What is Statistical Learning?
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Shown are Sales vs TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.

Can we predict Sales using these three?

Perhaps we can do better using a model

Sales ~ f(TV,Radio, Newspaper)
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Notation

Here Sales is a response or target that we wish to predict. We
generically refer to the response as Y.

TV is a feature, or input, or predictor; we name it Xi.

Likewise name Radio as Xo, and so on.

We can refer to the input vector collectively as

X1
X=1 Xy
X3
Now we write our model as
Y = f(X)+e

where € captures measurement errors and other discrepancies.
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What is f(X) good for?

e With a good f we can make predictions of Y at new points
X ==z

e We can understand which components of
X = (X1,X2,...,X,) are important in explaining Y, and
which are irrelevant. e.g. Seniority and Years of
Education have a big impact on Income, but Marital
Status typically does not.

e Depending on the complexity of f, we may be able to
understand how each component X; of X affects Y.
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Is there an ideal f(X)? In particular, what is a good value for
f(X) at any selected value of X, say X = 4?7 There can be
many Y values at X = 4. A good value is

f4) =EY|X =4)
E(Y|X = 4) means expected value (average) of Y given X = 4.
This ideal f(x) = E(Y|X = z) is called the regression function.
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The regression function f(x)

e Is also defined for vector X; e.g.
f(z) = f(z1,22,73) = E(Y[X1 = 71, Xo = 72, X3 = 23)
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The regression function f(x)

e Is also defined for vector X; e.g.

f(@) = f(z1,22,23) = E(Y|X1 = 21, Xo = 22, X3 = 23)

e Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(z) = E(Y|X = z) is the
function that minimizes E[(Y — g(X))?|X = x] over all
functions g at all points X = x.
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The regression function f(x)

e Is also defined for vector X; e.g.

f(@) = f(z1,22,23) = E(Y|X1 = 21, Xo = 22, X3 = 23)

e Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(z) = E(Y|X = z) is the
function that minimizes E[(Y — g(X))?|X = x] over all
functions g at all points X = x.

e ¢ =Y — f(z) is the irreducible error — i.e. even if we knew
f(x), we would still make errors in prediction, since at each
X = x there is typically a distribution of possible Y values.

e For any estimate f(z) of f(z), we have

BI(Y — f(X)?*|X = 2] = [f(z) — f@)> + Var(e)
Reducible Irreducible



How to estimate f

e Typically we have few if any data points with X =4
exactly.

e So we cannot compute F(Y|X = x)!

e Relax the definition and let

f(z) = Ave(Y|X € N(x))

where N (x) is some neighborhood of x.
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e Nearest neighbor averaging can be pretty good for small p
—i.e. p <4 and large-ish N.

e We will discuss smoother versions, such as kernel and
spline smoothing later in the course.



e Nearest neighbor averaging can be pretty good for small p
—i.e. p <4 and large-ish N.

e We will discuss smoother versions, such as kernel and
spline smoothing later in the course.

e Nearest neighbor methods can be lousy when p is large.
Reason: the curse of dimensionality. Nearest neighbors
tend to be far away in high dimensions.

e We need to get a reasonable fraction of the IV values of y;
to average to bring the variance down—e.g. 10%.

e A 10% neighborhood in high dimensions need no longer be
local, so we lose the spirit of estimating E(Y|X = z) by
local averaging.



x2

-0.5 0.0 0.5

-1.0

10% Neighborhood

The curse of dimensionality

Radius

15

1.0

0.5

0.0

0.0 041

02 03 04 05 06 07

Fraction of Volume




Parametric and structured models

The linear model is an important example of a parametric
model:

fL(X) = Bo+ B1X1 + BoXa+ ... Bp X,

e A linear model is specified in terms of p + 1 parameters
Bo, B - - - Bp-

e We estimate the parameters by fitting the model to
training data.

e Although it is almost never correct, a linear model often
serves as a good and interpretable approximation to the
unknown true function f(X).



A linear model f7(X) = By + f1X gives a reasonable fit here
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A quadratic model fQ(X) = By + 51X + B2 X2 fits slightly
better.
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Simulated example. Red points are simulated values for income
from the model

income = f(education,seniority) + ¢
f is the blue surface.
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Linear regression model fit to the simulated data.

~

fr(education, seniority) = ﬁ0+31 Xeducation—i—@ Xseniority
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More flexible regression model fs(education, seniority) fit to
the simulated data. Here we use a technique called a thin-plate
spline to fit a flexible surface. We control the roughness of the
fit (chapter 7).
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Even more flexible spline regression model
fs(education, seniority) fit to the simulated data. Here the

fitted model makes no errors on the training data! Also known

as overfitting.
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Some trade-offs

e Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines
are not.
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Some trade-offs

e Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines
are not.

e Good fit versus over-fit or under-fit.
— How do we know when the fit is just right?

e Parsimony versus black-box.
— We often prefer a simpler model involving fewer
variables over a black-box predictor involving them all.



Interpretability
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Assessing Model Accuracy

Suppose we fit a model f () to some training data
Tr = {z;,v;}Y, and we wish to see how well it performs.

e We could compute the average squared prediction error
over Tr:
MSET = Avejere[ys — f(2:)]?
This may be biased toward more overfit models.

e Instead we should, if possible, compute it using fresh test
data Te = {z;,y; 1)1

MSETe = AVeieTe[yi - f(xl)}Q
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Black curve is truth. Red curve on right is MSEr., grey curve is
MSET,. Orange, blue and green curves/squares correspond to fits of
different flexibility.
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Here the truth is smoother, so the smoother fit and linear model do
really well.
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Here the truth is wiggly and the noise is low, so the more flexible fits
do the best.



Bias-Variance Trade-off

Suppose we have fit a model f(:z:) to some training data Tr, and
let (zg,y0) be a test observation drawn from the population. If
the true model is Y = f(X) + € (with f(z) = E(Y|X = z)),
then

N 2 N ~
E (yo — f(x0)> = Var(f(z0)) + [Bias(f(x0))]2 + Var(e).

The expectation averages over the variability of yy as well as

the variability in Tr. Note that Bias(f(x0))] = E[f(x0)] — f(20).
Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.



Bias-variance trade-off for the three examples
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Classification Problems

Here the response variable Y is qualitative — e.g. email is one
of C = (spam, ham) (ham=good email), digit class is one of
C ={0,1,...,9}. Our goals are to:
e Build a classifier C'(X) that assigns a class label from C to
a future unlabeled observation X.
e Assess the uncertainty in each classification

e Understand the roles of the different predictors among
X =(X1,X,...,X,).
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Is there an ideal C'(X)? Suppose the K elements in C are
numbered 1,2,..., K. Let

pp(z) =Pr(Y =kl X =2), k=1,2,... K.

These are the conditional class probabilities at x; e.g. see little
barplot at « = 5. Then the Bayes optimal classifier at z is

C(z) = j if pj(x) = max{p1(x), p2(x), ..., pr(2)}
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Nearest-neighbor averaging can be used as before.
Also breaks down as dimension grows. However, the impact on
C(x) is less than on pi(z), k=1,..., K.
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Classification: some details

e Typically we measure the performance of C () using the
misclassification error rate:

Errre = Avejerel [yi # (1))

e The Bayes classifier (using the true py(x)) has smallest
error (in the population).

26 /30



Classification: some details

Typically we measure the performance of C () using the
misclassification error rate:

Errre = Avejerel [yi # (1))

The Bayes classifier (using the true pi(x)) has smallest
error (in the population).

Support-vector machines build structured models for C'(z).

We will also build structured models for representing the
pr(z). e.g. Logistic regression, generalized additive models.



Example: K-nearest neighbors in two dimensions

X2
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Xo

KNN: K=10




KNN: K=1 KNN: K=100




Error Rate

0.20

0.15

0.10

0.05

0.00

.0 °
000f o °
‘:I’.\. : %o o °
\./ \ —
\ . /
° °o-0
00 N, /’\°
\ oo ° ‘.... o=-0
° \o,\/. P oo/
_______ —r - e o -, e e — — e —— -
N:
o0
L]
\ o000
L) Ao
L] L] L] o
L]
\A /\
VAR
L]
—— Training Errors
~——— Test Errors °
T T T T T T T
0.01 0.02 0.05 0.10 0.20 0.50 1.00
1/K

30/ 30



