
The Annals of Statistics
2019, Vol. 47, No. 1, 556–582
https://doi.org/10.1214/18-AOS1700
© Institute of Mathematical Statistics, 2019

A CRITICAL THRESHOLD FOR DESIGN EFFECTS IN NETWORK
SAMPLING

BY KARL ROHE1

University of Wisconsin–Madison

Web crawling, snowball sampling, and respondent-driven sampling
(RDS) are three types of network sampling techniques used to contact in-
dividuals in hard-to-reach populations. This paper studies these procedures
as a Markov process on the social network that is indexed by a tree. Each
node in this tree corresponds to an observation and each edge in the tree cor-
responds to a referral. Indexing with a tree (instead of a chain) allows for the
sampled units to refer multiple future units into the sample.

In survey sampling, the design effect characterizes the additional variance
induced by a novel sampling strategy. If the design effect is some value DE,
then constructing an estimator from the novel design makes the variance of
the estimator DE times greater than it would be under a simple random sam-
ple with the same sample size n. Under certain assumptions on the referral
tree, the design effect of network sampling has a critical threshold that is a
function of the referral rate m and the clustering structure in the social net-
work, represented by the second eigenvalue of the Markov transition matrix,
λ2. If m < 1/λ2

2, then the design effect is finite (i.e., the standard estimator

is
√

n-consistent). However, if m > 1/λ2
2, then the design effect grows with

n (i.e., the standard estimator is no longer
√

n-consistent). Past this critical
threshold, the standard error of the estimator converges at the slower rate of
nlogm λ2 . The Markov model allows for nodes to be resampled; computational
results show that the findings hold in without-replacement sampling. To esti-
mate confidence intervals that adapt to the correct level of uncertainty, a novel
resampling procedure is proposed. Computational experiments compare this
procedure to previous techniques.

Introduction. This paper is motivated by respondent-driven sampling (RDS),
a popular technique to sample marginalized and/or hard-to-reach populations
[Heckathorn (1997)]. RDS has become particularly popular in HIV research be-
cause the populations most at risk for HIV (i.e., people who inject drugs, female
sex workers, and men who have sex with men) cannot be sampled using conven-
tional techniques. Several domestic and international institutions use RDS to quan-
tify the prevalence of HIV in at risk populations, including the Centers for Disease
Control and Prevention (CDC), the World Health Organization (WHO), and the
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FIG. 1. Network sampling has two graphs: the underlying social network and the referral tree.
Each node in the social network has some feature (e.g., HIV status). In this diagram, the node feature
is denoted by color. When we sample a node, we observe (i) the node’s color and (ii) which node
referred the node into the sample. In the end, we want to estimate the proportion of nodes that are
grey.

Joint United Nations Programme on HIV/AIDS (UNAIDS) [World Health Orga-
nization and UNAIDS (2013)]. It has been applied in over 460 different studies, in
69 different countries [White et al. (2015)].

The RDS process starts with a convenience sample of “seeds” from the target
population. They form wave zero. These participants are incentivized to (1) par-
ticipate in the study and (2) pass three (or sometimes up to five) referral coupons
to their friends. The friends that return to the study site with a coupon form the
first wave of the RDS. The process iterates until the procedure reaches the target
sample size, or until the process dies because participants stop passing coupons.
Figure 1 gives an illustration of this process.

If we presume that each participant refers a random subset of their friends,2

then RDS is a stochastic process on the members of the social network. In the
RDS literature, it is common to assume a Markov model because it is analyt-
ically tractable. The Markovian assumption is knowingly incorrect in practice.
For example, it samples with-replacement; in practice, the sampling is performed
without-replacement. Simulation studies suggest that, when the sample size is
much smaller than the population size, the Markov model provides an approxi-
mation to more accurate simulation models [Lu et al. (2012)]. Under the Markov
model, Salganik and Heckathorn (2004) and Volz and Heckathorn (2008) construct
unbiased estimators. While they are unbiased, they often suffer from high vari-
ability [Goel and Salganik (2009, 2010)]. In particular, Goel and Salganik (2010)

2In current implementations of RDS, randomization is not produced by researchers. Rather, it is
presumed that people refer friends randomly. The validity of such assumptions has been studied in
several several ways in empirical and statistical papers. For example, Gile, Johnston and Salganik
(2015) proposed statistical diagnostics to examine the convergence properties, Arayasirikul, Cai and
Wilson (2015) performed qualitative follow-up interviews to ask participants about difficulties in
finding referrals and McCreesh et al. (2012) compared a respondent-driven sample in Uganda with a
total population survey on the same population.
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shows in a wide range of computer experiments that (1) RDS often produces esti-
mators with exceedingly large variance and (2) the popular bootstrap technique in
Salganik (2006) produced nominal 95% confidence intervals with coverage prob-
abilities between 40% and 70%. This paper aims to build on these earlier results
to provide a rigorous description of the inadequacies.

This paper focuses on one particular assumption of the Markov chain model
which has received insufficient scrutiny. In practice, each participant can refer be-
tween zero and three (sometimes up to five) future participants. However, in the
Markov chain model, each participant refers exactly one individual. In the previ-
ous simulation study of Goel and Salganik (2010), the “chain” assumption was
relaxed, while the “Markov” assumption was retained. This model has drastically
different behaviors. The results below show that this “Markov tree” model remains
analytically tractable.

The paper is organized as follows. Section 1 defines the Markov model, the
quantity we wish to estimate, and the estimators. Section 2 provides an exact for-
mula for the variance of an RDS estimator in Theorem 2.1. Section 3 specifies
the asymptotic behavior of the design effect in Theorem 3.1. Section 4 studies
the rate at which the Markov model resamples nodes in Theorem 4.1. With The-
orems 2.1 and 3.1, Section 5 reinterprets the previous simulation results in Goel
and Salganik (2010). Section 6 proposes a novel resampling technique A-TREE-
BOOTSTRAP and compares it to previous techniques in computational experiments.
Finally, Section 7 concludes the paper. All proofs are contained in the Appendix
and Supplementary Material [Rohe (2019)].

1. Preliminaries. The model described below is a straightforward combina-
tion of the Markov models developed in the previous literature [e.g., Heckathorn
(1997), Salganik and Heckathorn (2004), Volz and Heckathorn (2008) and Goel
and Salganik (2009)]. There are four necessary mathematical pieces: a social net-
work represented as a graph, a Markov transition matrix on the nodes of the graph,
a referral tree to index the Markov process on the graph, and finally, a node feature
defined for each node in the graph.

1.1. Markov processes on a graph. A social network G = (V ,E) consists
of the set of people V = {1, . . . ,N} and the set of friendships E = {(i, j) :
i and j are friends}. V is referred to as the node set and E is referred to as the

edge set. The results in this paper allow for a weighted graph. Let wij be the weight
of the edge (i, j) ∈ E; if (i, j) /∈ E, define wij = 0. If the graph is unweighted,
then let wij = 1 for all (i, j) ∈ E. Throughout this paper, the graph is undirected,
wij = wji ; for all pairs i, j . Define the degree of node i as deg(i) = ∑

j wij and
the volume of the graph as vol(G) = ∑

i deg(i). If the graph is unweighted, deg(i)

is the number of connections to node i. To simplify notation, i ∈ G is used syn-
onymously with i ∈ V .
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1.1.1. Markov chain on G. Denote X(0),X(1),X(2), . . . ∈ G as a Markov
chain on the individuals from the social network G. The transition matrix P ∈
R

N×N is defined so that transition probabilities are proportional to edge weights,

Pij = P
(
X(t + 1) = j |X(t) = i

) = wij

deg(i)
.

Let |λ1| ≥ |λ2| ≥ · · · ≥ |λN | denote the eigenvalues of P . All eigenvalues of P are
less than or equal to one in absolute value [see, e.g., Lemma 12.1 in Levin, Peres
and Wilmer (2009)]. Because the edge weights are symmetric, wij = wji for all
i, j , the Markov chain is reversible. If |λ2| < 1, then the stationary distribution
π : G →R is

πj = lim
t→∞P

(
X(t) = j |X(0) = i

) = deg(j)

vol(G)
for all i, j ∈ G.

1.1.2. Markov process on G indexed by a tree. Let T be a rooted tree—a con-
nected graph with n nodes, no cycles, and a vertex 0. The seed participant is vertex
0 in T (cf. Figure 1). Note that the node set of G indexes the population and the
node set of T indexes the sample. To simplify notation, σ ∈ T is used synony-
mously with σ belonging to the vertex set of T. For any node in the tree σ ∈ T, de-
note σ ′ ∈ T as the parent of σ (the node one step closer to the root). Let D(σ ) ⊂ T

denote the set of σ and all its descendants in T. Denote the height of T as h(T); this
is the number of rounds of sampling in the RDS, or the maximum graph distance
in T from the root to any node.

A Markov process indexed by T is a set of random variables {Xσ : σ ∈ T}
satisfying the Markov property

P
(
Xσ |Xσ ′,Xτ : τ ∈ D(σ )c

) = P(Xσ |Xσ ′).

The transition matrix P ∈ [0,1]N×N describes these transition probabilities:

P(Xσ = j |Xσ ′ = i) = Pij for i, j ∈ G.

Benjamini and Peres (1994) called this process a (T,P )-walk on G. Unless stated
otherwise, it will be presumed throughout that under the (T,P )-walk on G, X0 is
initialized from the stationary distribution of P .

For example, if C is the chain graph, then the (C,P )-walk on G is a Markov
chain on G, X(0),X(1),X(2), . . . ∈ G. One key property of the Markov model
is that it allows for resampling. Said another way, it “samples with-replacement”
because it is possible for X(i) = X(j) for i 	= j . The same is true in the tree model.
In particular, it is possible for Xτ = Xσ for τ, σ ∈ T with τ 	= σ .

1.2. Measurements and estimators. For each node i ∈ G, let y(i) ∈ R denote
some characteristic of this node. We wish to estimate the population average

μtrue = 1

N

∑
i∈G

y(i).
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In the motivating RDS example, y(i) = 1 denotes that i ∈ G is HIV+, y(i) = 0
denotes that i ∈ G is HIV−, and μtrue is the proportion of the population that is
HIV+. We estimate μtrue with observations

Yτ = y(Xτ ) for τ ∈ T,

where Xτ is a (T,P )-walk on G. Denote

μ = ERDS(Y0) = ∑
i

y(i)πi,

where the subscript RDS denotes that the expectation is computed with the
(T,P )-walk on G. In general, μ 	= μtrue. The sample average

(1) μ̂ = 1

n

∑
τ∈T

Yτ

is an unbiased estimate of μ. Theorem 2.1 below gives a closed-form expression
for VarRDS(μ̂).

With πi = deg(i)/vol(G), the inverse probability weighted estimator (IPW),

μ̂IPW = 1

n

∑
τ∈T

Yτ

πXτ N
= vol(G)

N

1

n

∑
τ∈T

Yτ

deg(Xτ )
,

is an unbiased estimator for μtrue. The results in this paper can be applied to μ̂IPW
via a transformation that is described in the next remark. Computing the IPW es-
timator requires vol(G) or the average node degree vol(G)/N . This is typically
not available in practice. When the sampling weights can be identified up to a con-
stant of proportionality [i.e., πi ∝ deg(i)], estimating vol(G)/N with the harmonic
mean of the observed node degrees,

H =
(
n−1

∑
τ∈T

1/deg(Xτ )

)−1
,

leads the Hajek or Volz–Heckathorn estimator [Volz and Heckathorn (2008)],

μ̂VH = H
1

n

∑
τ∈T

Yτ

deg(Xτ )
.

REMARK 1.1. Define a new node feature

yπ(i) = y(i)

πiN

and new node measurements Yπ
τ = yπ(Xτ ). The sample average of the Yπ

τ ’s is
exactly the IPW estimator using the nontransformed Yτ ’s. Because of this simple
transformation, the theorems below that study μ̂ can also study μ̂IPW by substitut-
ing yπ for y.
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Define W1, . . . ,Wn ∈ G as independent random samples with P(Wi = j) = πj .
Define

(2) Varπ(μ̂) = Var

(
1

n

n∑
i=1

y(Wi)

)
.

Define the design effect of the (T,P )-walk on G as

(3) DE(μ̂) = VarRDS(μ̂)

Varπ(μ̂)
.

The standard definition of DE contains the variance under simple random sampling
(SRS) in the denominator. For simplicity, the DE in this paper contains Varπ in the
denominator. The key difficulty of comparing SRS to the (T,P )-walk on G is that
SRS is without-replacement. Instead of SRS, the denominator in equation (3) could
be replaced by the variance under uniform sampling (with-replacement) and this
would only change the DE by a constant factor. This is because G and π do not
change with n.

The standard O-notation is used below. In particular, h(n) = o(g(n)) means that
h(n)/g(n) → 0 as n → ∞ and h(n) = O(g(n)) means that h(n) ≤ Mg(n) for all
n, for some constant M .

2. The variance under RDS. The key result of this section, Theorem 2.1, ex-
presses VarRDS(μ̂) as a function of the eigenproperties of P . The following lemma
from Levin, Peres and Wilmer (2009) provides the eigendecomposition of the ma-
trix P .

LEMMA 2.1 [Lemma 12.2 in Levin, Peres and Wilmer (2009)]. Let P be a
reversible Markov transition matrix on the nodes in G with respect to the station-
ary distribution π . The eigenvectors of P , denoted as f1, . . . , fN , are real valued
functions of the nodes i ∈ G and orthonormal with respect to the inner product

(4) 〈fa, fb〉π = ∑
i∈G

fa(i)fb(i)πi.

If λ is an eigenvalue of P , then |λ| ≤ 1. The eigenfunction f1 corresponding to the
eigenvalue 1 can be taken to be the constant vector 1.

The structure of the tree T is a key component in the variance. That structure is
summarized in the following definition of G : [−1,1] → R, which is a functional
of T. All of the statements in this section are conditional on the tree.

DEFINITION 1. Select two nodes I, J ∈ T uniformly and independently. De-
fine D = d(I, J ) to be the graph distance between I and J in T. Define G as the
probability generating function for D,

G(λ) = E
(
λD)

.
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FIG. 2. Each line corresponds to a referral tree. The vertical axis gives nG(λ). The legend gives the
number of nodes in each tree. In the left panel, there are eighteen different referral trees from pub-
lished RDS studies. The tree of 586 comes from a study of drug users in New York City [Abdul-Quader
et al. (2006)]. The tree of 112 comes from a study of injection drug users in Connecticut [Heckathorn
(1997)]. The trees of 14, 19, 23, 23, 65 and 152 come from a study of men who have sex with men
in Higuey, Dominican Republic [Gile, Johnston and Salganik (2015)]. The remaining ten trees come
from a study of 25 villages in rural Uganda [McCreesh et al. (2012)]. In the right panel, each line
represents a 2-tree, where each node creates two nodes in the next wave. The results of the next
section are foreshadowed by the critical threshold at λ = 1/

√
2 ≈ 0.7.

Note that because the tree T is observed, the function G can be computed in
practice. Figure 2 gives an illustration of nG(λ) for λ ∈ [0,1], where n is the
number of nodes in T.

THEOREM 2.1. Suppose that the Markov transition matrix P is reversible
with respect to π and that the second eigenvalue of P is less than one in absolute
value, then

(5) VarRDS(μ̂) =
N∑

�=2

〈y,f�〉2
πG(λ�),

where the subscript RDS denotes that data have been collected through a
(T,P )-walk on G, μ̂ is defined in equation (1), 〈·, ·〉π is defined in equation
(4), f1, . . . , fN : G → R are the eigenvectors of P corresponding to eigenvalues
λ1 > |λ2| ≥ · · · ≥ |λN | and G is defined in Definition 1.

In previous research, Verdery et al. (2015) and Khabbazian et al. (2017) prove
this theorem for the special case that T is a chain. The first step to prove Theo-
rem 2.1 is to show that if d(σ, τ ) = t , then by the reversibility of P ,

(Xσ ,Xτ )
d= (

X(0),X(t)
)
,
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where X(0), . . . ,X(t) ∈ G is a Markov chain with the same transition matrix P .
Then, expanding y in the eigenbasis from Lemma 2.1,

(6) CovRDS(Yσ ,Yτ ) =
N∑

�=2

λ
d(σ,τ)
� 〈y,f�〉2

π .

Averaging over σ, τ and exchanging summations yields G and the final result.
Section A in the Appendix contains a full proof.

REMARK 2.1. Using Remark 1.1, Theorem 2.1 also gives the variance for
μ̂IPW. This theorem presumes that X0 (i.e., the seed node) is sampled from the
stationary distribution. Under this assumption, μ̂IPW is unbiased for finite samples.
However, conditionally on the seed node, μ̂IPW and μ̂VH are biased [Gile and
Handcock (2010)]. The law of total variance shows how VarRDS(μ̂IPW) includes
the seed-bias, defined as bias(μ̂IPW,X0) = ERDS(μ̂IPW|X0) − μtrue,

VarRDS(μ̂IPW) = Eπ

(
VarRDS(μ̂IPW|X0)

) +Eπ

(
bias(μ̂IPW,X0)

)2
,

where Eπ is the expectation with respect to X0 having distribution π .

The law of total variance shows that that conditioning on the seed node de-
creases the variance by the squared seed-bias. As such, any technique which at-
tempts to estimate the uncertainty (e.g., bootstrap procedures) should ensure that
the seed node is allowed to be random. The bootstrap procedure proposed in Sec-
tion 6.1 proposes a way to randomize the seed node(s).

3. The asymptotic behavior of the design effect. The eigenproperties of P

have been extensively studied in the literature on spectral graph theory and spectral
clustering [Chung (1997), von Luxburg (2007)]. Cheeger’s inequality shows that
if λ2 is close to one, then there are clusters or communities in the graph. For RDS,
this creates a “referral bottleneck” where the referral process has difficulty mixing
between the two communities. For example, if λ2 = 1, then the social network
is disconnected; this represents an extreme bottleneck, where the referral process
will never cross the divide. This section shows that the asymptotic behavior of
DE depends upon the relationship between λ2 and the growth rate of the referral
tree T.

To study how VarRDS and DE behave as the sample size increases, it is necessary
to describe how the referral tree T grows. Theorem 3.1 grows a random Galton–
Watson tree. A Galton–Watson tree is initialized with a single root node and is
parameterized by its offspring distribution. Starting with the root node and iterating
through all future generations, each node generates a random number of offspring,
drawn from the offspring distribution. The number of offspring produced by each
node is independent across nodes. This process is highly studied with several well-
known results [e.g., Athreya and Ney (1972)].
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Let ξ be a generic draw from the offspring distribution and denote Eξ = m. To
have a positive probability that the tree generates an infinite number of nodes, the
results below require that m > 1. Denote Th as the subtree of T that includes all
nodes within distance h of the root.

THEOREM 3.1. Suppose T is a random Galton–Watson tree. Let ξ be a sin-
gle draw for the offspring distribution with m = E(ξ) > 1 and E(ξ4) < ∞. Con-
dition on the survival of the Galton–Watson process. Define Th as the node in-
duced subgraph of T that contains all nodes τ ∈ T within distance h from the root
node. Let P be a Markov transition matrix on G that is reversible with respect
to its stationary distribution π . Let μ̂h be constructed with the samples from a
(Th,P )-walk on G. If Varπ Y0 > 0, 〈y,f2〉2

π > 0, and λ2 > 0, then

(7) DE(μ̂h) �
{
c if m ≤ β,

n1−α if m > β,

where DE is defined in equation (3) conditionally on T, � is equality up to (logn)2

terms, β = λ−2
2 and α = logm λ−2

2 .

The proof of this result has four pieces, divided into four subsections of Sec-
tion 1 in the Supplementary Material [Rohe (2019)]. Section 1.1 shows that DE
behaves asymptotically similar to nG(λ2). Then Section 1.2 gives a lower bound
for G(λ2) that depends only on the growth rate of the tree T. Section 1.3 gives an
upper bound for G(λ2) that requires a “balanced assumption” on T. These three
subsections do not require that T comes from the Galton–Watson distribution.
Then, in Section 1.4 the Kesten–Stigum theorem shows that when T comes from
the Galton–Watson distribution, it grows at rate m (satisfying the lower bounds in
Section 1.2). Then Lemma 1.3 applies the Lp maximal inequality for martingales
to the Galton–Watson martingale to show that Galton–Watson trees with Eξ4 < ∞
satisfy the “balanced assumption.”

The assumption that E(ξ4) < ∞ is a strong assumption in the literature on the
Galton–Watson process. However, there are two important points. First, in the con-
text of RDS, the offspring distribution is typically bounded by three or five. As
such, this condition is certainly satisfied. Second, the finite fourth moment is only
needed for the upper bound; it implies the “balanced assumption” on T. To mo-
tivate the necessity of the “balanced assumption,” the beginning of Section 1.3 in
the Supplementary Material [Rohe (2019)] gives a deterministic tree for which the
upper bounds will not hold (i.e., RDS has much larger DE).

To see why there is a critical threshold, note that VarRDS(μ̂) is the average of
the covariances CovRDS(Yσ ,Yτ ). From equation (6), each covariance term decays
exponentially, O(λ

d(σ,τ)
2 ), where d(σ, τ ) is the graph distance between σ and τ

in T. However, these graph distances grow logarithmically; when m > 1, d(σ, τ ) =



A CRITICAL THRESHOLD FOR NETWORK SAMPLING 565

O(logm n). For example, if T is a complete m-tree with n nodes, h(T) ≤ logm n

implies d(σ, τ ) ≤ 2h(T) ≤ 2 logm n. Using these bounds,

λ
d(σ,τ)
2 ≥ λ

2 logm n

2 = n2 logm λ2 .

Below the critical threshold, this term is o(n−1) and VarRDS(μ̂) is controlled by the
terms σ = τ (i.e., the diagonal terms of the covariance matrix). Above the critical
threshold, the upper bound in the Supplementary Material confirms that n2 logm λ2

is the rate that VarRDS(μ̂) decays to zero. For more details, see the Supplementary
Material [Rohe (2019)].

REMARK 3.1. In practice, it is possible to estimate where a given sample falls
with respect to the critical threshold; first, a warning. The empirical mean of the
offspring distribution for any finite tree T is always less than one. As such, this
cannot be used as an estimator for m. Instead, use the function G(λ) for λ ∈ [0,1]
which can be computed from the graph topology of T. Figure 2 gives an illustra-
tion for several empirical and synthetic trees. Each line of Figure 2 corresponds to
a single referral tree. In these figures, one can see that at some value of λ, G(λ)

begins to grow at a fast rate. One must then compute λ̂2, an estimate of λ2, the
second largest eigenvalue of P (this requires statistical inference). By evaluating
G(λ̂2), one can gauge where a given sample falls with respect to the critical thresh-
old. A follow-up paper provides an approach to estimate the largest eigenvalues of
the matrix P from a (T,P )-walk on G sample [Roch and Rohe (2017)]. The code
is available on github (https://github.com/karlrohe/mRDS).

4. The gap between sampling with and without-replacement. Define the
number of repeated pairs as

Rn = ∣∣{σ, τ ∈ T|τ 	= σ,Xτ = Xσ }∣∣.
This section studies ERDS(Rn) as n and N grow in tandem. Because Rn counts
pairs of repeats, E(Rn) could grow at rate n2. Proposition 4.1 and Theorem 4.1
show that if n = o(

√
N) and some additional assumptions, then ERDS(Rn) � n. In

particular, this shows that the rate of resampling does not depend on λ2.

PROPOSITION 4.1. Under the (T,P )-walk on G, suppose that G is undi-
rected and P is a simple random walk. If deg(i) < D for all nodes i ∈ G, then

E(Rn) ≥ n/D.

The proof is based on the fact that if Xσ = i, the probability of transitioning
back to the state of Xσ ′ is 1/deg(i) ≥ 1/D. The full proof is contained in Section 2
in the Supplementary Material [Rohe (2019)].

As Proposition 4.1 shows, the (T,P )-walk on G can have several repeated sam-
ples. However, this alone does not prevent the variance from decaying at rate 1/n;

https://github.com/karlrohe/mRDS
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the decay of the variance is determined by the critical threshold, m > λ−2
2 . The

next result gives a matching upper bound for E(Rn). This shows that the rate of
E(Rn) does not depend on the critical threshold.

THEOREM 4.1. Consider a sequence of samples {Xτ : τ ∈ Tn} that are sam-
pled from a (Tn,PN)-walk on GN , where n and N are both growing. Suppose that
the sequence Tn satisfies the conditions of Theorem 1.1 in the Supplementary Ma-
terial; that is, there is a balanced infinite tree T that grows at rate m and Tn is a
sequence of subtrees that successively add one generation at a time.

If (1) the stationary distribution is bounded, πi ≤ c/N for all i and all N ; (2) the
number of eigenvalues λ� that exceed the critical threshold 1/

√
m is bounded by

k for all N ; and (3) n = o(
√

N), then

E(Rn) = O
(
(logn)n

)
.

Notice that condition (1) is implied by the bounded degree assumption in Propo-
sition 4.1. Importantly, the rate of this upper bound does not depend on λ2. So,
under the conditions of these results, λ2 and the critical threshold do not effect the
rate of E(Rn).

The key to proving Theorem 4.1 is the relationship between the trace of a matrix
and its eigenvalues. First, notice that

(8) E(Rn) = ∑
σ 	=τ

P(Xσ = Xτ).

Let tr(P ) denote the trace of P :

P(Xσ = Xτ) = ∑
i∈G

πiP(Xτ = i|Xσ = i) = ∑
i∈G

πiP
d(σ,τ)
ii ≤ cN−1 tr

(
P d(σ,τ))

= cN−1
∑
�

λ
d(σ,τ )
� .

To bound E(Rn), exchange the summation over σ 	= τ from equation (8) with
the summation over � in the line above. Each term in the resulting summation
can be expressed with G functions and bounded by Theorem 1.1 in the supple-
ment. The full proof is contained in Section 2 of the Supplementary Material [Rohe
(2019)].

4.1. Comparison to a more realistic model with simulation. For mathemati-
cal tractability, the theorems above make two simplifications. First, the theorems
use the (T,P )-walk on G, which samples with-replacement. Second, the theorems
study the IPW estimator. The simulations in this section (and in the rest of the pa-
per) use a more realistic setting. First, the simulated samples are collected without-
replacement. Second, the simulations study the Volz–Heckathorn estimator. These
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FIG. 3. In all figures, m = 2. Each column of panels corresponds to a different value of λ2, from
left to right, λ2 ∈ (0.6,0.65,0.7,0.75,0.8). In the panels on the left, the lines are roughly flat. In the
panels on the right, the lines are quickly increasing. This shows that the (T,P )-walk on G and the
more realistic model have a critical threshold somewhere between λ2(P) = 0.6 and λ2(P) = 0.8.

simulation results find that the Markov model with the IPW estimator is a good ap-
proximation to the more realistic model, so long as the number of sampled nodes
is much smaller than the population size, as predicted by Theorem 4.1.

The simulations are performed on networks simulated from the Stochastic
Blockmodel. The ten panels in Figure 3 correspond to ten different model set-
tings. Each of the ten models has N =10k nodes, equally balanced between group
zero and group one. This simulation is repeated in Section B for unbalanced group
sizes.

The probability of a connection between two nodes in different blocks is r and
the probability of connection between two nodes in the same block is p. Figure 3
parameterizes this model via (1) the expected degree (p + r)N/2 and (2) the sec-
ond eigenvalue of P = E(D)−1

E(A),

(9) λ2(P) = p − r

p + r
,

where expectations are under the Stochastic Blockmodel [cf. example on
page 1893 of Rohe, Chatterjee and Yu (2011)]. In group zero, yi = 0 and in group
one, yi = 1. The horizontal axis in each plot represents the sample size; the vertical
axis represents the design effect (as estimated via simulation). The five columns of
plots correspond to five different values of λ2(P).

To simulate from the more realistic model, the simulation first generates T as
a Galton–Watson tree with offspring distribution 1 + Binomial(2,1/2). A tree is
grown until it reaches 2000 nodes; while only 500 samples are kept, it will become
clear why T must be initialized to be larger than 500. This tree is seeded with a par-
ticipant selected from the stationary distribution. Then each participant randomly
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selects their referrals from their “viable” friend list without-replacement; a friend
is viable if it has not yet appeared in the sample. One participant at a time makes all
of their referrals, iterating through the tree in the fashion of a breadth first search.
A difficulty arises if σ ∈ T should produce three referrals, but Xσ does not have
that many viable friends. When this happens in the simulation, all viable friends
are referred and the remaining descendants in T are removed; this happens infre-
quently in the simulation. Once this process samples 500 nodes, the remaining
nodes in T are pruned. This pruned tree is then used to run the (T,P )-walk on G.
For each of the ten networks, this process is simulated 1000 times. The sample
variance across these 1000 samples is divided by the variance of uniform with-
replacement sampling, (4n)−1.

Because the trees are simulated to have m = 2, Theorem 3.1 suggests that the
design effect grows when λ2 exceeds 1/

√
2 ≈ 0.7. In the left most plots, the solid

lines are roughly flat. In the right most plots, the solid lines are quickly increas-
ing. This shows that the (T,P )-walk on G has a critical threshold somewhere be-
tween 0.6 and 0.8; this is consistent with the theory. Similarly, the dashed lines are
roughly flat in the left plots and quickly increasing in the right plots. Under these
simulation settings, the more realistic model mimics the critical threshold behavior
identified in Theorem 3.1.

In the first row of plots, each node has an expected degree of fifty. In the second
row of plots, each node has an expected degree of fifteen. In the top row, the solid
and dashed lines are close because there are fewer repeated samples. In the bottom
row, the lines for the sparse graphs are not as close. However, both rows display the
same qualitative behavior (flat when λ2 = 0.6 and increasing when λ2 = 0.8). This
simulation is repeated in the Appendix (Section B) with a Stochastic Blockmodel
that has unbalanced block sizes. Under the unbalanced blocks, Figure 6 displays
the same critical threshold as Figure 3 above.

5. Reinterpreting the results of Goel and Salganik (2010) with Theo-
rem 3.1. One of the most highly cited bootstrap procedures in the previous lit-
erature was proposed in Salganik (2006) and is often referred to as the Salganik
bootstrap. Later, Goel and Salganik (2010) showed in simulation experiments that
this procedure produces “misleadingly narrow” confidence intervals. This section
reinterprets those simulation results using Theorems 2.1 and 3.1 above. This rein-
terpretation motivates an alternative bootstrap procedure which is explored in the
next section.

In the simulation study, Goel and Salganik (2010) used several different graphs
G that were collected in previous empirical social network research. In each of sev-
eral experiments, y is a demographic measurement such as race or gender. Given
G and y, Goel and Salganik (2010) simulated the respondent-driven sample with
a (T,P )-walk on G, where T is a Galton–Watson tree with m = 1.5. After col-
lecting a sample of n = 500, Goel and Salganik (2010) constructed a bootstrapped
confidence interval with the Salganik bootstrap [Salganik (2006)]. To resample the
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observed individuals, the Salganik bootstrap constructs a Markov transition matrix
P̂o ∈R

n×n on the observed individuals as follows:

[D]ivide the sample members into two sets based on how they were recruited: people
recruited by someone in group A (which we will call Arec) and people recruited by
someone in group B (which we will call Brec). For example, Arec could be the set of all
sample members who were recruited by someone with HIV. . . . [B]ased on the group
membership [of the current state], we draw with-replacement from either Arec or Brec
[Salganik (2006)].

The fundamental problem with the Salganik bootstrap is that each bootstrap sam-
ple is a (C, P̂o)-walk on the observed individuals, where C is a chain graph. By
using C instead of T, the Salganik bootstrap resampling distribution is a Markov
chain, not a “Markov tree.”

In the simulation results of Goel and Salganik (2010), the bootstrap has par-
ticularly poor coverage on a subset of the features. These features are correlated
with the underlying social network. In particular, if there is an eigenpair (λ�, f�)

of P where 〈y,f�〉2
π is large and 1.5 > 1/λ2

� , then the (T,P )-walk on G exceeds
the critical threshold, while the (C, P̂o)-walk does not. If the original sample
(T,P )-walk on G exceeds the critical threshold, then estimates derived from this
sample will be highly variable. However, because the (C, P̂o)-walk resamples with
a chain graph C, it has m = 1. As such, the (C, P̂o)-walk will never exceed the crit-
ical threshold. The confidence intervals from the Salganik bootstrap will contract
at rate O(n−1/2), while the true uncertainty is decaying at a slower rate. This leads
to confidence intervals which are too narrow.

6. Bootstrap resampling with T. To allow for the bootstrap distribution to
exceed the critical threshold, this section proposes A-TREE-BOOTSTRAP. The Sal-
ganik bootstrap will be referred to as A-CHAIN-BOOTSTRAP. The A- prefix stands
for assisted, because they are both assisted by some node feature to create a
Markov transition matrix. In the A-CHAIN-BOOTSTRAP, the construction of the
matrix P̂o is assisted by the outcome of interest y (via the sets Arec,Brec). The
A-TREE-BOOTSTRAP also constructs a Markov transition matrix on the observed
individuals, P̂ ∈ R

n×n, and the construction of this matrix is assisted by some node
features. However, unlike A-CHAIN-BOOTSTRAP, A-TREE-BOOTSTRAP does not
require that P̂ is constructed from the same variable as the outcome of interest y.
As described in the previous section, the A-CHAIN-BOOTSTRAP directly samples
from the (C, P̂o)-walk. Similarly, the A-TREE-BOOTSTRAP directly samples from
the (T, P̂ )-walk, where the construction of P̂ is described in the next subsection. R
code for A-TREE-BOOTSTRAP is available at https://github.com/karlrohe/mRDS.

Over the course of this research, Baraff, McCormick and Raftery (2016) pro-
posed another bootstrap procedure which also uses T to perform the resampling.
This procedure will be referred to as U-TREE-BOOTSTRAP. The U- prefix stands
for unassisted because it does not require any node features to construct its Markov

https://github.com/karlrohe/mRDS
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transition matrix. In particular, the U-TREE-BOOTSTRAP resamples in a way that
the topology of the referral tree changes between bootstrap samples. As such, it
cannot be expressed as a (T,P )-walk on G. However, it is still a Markov process
with a transition matrix P̂u.

. . . the initial step is to resample with-replacement from the seeds of the trees. Next,
from each of those seeds, we resample with-replacement from their recruits, creating
the second level of the bootstrap sample trees. From each of these new recruits, we then
resample with-replacement from their recruits to create a third level. This process con-
tinues iteratively until no further recruits are available [Baraff, McCormick and Raftery
(2016)].

To define P̂u in the notation of this paper, let AT ∈ {0,1}n×n be the (asymmetric)
adjacency matrix of the directed graph T. So, for σ ∈ T with σ 	= 0, [AT]σ ′,σ = 1.
All other elements of AT are zero. Define DT as a diagonal matrix containing the
number of referrals from σ in element σ,σ ; [DT]σ,σ = ∑

τ Aσ,τ . Note that if σ ∈ T

is a leaf node, then [DT]σ,σ = 0. The Markov transition matrix is P̂u = D−1
T

AT,
where 0/0 is defined to be zero and the process terminates upon reaching a leaf
node. This P̂u is neither irreducible nor reversible.

6.1. The A-TREE-BOOTSTRAP procedure. This subsection describes the con-
struction of P̂ used in the A-TREE-BOOTSTRAP. Presume that every node in G

belongs to a class, z : V → {1, . . . ,K}, and z(i) is observed if node i is sampled.
These variables could denote some demographic characteristics or HIV status. The
variables {z(Xτ ) : τ ∈ T} assist the estimation of the Markov transition matrix on
the n individuals in the original sample Xτ .

All probability statements in this section are conditional on the original sample.
So, to temporarily conceal the randomness of the original sample, denote the ob-
served individuals with lower-case letters, {xτ : τ ∈ T}. Recall that for any σ ∈ T

with σ 	= 0, the parent node of σ is denoted as node σ ′ ∈ T. Denote N(u) =∑
σ 1{z(xσ ) = u} as the number of nodes in class u. Define Â : {1, . . . ,K}2 → R

to count the number of transitions between node types; for u, v ∈ {1, . . . ,K},
(10) Â(u, v) = ∑

σ 	=0

1
{
z(xσ ′) = u, z(xσ ) = v

}
.

Denote D̂(u) as the number of samples in class u that make a referral, D̂(u) =∑
v Â(u, v).
If X∗

0 and X∗
1 represent one step of U-TREE-BOOTSTRAP, then X∗

0 and X∗
1 take

values in the set of originally sampled individuals {xτ : τ ∈ T}. For any xσ and xτ

in the original sample, define u = z(xσ ) and v = z(xτ ). Then the probability of a
transition from x(σ ) to x(τ) in U-TREE-BOOTSTRAP is defined to be

(11) P̂xσ ,xτ = P
(
X∗

1 = xτ |X∗
0 = xσ

) = Â(u, v)

D̂(u)

1

N(v)
.



A CRITICAL THRESHOLD FOR NETWORK SAMPLING 571

This is equivalent to first taking a Markov transition from z(xσ ) to some other
node type v and then choosing an individual uniformly from the set of N(v)-
many individuals of this type. Using the matrix P̂ , the resampling distribution
of A-TREE-BOOTSTRAP is a (T, P̂ )-walk on {xτ : τ ∈ T}. Denote a resample as
{X∗

τ : τ ∈ T}; using these samples, construct μ̂∗ using {y(X∗
τ ) : τ ∈ T} and any

other measured features on the originally sampled individuals {xτ : τ ∈ T} (e.g.,
their degree in G).

Recall from Remark 2.1 that it is necessary to randomize the seed node in a
bootstrap procedure. To sample the seed node(s), A-TREE-BOOTSTRAP first sam-
ples a “mother node” uniformly at random from the original sample. Then this
mother node refers all of the seed nodes in the bootstrap sample. The mother node
only makes a difference when there are multiple seeds. It simulates the fact that
some group is responsible for finding the seed nodes and this group is likely to con-
strained in their ability to select seeds. In U-TREE-BOOTSTRAP, the seed node(s)
in the bootstrap match the seed nodes in the original sample. This makes the re-
sampling unable to realize the uncertainty that comes from seed selection. By in-
corporating a mother node, A-TREE-BOOTSTRAP increases the dependence of the
seeds and the variability of μ̂∗, thus making more conservative intervals. Section C
further examines the sensitivity of A-TREE-BOOTSTRAP to using a “mother node.”

The key ideas of A-TREE-BOOTSTRAP can also be used to perform sample size
calculations. To do this, one must guess (i) K , (ii) for each u, v ∈ 1, . . .K , the
probability that someone in class u refers someone in class v, (iii) the proportion
of individuals that belong to each class, (iv) the values of y within each class and
(v) the topological structure of T. R code for this is available at https://github.com/
karlrohe/mRDS.

6.2. Simulations to compare the bootstrap procedures. This section investi-
gates the coverage properties of the confidence intervals generated from A-TREE-
BOOTSTRAP, U-TREE-BOOTSTRAP, A-CHAIN-BOOTSTRAP and SS-BOOTSTRAP.
The successive-sampling (SS) model was first described for RDS in Gile (2011).
The SS-BOOTSTRAP fits and resamples from the SS model and was introduced in
the R package RDS [Handcock, Fellows and Gile (2016)]. The SS model is not
Markovian and so it cannot be described as a (T,P )-walk. The SS-BOOTSTRAP

requires an estimate of the population size; in the simulations below, the function
was provided with the true value of the population size.

6.2.1. Simulation settings. In total, the figures below change three aspects of
the simulations settings: (i) the sample size of the RDS, (ii) the strength of the
bottleneck in G, that is, λ2 and (iii) the strength of the relationship between the
outcome y and the bottleneck in G, that is, ρ2

π(y, f2) = σ−1〈y,f2〉π , where σ 2 =
VarRDS Y0. While the asymptotic properties of VarRDS only depend on whether
ρ2

π(y, f2) is zero or nonzero, the magnitude of ρ2
π(y, f2) is highly relevant in a

finite sample.

https://github.com/karlrohe/mRDS
https://github.com/karlrohe/mRDS
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To collect the desired sample size, each tree is initially sampled as a Galton–
Watson tree with offspring distribution 1 + W , where W ∼ Binomial(2,1/2).
So, m = 2 and the critical threshold is when the second eigenvalue is equal to
1/

√
2 ≈ 0.71. Then the RDS sample is constructed without-replacement, using

the procedure described in Section 4.1.
To vary the value of λ2, each network G is simulated from a two block Stochas-

tic Blockmodel [Holland, Laskey and Leinhardt (1983)] with 1/3 of the nodes in
block 0 with z(i) = 0 and 2/3 of the nodes in block 1 with z(i) = 1. The size of
the networks is set to N = 50,000 and the probability of a connection between
two nodes in different blocks is r = 15/N . Then λ2 varies between 0.5 and 0.9
by varying the probability of a connection between two nodes in the same block.
These within-block probabilities are parameterized as follows:

(12)
P

(
(i, j) ∈ E|z(i) = z(j) = 0

) = 7/3ωr,

P
(
(i, j) ∈ E|z(i) = z(j) = 1

) = 3/7ωr,

where ω ranges between 2.5 and 20. As ω increases, so does λ2. The constants 7/3
and 3/7 ensure that, for the values of ω that we consider, the expected degree of
a node in block zero [z(i) = 0] divided by the expected degree of a node in block
one [z(i) = 1] is roughly constant at 2.5. This ensures that (1) the sample average
is biased under the Markov model and (2) this bias does not significantly change
with λ2. As such, this parameterization isolates the effects of changing λ2 and is
not confounded by any issues of changing bias.

To control ρ2
π(y, f2), the simulations examine two types of node features y,

aligned and correlated. In the simulations for aligned, y(i) = z(i) for
all i ∈ G. In the correlated simulation, 45% of the nodes in block 0 have
y(i) = 1 and 10% of the nodes in block 1 have y(i) = 1; the rest of the nodes have
y(i) = 0. In the aligned simulation, ρ2

π(y, f2) is close to one. In the corre-
lated simulation, ρ2

π(y, f2) is around .15; see Figure 2 in the Supplementary
Material [Rohe (2019)] for more details.

The first step of the simulation is to generate the referral tree T from the Galton–
Watson distribution with n = 1000 nodes. Then the two types of node features y

are generated (aligned and correlated). The T and y’s are fixed across all
simulations. Then the following six steps create one replicate of the experiment:

1. Simulate the underlying network G from a Stochastic Blockmodel. To pa-
rameterize the Stochastic Blockmodel, edges between blocks occur with probabil-
ity r = 15/N and edges within each block occur with a probability that changes as
a function of ω, as defined in (12).

2. Simulate a respondent-driven sample of 1000 nodes, without-replacement,
using the more realistic model described in Section 4.1.

3. To examine sample sizes n 	= 1000, retain only the first n samples.
4. Draw 500 samples from each of the resampling distributions (A-TREE-

BOOTSTRAP, U-TREE-BOOTSTRAP, A-CHAIN-BOOTSTRAP and SS-BOOTSTRAP).
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FIG. 4. In these simulations, y is perfectly aligned with z, the referral bottleneck in the graph.
Across different sample sizes and varying strengths of referral bottlenecks, A-TREE-BOOTSTRAP

creates confidence intervals with conservative coverage probabilities.

5. Compute μ̂∗
VH on each of the bootstrap samples.

6. For each resampling distribution, use the 500 values of μ̂∗
VH to compute the

percentile confidence interval with the 5th to the 95th percentile of the bootstrap
distribution for μ̂∗

VH.

To examine the frequentist properties of these confidence intervals, the above five
steps are repeated 501 times; 501 to avoid confusion with the number of bootstrap
samples in step 3.

6.3. Simulation results; the coverage probabilities of the confidence intervals.
Figures 4 and 5 display the estimated coverage probabilities as a function of the
bottleneck strength λ2. The three panels correspond to different sample sizes. Fig-
ure 4 displays the results for aligned y. Figure 5 gives the results for corre-
lated y. While all of the confidence intervals are nominally 90%, the figures
show that the actual coverage probabilities can deviate substantially from 90%.

Across simulation settings, the nominally 90% confidence intervals from A-
CHAIN-BOOTSTRAP have coverage probabilities ranging from 90% to 10%. These
coverage probabilities are small in situations where the bottleneck is strong. This
demonstrates the sensitivities of A-CHAIN-BOOTSTRAP discussed in Section 5 and
in Goel and Salganik (2010). SS-BOOTSTRAP has coverage probabilities close to
90% when y is aligned and λ2 is not too large. However, when y is corre-
lated, the coverage probabilities for SS-BOOTSTRAP quickly diminish for mod-
erate to large values of λ2. The U-TREE-BOOTSTRAP confidence intervals are con-
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FIG. 5. In these simulations, y is correlated with z, the referral bottleneck in the graph. Across
different sample sizes and varying strengths of referral bottlenecks, A-TREE-BOOTSTRAP creates
confidence intervals with conservative coverage probabilities.

servative for small values of λ2 and anticonservative for larger values of λ2. The
intervals produced by A-TREE-BOOTSTRAP are conservative across the simulation
settings.

Note that in these simulations, the intervals from A-TREE-BOOTSTRAP appro-
priately cover μtrue [i.e., not E(μ̂VH|X0)]. Similar to Remark 2.1, these intervals
account for the uncertainty due to seed selection (sometimes called seed-bias).

The results for the “studentized” confidence intervals were studied, but are not
displayed. The “studentized” confidence intervals are constructed as μ̂VH ±1.65σ̂ ,
where σ̂ is the standard error of μ̂∗

VH in the 500 bootstrap samples. In the simu-
lations, the studentized intervals from the A-TREE-BOOTSTRAP often fail to be
contained in [0,1], despite the fact that yi ∈ {0,1} for all nodes i. Perhaps one
reason for these strange results is that the accuracy of the studentized intervals de-
pends on μ̂VH being asymptotically normal, while results in Li and Rohe (2017)
suggest that it is not. In the limited simulations that were performed, the percentile
interval was often (i) narrower and (ii) more likely to cover μtrue than the studen-
tized interval. The percentile interval can simultaneously improve both of these
metrics because it is not necessarily symmetric around the point estimate.

Section 3 in the Supplementary Material [Rohe (2019)] presents another simu-
lation which studies the widths of the confidence intervals [Rohe (2019)]. Using
a network with λ2 ≈ 0.82 (i.e., beyond the critical threshold), it studies how the
width of the confidence interval decays as the sample size increases; see Figure 1
in the Supplementary Material [Rohe (2019)] for more details.
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7. Discussion. A common concern in the RDS literature has been the de-
sign effect of network sampling techniques [Salganik (2006), Goel and Salganik
(2010), Szwarcwald et al. (2011), Johnston et al. (2013), Verdery et al. (2015)].
Theorems 2.1 and 3.1 use the Markov model to give a rigorous account of the
variance and design effect of RDS. In particular, if m > λ−2

2 , then the design ef-
fect can grow with the sample size; this is equivalent to saying the the variance
of the estimator decays slower than O(n−1). If the design effect is growing, then
it should not be used for sample size or power calculations for two reasons. First,
there might not be a central limit theorem to justify this approach [Li and Rohe
(2017)]. Second, if DE changes with n, then many of the standard formulas are not
well-defined (or they are incorrect). Instead of using DE to summarize the quality
of the sample, a more reasonable summary would be the “half-life of the standard
error.” That is, given an RDS with sample size n, how much larger should ñ be
such to decrease the standard error by 50%. For example, estimators which are√

n-consistent (i.e., constant DE) have a half-life of 4. Past the critical threshold
in RDS, the standard error decays like nγ , where γ = logm λ2 ∈ (−1/2,0). This
means that the half-life of the standard error is (1/2)(1/γ ) > 4.

Section 4 examines how well the (T,P )-walk on G (which samples with-
replacement) approximates a more accurate simulation model (which samples
without-replacement). Proposition 4.1 and Theorem 4.1 give matching lower and
upper bounds on the expected number of repeated pairs in a (T,P )-walk on G.
So long as n = o(

√
N), and some further technical conditions, these bounds

show that λ2 and the critical threshold do not affect the rate of E(Rn). As
such, the critical threshold does not create additional repeated pairs. Section 4.1
presents a simulation comparing the (T,P )-walk on G to a network sample taken
without-replacement. Under the simulation settings, both the with-replacement
and without-replacement samples displayed a similar critical threshold.

Section 6 introduces A-TREE-BOOTSTRAP, a new resampling procedure for
computing confidence intervals for μ̂VH. In a wide range of simulation settings,
the intervals from A-TREE-BOOTSTRAP produced intervals with conservative cov-
erage probabilities (i.e., the nominally 90% intervals had actual coverage that ex-
ceeded 90%). In contrast, there were simulation settings under which A-CHAIN-
BOOTSTRAP, SS-BOOTSTRAP and U-TREE-BOOTSTRAP produced intervals with
coverage probabilities that fall short of their nominal values. A key advantage of
the U-TREE-BOOTSTRAP and SS-BOOTSTRAP is that they do not require z. In con-
trast, a key practical limitation of the A-CHAIN-BOOTSTRAP is that it requires a
choice of z; that is, we must identify the referral bottleneck. More research is
needed to (1) make U-TREE-BOOTSTRAP and SS-BOOTSTRAP less sensitive to λ2
and (2) guide the choice of z for A-TREE-BOOTSTRAP.

APPENDIX A: PROOF OF THEOREM 2.1

The proof requires some notation and the following lemma. Throughout, let
{Xσ : σ ∈ T} be a (T,P )-walk on G. Let {X(i) : i ∈ 0,1, . . . } be a Markov chain
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with the same transition matrix P that is initialized from π . Define d(σ, τ ) as the
graph distance between nodes σ and τ in T.

LEMMA A.1. If the transition matrix P is reversible, then for any two nodes
σ and τ in the referral tree,

P(Xσ = u,Xτ = v) = P
(
X(0) = u,X

(
d(σ, τ )

) = v
)
.

PROOF. Let p = σ ∧ τ be the most recent common ancestor of σ and τ . By
the reversibility of the process, express P(Xσ = u,Xτ = v) as∑

�

P(Xσ = u,Xp = �,Xτ = v)

= ∑
�

π�P(Xσ = u|Xp = �)P(Xτ = v|Xp = �)

= ∑
�

πuP(Xp = �|Xσ = u)P(Xτ = v|Xp = �)

= ∑
�

πuP
(
X

(
d(σ,p)

) = �|X(0) = u
)
P

(
X

(
d(p, τ ) + d(σ,p)

)

= v|X(
d(σ,p)

) = �
)

= P
(
X(0) = u,X

(
d(σ, τ )

) = v
)
. �

Also, we require a fuller version of Lemma 2.1, which comes from Levin, Peres
and Wilmer (2009).

LEMMA A.2 [Lemma 12.2 in Levin, Peres and Wilmer (2009)]. Let P be a
reversible Markov transition matrix on the nodes in G with respect to the station-
ary distribution π . The eigenvectors of P , denoted as f1, . . . , fN , are real valued
functions of the nodes i ∈ G and orthonormal with respect to the inner product

(13) 〈fa, fb〉π = ∑
i∈G

fa(i)fb(i)πi.

If λ is an eigenvalue of P , then |λ| ≤ 1. The eigenfunction f1 corresponding to the
eigenvalue 1 can be taken to be the constant vector 1, in which case the probability
of a transition from i ∈ G to j ∈ G in t steps can be written as

(14) P
(
X(t) = j |X(0) = i

) = P t
ij = πj + πj

N∑
�=2

λt
�f�(i)f�(j).

The following is a proof of Theorem 2.1.
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PROOF.

VarRDS(μ̂) = 1

n2 VarRDS

(
N∑

τ∈T
y(Xτ )

)

= 1

n2

∑
σ,τ∈T

CovRDS
(
y(Xσ ), y(Xτ )

)
.

For ease of notation, let t = d(σ, τ ). From Lemma A.1 (and suppressing the RDS
subscript),

Cov
(
y(Xσ ), y(Xτ )

) = E
(
y
(
X(0)

)
y
(
X(t)

)) − (
Ey

(
X(0)

))2
.

Using the spectral decomposition of P (see Lemma A.2), with the fact that f1
is a constant vector and λ1 = 1 [Levin, Peres and Wilmer (2009)],

E
(
y
(
X(0)

)
y
(
X(t)

)) = ∑
u,v∈G

y(u)y(v)P
(
X(0) = u,X(t) = v

)

= ∑
u,v∈G

y(u)y(v)πuP
t (u, v)

= ∑
u,v∈G

y(u)y(v)πuπv

N∑
�=1

λt
�f�(u)f�(v)

= ∑
u,v∈G

y(u)y(v)πuπv

(
1 +

N∑
�=2

λt
�f�(u)f�(v)

)

=
(∑

u∈G

y(u)πu

)2
+

N∑
�=2

λt
�

(∑
u∈G

y(u)πuf�(u)

)2

= (
Ey

(
X(0)

))2 +
N∑

�=2

λt
�〈y,f�〉2

π .

Terms cancel. So,

(15) Cov
(
y(Xσ ), y(Xτ )

) =
N∑

�=2

λ
d(σ,τ)
� 〈y,f�〉2

π .

Then,

VarRDS(μ̂) = n−2
∑

σ,τ∈T
Cov

(
y(Xσ ), y(Xτ )

)

= n−2
∑

σ,τ∈T

N∑
�=2

λ
d(σ,τ)
� 〈y,f�〉2

π
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= n−2
N∑

�=2

〈y,f�〉2
π

∑
σ,τ∈T

λ
d(σ,τ)
�

=
N∑

�=2

〈y,f�〉2
πG(λ�). �

APPENDIX B: COMPARING THE CRITICAL THRESHOLD BETWEEN
SAMPLING WITH AND WITHOUT REPLACEMENT UNDER AN

UNBALANCED STOCHASTIC BLOCKMODEL

Figure 6 repeats the simulation given in Section 4.1 and Figure 3. In the previous
simulation, each block in the Stochastic Blockmodel accounted for 50% of the
nodes in the graph. In Figure 6, 1/3 of the nodes are in block zero and the rest are
in block one. To parameterize the model with the specified expected degree and
λ2, define r = 15/N . Using parameters α and ω to control the expected degree
and λ2 (resp.), the edge probabilities are specified as follows:

P
(
(i, j) ∈ E|z(i) = z(j) = 0

) = αr,

P
(
(i, j) ∈ E|z(i) = z(j) = 0

) = α7/3ωr and

P
(
(i, j) ∈ E|z(i) = z(j) = 1

) = α3/7ωr.

Each column of panels in Figure 6 corresponds to a value of λ2. These values of λ2
are created with ω ∈ {3.55,4.45,5.35,6.78,9}. Each row of panels in Figure 6 cor-
responds to a different expected degree (for a node chosen uniformly at random).
The value of α is adjusted to create the desired expected value.

APPENDIX C: FURTHER JUSTIFICATION FOR THE MOTHER NODE IN
A-TREE-BOOTSTRAP

A-TREE-BOOTSTRAP is a (T, P̂ )-walk, where P̂ is defined in (11). As such,
Theorem 2.1 and G(λ) can be used to study the variance of μ̂∗, providing a closed-
form expression for the bootstrap variance (and standard error). This can be com-
puted with G and the eigenproperties of P̂ and does not require simulating the
bootstrap. Here, we focus on the role of T and G in that formula. In particular,
Figure 7 studies how the standard error of μ̂∗ is sensitive to whether or not T in-
cludes a mother node. Note that the bootstrap standard error should not be used to
construct confidence intervals because μ̂∗ is not necessarily normally distributed;
Figure 7 uses standard error as merely one measure of uncertainty.

As discussed after Remark 2.1, it is necessary to randomize the seed node(s) in
the bootstrap in order to incorporate the additional uncertainty that comes from the
selection of the seeds. That uncertainty is often called seed-bias. However, if we
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FIG. 6. This simulation is identical to the simulation displayed in Figure 3, with one exception. In
this figure, 1/3 of the nodes are in block zero (instead of 1/2, as in Figure 3). Under this deviation,
the sample average becomes biased under the Markov model. The theoretical results show that the
critical threshold depends on m and λ2, not the bias of the sample average. This figure confirms that
the critical threshold for the more realistic model is also insensitive to the bias of the sample average.

randomize the seed node(s), then seed-bias becomes seed-variance. In this way, A-
TREE-BOOTSTRAP includes seed-bias/variance in its estimates of uncertainty by
randomizing the seed node(s).

When there are multiple seed nodes, the bootstrap should randomize all of them.
However, in typical RDS practice, seed nodes are not sampled independently from
the population. As such, the bootstrap should not simulate the seeds to be indepen-
dent. To mimic the dependence of the seeds, while still randomly selecting them
within the bootstrap, A-TREE-BOOTSTRAP creates an artificial “mother node” in

FIG. 7. When bootstrapped seeds are sampled independently, the bootstrapped estimator μ̂∗
has a drastically smaller standard error when compared to the seed generation mechanism in
A-TREE-BOOTSTRAP. Unless the seeds from the original sample were properly sampled from the
target population, this drastic reduction in variance is a bootstrap induced illusion.
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T that refers all of the seed nodes via the estimated Markov process (11). In this
way, A-TREE-BOOTSTRAP generates seeds in a dependent fashion.

If there are multiple seeds, then before the addition of a mother node, T is a
forest of disconnected trees. Each tree has its own root and these roots have a
one-to-one correspondence with the seeds. A-TREE-BOOTSTRAP artificially adds
a mother node to T and connects the mother node to all of the seeds (i.e., the
former root nodes). This mother node can be thought of as the research group that
selects the seeds, typically from a convenience sample. Adding this node to T dras-
tically changes the variability in Theorem 2.1 because the G function drastically
changes.

The vertical axis in Figure 7 gives
√
G(λ2); the two lines correspond to whether

or not T contains a mother node. Under a simple construction of P̂ ,
√
G(λ2) is the

bootstrapped standard error up to a constant of proportionality that can be easily
computed for a specific data set and do not depend on the tree.3 In Figure 7, the
forest T is ten 2-trees of size fifty (n = 500) and is used to create the dashed line.
The solid line is constructed by adding a mother node.

Without a mother node, different components of the forest are independent. By
averaging over independent seed nodes, there is a drastic reduction in the seed-
bias/variance; this is a bootstrap induced illusion (unless the actual data collec-
tion sampled the seeds independently from the stationary distribution π ). With the
mother node, A-TREE-BOOTSTRAP does not average over independent seeds. This
leads to a larger standard error and more conservative bootstrapped confidence
intervals.

Acknowledgments. Thank you Zoe Russek and Emma Krauska for recording
the referral trees used in Figure 2 and helpful comments on this draft. Thank you
Bret Hanlon, Mohammad Khabbazian, Matthew Salganik, Mark Handcock, Se-
bastien Roch, Quansheng Liu, Ting Fung Ma, Arash Amini, Erik Volz, and Russell
Lyons for thoughtful and helpful discussions over the course of this research.

SUPPLEMENTARY MATERIAL

Supplement: Proofs for Sections 3 and 4 (DOI: 10.1214/18-AOS1700SUPP;
.pdf). Due to space constraints, this supplement contains the proofs for the results
in Sections 3 and 4. Moreover, it contains an addition computational experiment
to study the widths of the bootstrap confidence intervals.

3Consider an example where P̂ in equation (11) is constructed with z(Xτ ) = yXτ
∈ {0,1} (cf.

Section 6.1). This formulation ensures that the sum in Equation (5) simplifies to a single term which
is proportional to G(λ2).

https://doi.org/10.1214/18-AOS1700SUPP
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