
What is Statistical Learning?
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Shown are Sales vs TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.
Can we predict Sales using these three?
Perhaps we can do better using a model

Sales ⇡ f(TV, Radio, Newspaper)
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Notation

Here Sales is a response or target that we wish to predict. We
generically refer to the response as Y .
TV is a feature, or input, or predictor; we name it X1.
Likewise name Radio as X2, and so on.
We can refer to the input vector collectively as

X =

0

B@
X1

X2

X3

1

CA

Now we write our model as

Y = f(X) + ✏

where ✏ captures measurement errors and other discrepancies.
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What is f(X) good for?

• With a good f we can make predictions of Y at new points
X = x.

• We can understand which components of
X = (X1, X2, . . . , Xp) are important in explaining Y , and
which are irrelevant. e.g. Seniority and Years of

Education have a big impact on Income, but Marital
Status typically does not.

• Depending on the complexity of f , we may be able to
understand how each component Xj of X a↵ects Y .
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Is there an ideal f(X)? In particular, what is a good value for
f(X) at any selected value of X, say X = 4? There can be
many Y values at X = 4. A good value is

f(4) = E(Y |X = 4)

E(Y |X = 4) means expected value (average) of Y given X = 4.

This ideal f(x) = E(Y |X = x) is called the regression function.
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The regression function f(x)

• Is also defined for vector X; e.g.
f(x) = f(x1, x2, x3) = E(Y |X1 = x1, X2 = x2, X3 = x3)

• Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(x) = E(Y |X = x) is the
function that minimizes E[(Y � g(X))2|X = x] over all
functions g at all points X = x.

• ✏ = Y � f(x) is the irreducible error — i.e. even if we knew
f(x), we would still make errors in prediction, since at each
X = x there is typically a distribution of possible Y values.

• For any estimate f̂(x) of f(x), we have

E[(Y � f̂(X))2|X = x] = [f(x)� f̂(x)]2| {z }
Reducible

+ Var(✏)| {z }
Irreducible
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How to estimate f

• Typically we have few if any data points with X = 4
exactly.

• So we cannot compute E(Y |X = x)!
• Relax the definition and let

f̂(x) = Ave(Y |X 2 N (x))

where N (x) is some neighborhood of x.
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• Nearest neighbor averaging can be pretty good for small p
— i.e. p  4 and large-ish N .

• We will discuss smoother versions, such as kernel and
spline smoothing later in the course.

• Nearest neighbor methods can be lousy when p is large.
Reason: the curse of dimensionality. Nearest neighbors
tend to be far away in high dimensions.

• We need to get a reasonable fraction of the N values of y
i

to average to bring the variance down—e.g. 10%.
• A 10% neighborhood in high dimensions need no longer be

local, so we lose the spirit of estimating E(Y |X = x) by
local averaging.
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The curse of dimensionality

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x1

x2

10% Neighborhood

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
5

1.
0

1.
5

Fraction of Volume

R
ad

iu
s

p= 1

p= 2
p= 3

p= 5

p= 10

8 / 30



Parametric and structured models

The linear model is an important example of a parametric
model:

fL(X) = �0 + �1X1 + �2X2 + . . .�pXp.

• A linear model is specified in terms of p+ 1 parameters
�0,�1, . . . ,�p.

• We estimate the parameters by fitting the model to
training data.

• Although it is almost never correct, a linear model often
serves as a good and interpretable approximation to the
unknown true function f(X).
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A linear model f̂L(X) = �̂0 + �̂1X gives a reasonable fit here
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A quadratic model f̂Q(X) = �̂0 + �̂1X + �̂2X
2 fits slightly

better.
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Years of Education

Sen
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ity

Incom
e

Simulated example. Red points are simulated values for income
from the model

income = f(education, seniority) + ✏

f is the blue surface.
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Years of Education
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Linear regression model fit to the simulated data.

f̂L(education, seniority) = �̂0+�̂1⇥education+�̂2⇥seniority
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More flexible regression model f̂S(education, seniority) fit to
the simulated data. Here we use a technique called a thin-plate
spline to fit a flexible surface. We control the roughness of the
fit (chapter 7).

13 / 30



Years of Education

Sen
ior

ity

Incom
e

Even more flexible spline regression model
f̂S(education, seniority) fit to the simulated data. Here the
fitted model makes no errors on the training data! Also known
as overfitting.
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Some trade-o↵s

• Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines
are not.

• Good fit versus over-fit or under-fit.
— How do we know when the fit is just right?

• Parsimony versus black-box.
— We often prefer a simpler model involving fewer
variables over a black-box predictor involving them all.
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2.1 What Is Statistical Learning? 25
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Trees

Bagging, Boosting

Support Vector Machines

FIGURE 2.7. A representation of the tradeo↵ between flexibility and inter-
pretability, using di↵erent statistical learning methods. In general, as the flexibil-
ity of a method increases, its interpretability decreases.

more interpretable. For instance, when inference is the goal, the linear
model may be a good choice since it will be quite easy to understand
the relationship between Y and X1, X2, . . . , Xp

. In contrast, very flexible
approaches, such as the splines discussed in Chapter 7 and displayed in
Figures 2.5 and 2.6, and the boosting methods discussed in Chapter 8, can
lead to such complicated estimates of f that it is di�cult to understand
how any individual predictor is associated with the response.
Figure 2.7 provides an illustration of the trade-o↵ between flexibility and

interpretability for some of the methods that we cover in this book. Least
squares linear regression, discussed in Chapter 3, is relatively inflexible but
is quite interpretable. The lasso, discussed in Chapter 6, relies upon the

lasso
linear model (2.4) but uses an alternative fitting procedure for estimating
the coe�cients �0,�1, . . . ,�p

. The new procedure is more restrictive in es-
timating the coe�cients, and sets a number of them to exactly zero. Hence
in this sense the lasso is a less flexible approach than linear regression.
It is also more interpretable than linear regression, because in the final
model the response variable will only be related to a small subset of the
predictors — namely, those with nonzero coe�cient estimates. Generalized
additive models (GAMs), discussed in Chapter 7, instead extend the lin-

generalized
additive modelear model (2.4) to allow for certain non-linear relationships. Consequently,

GAMs are more flexible than linear regression. They are also somewhat
less interpretable than linear regression, because the relationship between
each predictor and the response is now modeled using a curve. Finally, fully
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Assessing Model Accuracy

Suppose we fit a model f̂(x) to some training data
Tr = {xi, yi}N1 , and we wish to see how well it performs.

• We could compute the average squared prediction error
over Tr:

MSETr = Avei2Tr[yi � f̂(xi)]
2

This may be biased toward more overfit models.

• Instead we should, if possible, compute it using fresh test
data Te = {xi, yi}M1 :

MSETe = Avei2Te[yi � f̂(xi)]
2
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FIGURE 2.9. Left: Data simulated from f , shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

statistical methods specifically estimate coe�cients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.
Figure 2.9 illustrates this phenomenon on a simple example. In the left-

hand panel of Figure 2.9, we have generated observations from (2.1) with
the true f given by the black curve. The orange, blue and green curves illus-
trate three possible estimates for f obtained using methods with increasing
levels of flexibility. The orange line is the linear regression fit, which is rela-
tively inflexible. The blue and green curves were produced using smoothing
splines, discussed in Chapter 7, with di↵erent levels of smoothness. It is

smoothing spline
clear that as the level of flexibility increases, the curves fit the observed
data more closely. The green curve is the most flexible and matches the
data very well; however, we observe that it fits the true f (shown in black)
poorly because it is too wiggly. By adjusting the level of flexibility of the
smoothing spline fit, we can produce many di↵erent fits to this data.
We now move on to the right-hand panel of Figure 2.9. The grey curve

displays the average training MSE as a function of flexibility, or more for-
mally the degrees of freedom, for a number of smoothing splines. The de-

degrees of freedom
grees of freedom is a quantity that summarizes the flexibility of a curve; it
is discussed more fully in Chapter 7. The orange, blue and green squares

Black curve is truth. Red curve on right is MSETe, grey curve is

MSETr. Orange, blue and green curves/squares correspond to fits of

di↵erent flexibility.
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FIGURE 2.10. Details are as in Figure 2.9, using a di↵erent true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.
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FIGURE 2.11. Details are as in Figure 2.9, using a di↵erent f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

Here the truth is smoother, so the smoother fit and linear model do

really well.
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FIGURE 2.11. Details are as in Figure 2.9, using a di↵erent f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

Here the truth is wiggly and the noise is low, so the more flexible fits

do the best.
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Bias-Variance Trade-o↵

Suppose we have fit a model f̂(x) to some training data Tr, and
let (x0, y0) be a test observation drawn from the population. If
the true model is Y = f(X) + ✏ (with f(x) = E(Y |X = x)),
then

E
⇣
y0 � f̂(x0)

⌘2
= Var(f̂(x0)) + [Bias(f̂(x0))]

2 +Var(✏).

The expectation averages over the variability of y0 as well as
the variability in Tr. Note that Bias(f̂(x0))] = E[f̂(x0)]� f(x0).

Typically as the flexibility of f̂ increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-o↵.
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Bias-variance trade-o↵ for the three examples

36 2. Statistical Learning
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(✏)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11.
The vertical dashed line indicates the flexibility level corresponding to the smallest
test MSE.

ibility increases, and the test MSE only declines slightly before increasing
rapidly as the variance increases. Finally, in the right-hand panel of Fig-
ure 2.12, as flexibility increases, there is a dramatic decline in bias because
the true f is very non-linear. There is also very little increase in variance
as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.
The relationship between bias, variance, and test set MSE given in Equa-

tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-o↵. Good test set performance of a statistical learning method re-

bias-variance
trade-o↵quires low variance as well as low squared bias. This is referred to as a

trade-o↵ because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-o↵ is one of the most important recurring themes in this book.
In a real-life situation in which f is unobserved, it is generally not pos-

sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-o↵ in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In
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Classification Problems

Here the response variable Y is qualitative — e.g. email is one
of C = (spam, ham) (ham=good email), digit class is one of
C = {0, 1, . . . , 9}. Our goals are to:

• Build a classifier C(X) that assigns a class label from C to
a future unlabeled observation X.

• Assess the uncertainty in each classification

• Understand the roles of the di↵erent predictors among
X = (X1, X2, . . . , Xp).
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Is there an ideal C(X)? Suppose the K elements in C are
numbered 1, 2, . . . ,K. Let

pk(x) = Pr(Y = k|X = x), k = 1, 2, . . . ,K.

These are the conditional class probabilities at x; e.g. see little
barplot at x = 5. Then the Bayes optimal classifier at x is

C(x) = j if pj(x) = max{p1(x), p2(x), . . . , pK(x)}
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Nearest-neighbor averaging can be used as before.
Also breaks down as dimension grows. However, the impact on
Ĉ(x) is less than on p̂k(x), k = 1, . . . ,K.

25 / 30



Classification: some details

• Typically we measure the performance of Ĉ(x) using the
misclassification error rate:

ErrTe = Avei2TeI[yi 6= Ĉ(xi)]

• The Bayes classifier (using the true pk(x)) has smallest
error (in the population).

• Support-vector machines build structured models for C(x).

• We will also build structured models for representing the
pk(x). e.g. Logistic regression, generalized additive models.
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Example: K-nearest neighbors in two dimensions
38 2. Statistical Learning
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FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation will be assigned
to the blue class.

only two possible response values, say class 1 or class 2, the Bayes classifier
corresponds to predicting class one if Pr(Y = 1|X = x0) > 0.5, and class
two otherwise.
Figure 2.13 provides an example using a simulated data set in a two-

dimensional space consisting of predictors X1 and X2. The orange and
blue circles correspond to training observations that belong to two di↵erent
classes. For each value of X1 and X2, there is a di↵erent probability of the
response being orange or blue. Since this is simulated data, we know how
the data were generated and we can calculate the conditional probabilities
for each value of X1 and X2. The orange shaded region reflects the set of
points for which Pr(Y = orange|X) is greater than 50%, while the blue
shaded region indicates the set of points for which the probability is below
50%. The purple dashed line represents the points where the probability
is exactly 50%. This is called the Bayes decision boundary. The Bayes

Bayes decision
boundaryclassifier’s prediction is determined by the Bayes decision boundary; an

observation that falls on the orange side of the boundary will be assigned
to the orange class, and similarly an observation on the blue side of the
boundary will be assigned to the blue class.
The Bayes classifier produces the lowest possible test error rate, called

the Bayes error rate. Since the Bayes classifier will always choose the class
Bayes error rate

for which (2.10) is largest, the error rate at X = x0 will be 1�max
j

Pr(Y =
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FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
su�ciently flexible. The Bayes decision boundary is shown as a purple dashed
line.

28 / 30



2.2 Assessing Model Accuracy 41

o
o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

oo o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o o o

o

o o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o o

o

oo

oo

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo o
oo

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o
oo o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=10

X1

X

2

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
su�ciently flexible. The Bayes decision boundary is shown as a purple dashed
line.
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5000 observations) on the data from Figure 2.13, as the level
of flexibility (assessed using 1/K) increases, or equivalently as the number of
neighbors K decreases. The black dashed line indicates the Bayes error rate. The
jumpiness of the curves is due to the small size of the training data set.

In both the regression and classification settings, choosing the correct
level of flexibility is critical to the success of any statistical learning method.
The bias-variance tradeo↵, and the resulting U-shape in the test error, can
make this a di�cult task. In Chapter 5, we return to this topic and discuss
various methods for estimating test error rates and thereby choosing the
optimal level of flexibility for a given statistical learning method.

2.3 Lab: Introduction to R

In this lab, we will introduce some simple R commands. The best way to
learn a new language is to try out the commands. R can be downloaded from

http://cran.r-project.org/

2.3.1 Basic Commands

R uses functions to perform operations. To run a function called funcname,
function

we type funcname(input1, input2), where the inputs (or arguments) input1
argument
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