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ABSTRACT

The task of zero resource query-by-example keyword search has
received much attention in recent years as the speech technology
needs of the developing world grow. These systems traditionally
rely upon dynamic time warping (DTW) based retrieval algorithms
with runtimes that are linear in the size of the search collection.
As a result, their scalability substantially lags that of their super-
vised counterparts, which take advantage of efficient word-based in-
dices. In this paper, we present a novel audio indexing approach
called Segmental Randomized Acoustic Indexing and Logarithmic-
time Search (S-RAILS). S-RAILS generalizes the original frame-
based RAILS methodology to word-scale segments by exploiting a
recently proposed acoustic segment embedding technique. By in-
dexing word-scale segments directly, we avoid higher cost frame-
based processing of RAILS while taking advantage of the improved
lexical discrimination of the embeddings. Using the same conversa-
tional telephone speech benchmark, we demonstrate major improve-
ments in both speed and accuracy over the original RAILS system.

Index Terms— Zero resource, query-by-example search, speech
indexing, fixed-dimensional embedding

1. INTRODUCTION

Keyword search, in which one must locate occurrences of an utter-
ance in a collection of speech audio, has received increasing at-
tention as speech data becomes ever more ubiquitous. Most ap-
proaches to date have employed lattice indexing techniques [1], en-
abling search of thousands of hours of speech in interactive time.
Typical systems build a model to map sequences of frames to seg-
mental units (e.g., phones or words) that are more amenable to stan-
dard lattice-based approaches. Unfortunately, these techniques re-
quire large collections of annotated speech audio, which are unavail-
able in most languages. As a result, the zero-resource setting, in
which detailed annotations are unavailable and linguistic structure
must be discovered without the aid of training data, has attracted
attention both in the speech processing community [2] and among
scientists interested in human language acquisition [3].

Query-by-example search, where search terms are presented as
audio segments rather than in graphemic or phonetic form, has ap-
plications in probing large collections of unstructured audio data [4]
and in voice interfaces [5]. The standard approach involves training
a model to map query audio to a sequence of symbols (e.g., a pho-
netic representation) and searching for this sequence in a lattice built
on the search collection [6]. Finite state automata techniques have
made lattice search of this kind both fast and accurate [7], but the na-
ture of the required training data makes these approaches infeasible
in zero- and low-resource settings.

Dynamic time warping (DTW) has been effective in zero-
resource query-by-example search [8, 9, 10]. Unfortunately, DTW

sequence alignment requires time linear in the size of the search
collection, which limits its scalability. While techniques such as
those in [11, 12] have improved runtime by reducing the constants
in this linear dependence, the Randomized Acoustic Indexing and
Logarithmic-Time Search (RAILS) system introduced in [13] avoids
this linear dependence altogether. RAILS operates by performing
logarithmic-time approximate nearest-neighbor retrieval at the frame
level to find likely matches of the query against the search collection.
Subsequent processing extends frame-level matches to segmental-
level matches of the query against the search collection using image
processing techniques.

RAILS has two main limitations. First, its accuracy depends
ultimately on DTW as a measure of segment-level similarity. Sec-
ond, the process by which frame-level matches are extended requires
computationally expensive digital image processing, which intro-
duces a major runtime bottleneck. In the current work, we present S-
RAILS, an extension of the RAILS methodology that avoids both of
these shortcoming by performing search directly at the segment level
using fixed-dimensional segmental embeddings presented in [14].
Such embedding techniques showed a marked improvement over
a purely DTW-based approach as measured by performance on the
evaluation task introduced in [15], and since search is performed at
the segment level already, there is no need for extending frame-level
matches as in the original RAILS system. We evaluate S-RAILS in
a query-by-example keyword search task on a corpus of telephone
speech, in which our system improves dramatically over the original
RAILS system in both accuracy and runtime.

2. METHODS

The S-RAILS system is an adaptation of the RAILS query-by-
example search system presented in [13]. In RAILS, indexing
consists of building a structure to support fast approximate nearest-
neighbor retrieval at the frame level using the point location in equal
balls (PLEB) algorithm [16]. Given a query, the near neighbors
of each frame in the query are retrieved from the index along with
scores reflecting their similarity. These near neighbor frames along
with their scores yield a sparse approximation to the frame-level
similarity matrix, the entries of which correspond to similarities
between frames in the query and frames in the search collection.
Segments of the search audio that are similar to the query give rise
to approximately diagonal lines in the similarity matrix. These di-
agonal lines appear as peaks in the Hough transform of the matrix,
and thus can be quickly located.

S-RAILS differs from the original RAILS system by indexing
the acoustic features of whole word-sized segments directly, alto-
gether avoiding both the intermediate step of frame-level indexing
and the need to construct a similarity matrix. It operates as follows:

1. Voice activity detection (VAD) locates regions likely to con-
tain speech.
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Fig. 1. Diagram of the S-RAILS audio search system.

2. Each VAD region is split into overlapping segments from
some minimum duration to some maximum duration. Each
segment is mapped to a fixed-dimensional vector using tech-
niques from [14].

3. An index is constructed for randomized approximate nearest-
neighbor retrieval [16] on the collection of fixed-dimensional
embeddings. Each segment created in the previous step ap-
pears as an entry in the index.

4. At query time, a query segment is mapped to its fixed-
dimensional representation and the near-neighbors of that
representation are retrieved from the index.

5. Candidate matches to a query can be rescored after retrieval,
e.g., by computing exact DTW scores as in [13].

2.1. Fixed-dimensional Segment Embeddings

To obtain fixed-dimensional representations of speech segments, we
use the unsupervised Laplacian eigenmaps embedding described in
Section 2.4 of [14], which we summarize here. Laplacian eigenmaps
is a non-linear dimensionality reduction technique that maps a col-
lection of objects into Euclidean space in such a way that the local
geometry of the collection is preserved. The Laplacian eigenmaps
framework is described in detail in [17], with an out-of-sample ex-
tension described in [18].

Let X be the set of all arbitrary-length feature vector time se-
ries, X = {X = x1x2, . . . , xT : T ∈ Z+}, where each xi ∈ Rp
and p is the dimensionality of a speech frame. Our goal is to find
a mapping h : X → Rd, where d is the dimensionality of our em-
beddings, such that speech segments from X with similar content
are mapped to nearby locations in Rd. We are given a collection
Y = {X1, X2, . . . , Xn} ⊂ X from which to learn this mapping.

We construct a k-nearest neighbor graph with nodes correspond-
ing to elements from Y , measuring the distances between segments
by their DTW alignment costs. The graph is represented by a binary-
valued adjacency matrix A ∈ Rn×n, with Aij = 1 if and only
if Xi is among the k nearest neighbors of Xj or vice versa. This
allows us to construct the normalized graph Laplacian of A, L =
I − D−1/2AD−1/2, where D is a diagonal matrix with Dii =∑
j Aij . The Laplacian eigenmaps out-of-sample extension, pre-

sented in [18], finds a set of projection maps {h1, h2, . . . , hd}, with
hj : X → R for j = 1, 2, . . . , d, which are determined by the
solutions to

h∗ = arg min
h∈HK ,

hTh=1,

hT~1=0

hTLh+ ξ‖h‖2K , (1)

where K : X × X → R is a positive semi-definite kernel function,
HK is the reproducing kernel Hilbert space for K, h is the vector
with hi = h(Xi), and ξ ≥ 0 is a regularization parameter. Our j-th
projection map applied to segment X ∈ X is then given by

h∗j (X) =

n∑
i=1

α
(j)
i K(Xi, X), (2)

where the α(j)
i terms are the solutions to the generalized eigenvector

problem (LK + ξI)α = λKα, where Kij = K(Xi, Xj). As
in [14], we use a kernel function given by

K(Xi, Xj) = exp

{
−max{0,DTW(Xi, Xj)− η}

2σ2

}
,

where DTW(Xi, Xj) denotes the DTW alignment cost of segment
Xi with segment Xj , and η, σ ∈ R with σ > 0. We measure dis-
tance between embeddings using cosine distance, since [14] shows
this to yield good results on a word discrimination task.

2.2. Near-neighbor retrieval

A crucial step in both RAILS and S-RAILS consists of retrieving a
set of embeddings that are similar to a query embedding. Our goal is
to build an index which, given a query vector, returns vectors from
the index that are near to the query vector under cosine distance. To
solve this problem, RAILS used an implementation of point location
in equal balls (PLEB) as presented in [16]. PLEB makes use of
locality sensitive hash (LSH) functions, which capture the geometric
proximity of pairs of items in the sense that nearby items are likely
to be hashed to the same value and distant items are unlikely to be
hashed to the same value.

The LSH variant used here is the same as that used in the original
RAILS system [13]. We map vectors to binary strings of length S,
which we call signatures. This mapping is chosen such that cosine
distance between two vectors can be approximated by some function
of the Hamming distance between their respective signatures. These
signatures are generated by randomly choosing a set of S hyper-
planes through the origin in the vector space. Each bit of a vector’s
signature is determined by which side of a corresponding hyperplane
it falls on. Pairs of vectors with small cosine distance are unlikely to
be separated by a randomly-chosen hyperplane, and thus their sig-
natures are likely to be similar. This permits fast retrieval of the ap-
proximate near neighbors of a given query vector by computing its
signature and returning all vectors from the search collection whose
signatures are at a small Hamming distance from it.

The near-neighbor retrieval algorithm used in S-RAILS is dis-
cussed in detail in [19], and we summarize it here. We let B de-
note the beamwidth, a parameter that controls the number of near



Table 1. S-RAILS performance on the development search col-
lection, averaged over all query types as a function of signature
length S for fixed number of permutations P = 8 and beamwidth
B = 10, 000. All scores are percentages.

Median Example Best Example
S FOM OTWV P@10 FOM OTWV P@10

64 22.3 9.8 9.1 48.7 26.2 45.4
128 27.5 11.4 11.4 56.0 30.4 55.1
512 30.4 14.0 14.4 57.7 33.8 59.1

1024 30.2 13.9 14.8 58.3 35.0 60.7

Table 2. S-RAILS performance on the development search collec-
tion, averaged over all query types as a function of number permu-
tations P for fixed beamwidth B = 100, 000 and signature length
S = 512. All scores are percentages.

Median Example Best Example
P FOM OTWV P@10 FOM OTWV P@10
4 31.3 13.6 15.2 60.7 34.1 58.7
8 33.1 14.5 15.4 63.0 35.2 59.6

neighbors that we retrieve. Retrieval is performed by sorting the sig-
natures in the search collection and returning signatures that share
a prefix with the query signature. Given a collection of signatures
Z = {z1, z2, . . . , zN} with each zi ∈ {0, 1}S , we sort the elements
of Z in lexicographic order. Let π be a permutation of the integers
1, 2, . . . , N such that zπ(1), zπ(2), . . . , zπ(N) is the lexicographic
sort of the elements of Z . Given a query signature q ∈ {0, 1}S , we
find via binary search the location where q belongs in the sorted list
and return theB signatures before that position and theB signatures
after that position. That is, if q belongs between zπ(i) and zπ(i+1) in
the sorted list, we return the set {zπ(a), zπ(a+1), . . . , zπ(b)}, where
a = max{1, i − B + 1} and b = min{N, i + B}. Of course, in
this lexicographic sorting scheme, a given ordering of the signature
bits means that bits appearing early in the signature have a greater
influence over which pairs of signatures are considered similar. This
problem is mitigated by performing several of these searches under
different permutations of the signature bit ordering. We denote by P
the number of such permutations that we use. In practice, rather than
repeatedly permuting and sorting the signature list, we keep P sep-
arate lists of the search collection signatures, each sorted according
to a different one of the P permutations. Retrieval of near-neighbors
under this scheme requires time logarithmic in N and linear in both
P and S. We have observed in our experiments that runtime depends
only weakly on S compared to dependence on P and N .

3. EXPERIMENTS

Our experiments follow those presented in [13]. We evaluated our
system in a query-by-example keyword search task on the Switch-
board corpus, a collection of conversational telephone speech. A
37-hour collection was set aside from which to draw query terms, a
48-hour development search collection was used to explore the effect
of different parameters on the system’s performance, and a 433-hour
evaluation set was used to obtain final performance metrics. Query
word types were chosen to have corpus-wide median duration of at
least 0.5 seconds and orthographic representation at least six charac-
ters long. This resulted in a collection of 43 query word types:

absolutely basically benefit bottles business California col-
lege community companies control crimes definitely deter-

rent employees expenses expensive important individual in-
surance interesting mandatory Massachusetts newspaper or-
ganization performance plastic policy positive process pro-
gram punishment recently recycle recycling retirement salary
savings situation society understand unfortunately university
vacation

Each query type appeared between 20 and 162 times in the query
set, between 2 and 188 times in the development search collection,
and between 39 and 1386 times in the evaluation collection. More
than half of the selected query types had median duration less than
0.55 s and all query types had median duration less than 0.75 s. We
considered three common keyword search metrics:

(1) Figure-of-merit (FOM), the average recall over the 10 operating
points at which the false alarm rate is 1, 2, . . . , 10 false alarms
per hour of search audio.

(2) Oracular term weighted value (OTWV), a weighted difference
between the system’s recall and false alarm rate. The oracular
variant of this metric assumes an optimal query-specific thresh-
old. See [1] for a detailed account of this metric.

(3) Precision at 10 (P@10), the fraction of the top ten ranked can-
didate matches that are correct.

Metrics were computed separately for each query type, and are re-
ported as unweighted averages over all 43 query types. Performance
is sensitive to the specific query example. Thus, for each metric, we
report both (i) the median query example performance, and (ii) the
best query example performance.

3.1. Selecting Index Parameters

Table 1 shows the effect of signature length on system performance
for fixed beamwidth B = 10, 000 and number of permutations P =
8. Performance saturates at a signature length of 512 bits. These
signatures are larger than the 64-bit signatures used in RAILS owing
to the fact that RAILS indexes 39-dimensional feature vectors while
S-RAILS indexes 1000-dimensional fixed-dimensional embeddings.
As a result, a larger number of bits are required to achieve suitably
high fidelity in approximating cosine distance between vectors. Ta-
ble 2 shows system performance as a function of the number of per-
mutations for fixed beamwidth B = 100, 000 and signature length
S = 512. We see that P = 8 yields a non-negligible performance
gain over P = 4 in the best-example case, though median perfor-
mance is largely insensitive to P . These two tables jointly sug-
gest that performance saturates at a signature length of 512 bits and
P = 8. We use these parameters in the remainder of our evaluation.

3.2. Constructing the Index

To segment the search collection, candidate segment boundaries
were placed at 3-frame intervals in all VAD regions. Resulting
segments with duration at least 40 frames (400 ms) and at most
100 frames (1 s) were included in the index. To construct Lapla-
cian eigenmaps embeddings, we used a set of 10,383 unlabeled
word examples from the Switchboard corpus to define our similarity
graph. As discussed in [14], the process of constructing Laplacian
eigenmaps embeddings is slow, since a single embedding requires
computing a DTW alignment of a segment with every segment in
the similarity graph. Indeed, this process is currently the major bot-
tleneck in constructing an index. In order to speed up the embedding
process, rather than explicitly computing DTW(X,Xi) for all i as
in (2), we performed a spectral clustering of the 10,383-segment
similarity graph and selected a representative segment (the medoid)



Table 3. S-RAILS performance on the evaluation search set, averaged over all query types as a function of beam width B for fixed number
of permutations P = 8 and signature length S = 512. All scores are percentages except Real Time Speedup, which is the ratio of search
collection duration to the average time required to perform a single query.

Median Example Best Example
B FOM OTWV P@10 FOM OTWV P@10 Real Time Speedup

100 7.6 6.0 39.3 19.8 15.5 85.3 307,000,000
1,000 15.0 9.7 38.3 34.1 21.8 87.4 40,800,000

10,000 26.0 12.7 38.6 47.7 26.3 91.6 5,770,000
100,000 37.3 15.1 38.6 56.9 29.6 89.3 510,000

Table 4. Baseline RAILS performance (reproduced from [13]) on the evaluation search set averaged over all query types as a function of
beam width B. All scores are percentages except Real Time Speedup, which is the ratio of search collection duration to the average time
required to perform a single query.

Median Example Best Example
B FOM OTWV P@10 FOM OTWV P@10 Real Time Speedup

500 0.8 0.9 21.0 3.6 2.8 58.4 620,000
5,000 6.7 2.7 44.0 20.7 10.4 84.4 63,000

50,000 19.0 4.7 49.2 39.9 16.5 88.4 7,000
100,000 20.2 4.8 49.8 41.1 16.6 88.1 3,600

from each cluster. Given a segment X ∈ X to embed, its DTW
alignment was computed with each cluster representative. For rep-
resentatives whose alignment cost was above some threshold, we set
K(X,Xi) = 0 for all Xi in the corresponding cluster rather than
computing exact alignment costs. Experiments showed that 550
clusters with a threshold of 0.17 yielded a very good approximation
to the true values of the kernel function. This approximation yielded
a factor of 6 speedup with respect to the exact computation, but
even with this speedup, computing fixed-dimensional embeddings
of speech audio is approximately 130 times slower than real time
on current hardware. This process produced approximately 30 mil-
lion 1,000-dimensional embeddings in the case of the development
search collection and approximately 280 million in the case of the
evaluation search collection, which became the input to the index.

By the nature of the Laplacian eigenmaps embedding, word ex-
amples that are not similar to any words in the reference set are
mapped to locations near the origin. At query time, when similar-
ity search is performed under cosine distance, many of these small-
norm embeddings are retrieved as candidate matches. This results
in many false positives, reflected in the low median precision at 10
scores in Tables 1 and 2. To reduce this effect, we removed from
the index all embeddings with norm less than a set threshold. We
found a threshold of 0.06 to be best, though performance was com-
paratively flat for thresholds between 0.01 and 0.1. In experiments
on the development search set, this resulted in 50% to 70% relative
improvements in median precision at 10, as well approximately 8%
relative improvement in maximum precision at 10 and, somewhat
surprisingly, small improvements on all other metrics.

3.3. Post-processing of query results

Owing to the segmentation scheme used in S-RAILS, the index con-
tains many entries corresponding to overlapping segments, and our
embedding technique causes these segments to be mapped to sim-
ilar fixed-dimensional vectors. The result is that at query time, if
one of these segments is retrieved, many other overlapping segments
are likely to be retrieved, as well. To eliminate this redundancy, we
performed a post-processing step in which retrieved segments whose
midpoints were within a given number of frames of one another were
greedily merged by discarding the segment with lower score. This
operation was repeated until no further merge operations could be

performed. We found that merging pairs of segments whose mid-
points were within 10 frames of one another proved effective.

3.4. Results

Table 3 shows system performance on the evaluation search set as
a function of beamwidth for fixed number of permutations P = 8
and signature length S = 512. Table 4 shows performance of the
original RAILS system for comparison. We note that values of B
in RAILS and S-RAILS are not directly comparable, since the two
systems operate on different objects, though both systems’ runtimes
depend linearly on the parameter. Comparing the best performance
of the two systems, we see that S-RAILS achieves more than 80%
relative improvement over RAILS in median example FOM and
upwards of 200% relative improvement in median example OTWV.
In the case of best example performance, S-RAILS exhibits ap-
proximately 78% relative improvement in OTWV and 38% relative
improvement in FOM performance. P@10 scores are less decisive.
S-RAILS improves marginally on RAILS in best example P@10,
but lags by a non-negligible margin in median example P@10. As
alluded to previously, this is due to a small number of particularly
high-scoring false alarms introduced by the embedding process.
This issue might be ameliorated by a suitable rescoring procedure.

Comparing system runtimes paints a more impressive picture.
S-RAILS tends to achieve a speedup of between two and five orders
of magnitude with respect to RAILS at any given performance level.
To take a particularly striking example, S-RAILS with B = 100
achieves better median OTWV performance than RAILS with B =
200, 000 while running more than 85,000 times faster.

4. CONCLUSION

We have presented a novel segment-based indexing and retrieval
method for query-by-example search that operates at scale in the
zero-resource setting. Our approach makes substantial improve-
ments relative to the accuracy and query processing time of the
RAILS system presented in [13]. Directions for future work include
exploring how selection of elements for use in the Laplacian eigen-
maps similarity graph effects system performance, exploring meth-
ods to further speed up the construction of fixed-dimensional em-
beddings, and rescoring candidate matches retrieved by S-RAILS.
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