to an unlucky sample, of having the lab say there’s no strong evidence the
truckload is bad, so GM pays for and uses the bad truckload. GM wants βµ=1.4

.

– powerµ=1.4 = 1− βµ=1.4 = P (reject H0|H0 is false because µ = 1.4) is the probability of
the lab result matching reality. GM does not pay for or use bad engines.

• There is tension between the painter’s desire for low α and GM’s desire for low β. A contract
could specify a lower α and a higher β in exchange for GM paying the painter ; or a
higher α and a lower β would require GM to pay the painter .

• The conflict between α and β can be resolved by increasing the sample size.
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HA : X̄ ∼ N(µA, σ
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