
STAT 605
Data Science Computing

Introduction to Shell Scripting

Basic concepts

Shell : the program through which you interact with the computer.
Reads, parses and executes the commands typed into the terminal
Popular shells: bash (Bourne Again Shell), csh (C Shell), ksh (Korn Shell)

Redirect : take the output of one program and send it somewhere else
we’ll see some simple examples soon

stdin, stdout, stderr : three special “file handles”
for reading inputs from the shell (stdin)
and writing output to the shell (stderr for error messages, stdout other information).

input

Program 1

output 1

Program 2

output 2

Reminder: redirections using >
Redirect sends output to a file instead of stdout

keith@Steinhaus:~$ echo -e "hello\tworld." > myfile.txt
keith@Steinhaus:~$

Redirect tells the shell to send the output of the program
on the “greater than” side to the file on the “lesser than”
side. This creates the file on the RHS, and overwrites
the old file, if it already exists!

input

Program 1

output 1

Program 2

output 2

But what if I want to pass the output on the left to another program, instead?

Command line regexes: grep
grep is a command line search tool

keith@Steinhaus:~$ grep 'hello' myfile.txt
hello world.
keith@Steinhaus:~$ grep 'goat' myfile.txt
keith@Steinhaus:~$
keith@Steinhaus:~$ cat myfile.txt | grep 'hello'
hello world.
keith@Steinhaus:~$

Searches for the string hello in
the file myfile.txt , prints all
matching lines to stdout.

String goat does not occur in
myfile.txt , so no lines to print.

grep can also be made to search
for a pattern in its stdin. This is
our first example of a pipe.

This writes the contents of myfile.txt to the stdin of grep,
which searches its stdin for the string hello

Command line regexes: grep
Command line regex tool

keith@Steinhaus:~$ grep 'hello' myfile.txt
hello world.
keith@Steinhaus:~$ grep 'goat' myfile.txt
keith@Steinhaus:~$
keith@Steinhaus:~$ cat myfile.txt | grep 'hello'
hello world.
keith@Steinhaus:~$

Searches for the string hello in
the file myfile.txt , prints all
matching lines to stdout.

String goat does not occur in
myfile.txt , so no lines to print.

grep can also be made to search
for a pattern in its stdin. This is
our first example of a pipe.

Note: the grep pattern can also be a regular expression, which we’ll learn about soon

Pipe (|) vs Redirect (>)
Pipe (|) reads the stdout from its left, and writes to stdin on its right.

Redirect (>) reads the stdout from its left and writes to a file on its right.

This is an important difference!

Warning: the example below is INCORRECT. It is an example of what NOT to do!

This writes the contents of myfile.txt to a file called grep and then
cats the file ‘hello’ to stdout, which is not what was intended.

keith@Steinhaus:~$ cat myfile.txt > grep 'hello'

Running example: Fisher’s Iris data set
Widely-used data set in machine learning

Collected by E. Anderson, made famous by R. A. Fisher
Three different species: Iris setosa, Iris virginica and Iris versicolor
Each observation is a set of measurements of a flower:

Petal and sepal width and height (cm)
Along with species label

Common tasks:
clustering, classification

Available at UCI ML Repository: https://archive.ics.uci.edu/ml/datasets/Iris

petal

sepal

https://archive.ics.uci.edu/ml/datasets/Iris

Downloading the data
Following the download link on UCI ML repo leads to this index page

What’s the difference
between these two files?

Downloading the data
keith@Steinhaus:~$ mkdir demodir
keith@Steinhaus:~$ cd demodir
keith@Steinhaus:~/demodir$ mv ~/Downloads/iris.data .
keith@Steinhaus:~/demodir$ mv ~/Downloads/bezdekIris.data .
keith@Steinhaus:~/demodir$ ls
bezdekIris.data iris.data myfile.txt
keith@Steinhaus:~/demodir$ ls -l
total 40
-rw-r--r--@ 1 keith staff 4551 Nov 15 13:47 bezdekIris.data
-rw-r--r--@ 1 keith staff 4551 Nov 15 13:47 iris.data
-rw-r--r--@ 1 keith staff 13 Nov 2 12:56 myfile.txt
keith@Steinhaus:~/demodir$

Move the data files from downloads
folder to project directory. Not
mandatory, just convenient!

Files are there, now.

From man ls:
-l (The lowercase letter “ell”.) List in long format. (See
below.) If the output is to a terminal, a total sum for all
the file sizes is output on a line before the long listing.

Create a project directory and cd into it.

Comparing files: diff
diff takes two files and compares them line by line

By default, prints only the lines that differ:

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

XcY means Xth
line in FILE1 was
replaced by Yth
line in FILE2 < : lines from FILE1

> : lines from FILE2

Comparing files: diff
So, the two files differ in precisely two lines…

What’s up with that?

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

From UCI Documentation:
This data differs from the data presented in Fisher’s
article (identified by Steve Chadwick, spchadwick '@'
espeedaz.net). The 35th sample should be:
4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the
fourth feature. The 38th sample:
4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the
second and third features.

Comparing files: diff
So, the two files differ in precisely two lines…

What’s up with that?

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

From UCI Documentation:
This data differs from the data presented in Fisher’s
article (identified by Steve Chadwick, spchadwick '@'
espeedaz.net). The 35th sample should be:
4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the
fourth feature. The 38th sample:
4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the
second and third features.

So bezdekIris.data is a corrected version of
iris.data . That’s nice of them!

Comparing files: diff
Often useful: get the diff of two files and save it to another file

keith@Steinhaus:~/demodir$ diff iris.data bezdekIris.data > diff.txt
keith@Steinhaus:~/demodir$ cat diff.txt
35c35
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.1,1.5,0.2,Iris-setosa
38c38
< 4.9,3.1,1.5,0.1,Iris-setosa

> 4.9,3.6,1.4,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

Before we go on...
It’s a good habit to always look at the data. Go exploring!

keith@Steinhaus:~/demodir$ head bezdekIris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
keith@Steinhaus:~/demodir$

Before we go on...
It’s a good habit to always look at the data. Go exploring!

keith@Steinhaus:~/demodir$ head -n 70 bezdekIris.data | tail
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
keith@Steinhaus:~/demodir$

Before we go on...
It’s a good habit to always look at the data. Go exploring!

keith@Steinhaus:~/demodir$ tail bezdekIris.data
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

keith@Steinhaus:~/demodir$

File contains a trailing newline. We’ll
probably want to remove that!

Species types are contiguous in the file. That
means if we are going to, for example, make
a train/dev/test split, we can’t just take the
first and second halves of the file!

Counting: wc
wc counts the number of lines, words, and bytes in a file or in stdin

Prints result to stdout

keith@Steinhaus:~/demodir$ wc bezdekIris.data
 151 150 4551 bezdekIris.data
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc
 151 150 4551
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -l
 151
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -w
 150
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -c

4551
keith@Steinhaus:~/demodir$ Note: a word is a group of one or more

non-whitespace characters.

Counting: wc
wc counts the number of lines, words, and bytes in a file or in stdin

Prints result to stdout

keith@Steinhaus:~/demodir$ wc bezdekIris.data
 151 150 4551 bezdekIris.data
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc
 151 150 4551
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -l
 151
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -w
 150
keith@Steinhaus:~/demodir$ cat bezdekIris.data | wc -c

4551
keith@Steinhaus:~/demodir$

Test your understanding: we saw using head and tail
that each line is a single word (group of non-whitespace
characters), so number of words should be same as
number of lines. Why isn’t that the case?

Note: a word is a group of one or more
non-whitespace characters.

Making small changes: tr
Right now, bezdekIris.data is comma-separated.

What if I want to make it tab-separated, instead?

tr is a good tool for the job

From the man page: The tr utility
copies the standard input to the
standard output with substitution or
deletion of selected characters.

keith@Steinhaus:~/demodir$ cat bezdekIris.data | tr ',' '\t' > iris.tsv
keith@Steinhaus:~/demodir$ head -n 5 iris.tsv
5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5.0 3.6 1.4 0.2 Iris-setosa
keith@Steinhaus:~/demodir$

Replace commas with tabs. So we turn
a comma-separated (.csv) file into a
tab-separated (.tsv) file.

Making small changes: tr

keith@Steinhaus:~/demodir$ cat bezdekIris.data | tr '.,' ',\t' > iris_euro.tsv
keith@Steinhaus:~/demodir$ head iris_euro.tsv
5,1 3,5 1,4 0,2 Iris-setosa
4,9 3,0 1,4 0,2 Iris-setosa
4,7 3,2 1,3 0,2 Iris-setosa
4,6 3,1 1,5 0,2 Iris-setosa
5,0 3,6 1,4 0,2 Iris-setosa
5,4 3,9 1,7 0,4 Iris-setosa
4,6 3,4 1,4 0,3 Iris-setosa
5,0 3,4 1,5 0,2 Iris-setosa
4,4 2,9 1,4 0,2 Iris-setosa
4,9 3,1 1,5 0,1 Iris-setosa
keith@Steinhaus:~/demodir$

Turn decimal points into decimal
commas, change from
comma-separated to tab-separated.

From the man page: The tr utility
copies the standard input to the
standard output with substitution or
deletion of selected characters.

Note: tr ‘abc’ ‘xyz’ turns all a
into x, b into y, c into z. Importantly,
tr ‘ab’ ‘bc’ turns a to b and b to
c, but no a turns into c. tr doesn’t
“apply the transformation twice”

Picking out columns: cut
I want to make a new data set: only petal data and species

Could load everything into spreadsheet and edit there, or...

keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 3,4,5 > petal.data
keith:~/demodir$ head -n 3 petal.data
1.4,0.2,Iris-setosa
1.4,0.2,Iris-setosa
1.3,0.2,Iris-setosa
keith:~/demodir$ head -n 3 bezdekIris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
keith:~/demodir$

Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica

Columns delimited by ‘,’
Pick out fields 3,4 and 5.
Equivalent command:

cut -d ‘,’ -f 3-5

Picking out columns: cut
What if I want to split the attributes into their own files?

keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 1 > sepal_len.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 2 > sepal_wid.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 3 > petal_len.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 4 > petal_wid.data
keith:~/demodir$ cat bezdekIris.data | cut -d ',' -f 5 > species.data
keith:~/demodir$

Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica

Aggregation: paste and lam
Okay, I changed my mind. I want to put the five separate files back together!

keith:~/demodir$ paste sepal_len.data sepal_wid.data petal_len.data
petal_wid.data species.data > pasted.data
keith:~/demodir$ diff pasted.data iris.tsv
151c151
<

>
keith:~/demodir$

paste (from the man page):
concatenates the corresponding lines of
the given input files, replacing all but the
last file's newline characters with a single
tab character, and writes the resulting
lines to standard output.

Recall that last line was blank, so we
have some strange behavior here.

Aggregation: paste and lam
Okay, I changed my mind. I want to put the five separate files back together!

keith:~/demodir$ lam sepal_len.data -s ',' sepal_wid.data -s ','
petal_len.data -s ',' petal_wid.data -s ',' species.data | head -n 3
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
keith:~/demodir$ lam sepal_len.data -s ',' sepal_wid.data -s ','
petal_len.data -s ',' petal_wid.data -s ',' species.data | tail -n 3
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
,,,,
keith:~/demodir$

lam (from the man page): copies
the named files side by side onto
the standard output.

Have to specify a separator character
with -s everywhere I want one.

Recall that the last line is blank, which lam
handles as required, but here’s a good reason to
have removed that blank line sooner.

Sorting: sort

keith:~$ cat bezdekIris.data | cut -d ',' -f 4 | sort > sorted_petal_width.data
keith:~$

full data

cut -d ‘,’ -f 4cat bezdekIris.data

Petal widths

sort

Petal widths, sorted

sorted_petal_width.data

Important: remember the
difference between pipes and
redirects! One is for passing
data between programs, the
other is for creating files!

sort reads from stdin, sorts the lines,
and sends the result to stdout.

Sorting: sort

keith:~$ cat bezdekIris.data | cut -d ',' -f 4 | sort > sorted_petal_width.data
keith:~$ head -n 8 sorted_petal_width.data

0.1
0.1
0.1
0.1
0.1
0.2
0.2
keith:~$ tail -n 2 sorted_petal_width.data
2.5
2.5
keith:~$

Blank line is still giving us trouble!

find: searching for files
Basic usage: find <where> <comparison> <pattern>

Example: find ./my_dir -name "my_file.txt"
Looks in directory my_dir for a file matching the name my_file.txt

There are a mess of other options for controlling search. For example, pattern
matching, directory depth, date of last access, etc. See man find for more.

keith:~$ ls Lec_shellscript/
foo.txt myfile.txt
keith:~$ find Lec_shellscript -name myfile.txt
Lec_shellscript/myfile.txt
keith:~$

UNIX Groups
On UNIX-like systems, files are owned by users

On UNIX/Linux/MacOS:

[klevin@cavium-thunderx-login01 pyspark_demo]$ ls -l
total 241
-rw-r--r-- 1 klevin statistics 1170 Mar 12 11:09 gen_demo_data.py
-rw-r--r-- 1 klevin statistics 39 Mar 12 11:12 poly.py
-rw-r--r-- 1 klevin statistics 239 Mar 12 11:09 prime.py
-rw-r--r-- 1 klevin statistics 1269 Mar 12 11:09 ps_demo.py
-rw-r--r-- 1 klevin statistics 746 Mar 12 11:09 ps_wordcount.py
drwxr-xr-x 2 klevin statistics 75 Mar 12 11:18 __pycache__
-rw-r--r-- 1 klevin statistics 251 Mar 12 11:09 scientists.txt

[klevin@cavium-thunderx-login01 pyspark_demo]$ ls -l
total 241
-rw-r--r-- 1 klevin statistics 1170 Mar 12 11:09 gen_demo_data.py
-rw-r--r-- 1 klevin statistics 39 Mar 12 11:12 poly.py
-rw-r--r-- 1 klevin statistics 239 Mar 12 11:09 prime.py
-rw-r--r-- 1 klevin statistics 1269 Mar 12 11:09 ps_demo.py
-rw-r--r-- 1 klevin statistics 746 Mar 12 11:09 ps_wordcount.py
drwxr-xr-x 2 klevin statistics 75 Mar 12 11:18 __pycache__
-rw-r--r-- 1 klevin statistics 251 Mar 12 11:09 scientists.txt

UNIX Groups
On UNIX-like systems, files are owned by users

On UNIX/Linux/MacOS: This column lists which user owns the file

[klevin@cavium-thunderx-login01 pyspark_demo]$ ls -l
total 241
-rw-r--r-- 1 klevin statistics 1170 Mar 12 11:09 gen_demo_data.py
-rw-r--r-- 1 klevin statistics 39 Mar 12 11:12 poly.py
-rw-r--r-- 1 klevin statistics 239 Mar 12 11:09 prime.py
-rw-r--r-- 1 klevin statistics 1269 Mar 12 11:09 ps_demo.py
-rw-r--r-- 1 klevin statistics 746 Mar 12 11:09 ps_wordcount.py
drwxr-xr-x 2 klevin statistics 75 Mar 12 11:18 __pycache__
-rw-r--r-- 1 klevin statistics 251 Mar 12 11:09 scientists.txt

UNIX Groups
On UNIX-like systems, files are owned by users

On UNIX/Linux/MacOS: These lines are permission information.

Legend
d : directory
r : read access
w : write access
x : execute access

[klevin@cavium-thunderx-login01 pyspark_demo]$ ls -l
total 241
-rw-r--r-- 1 klevin statistics 1170 Mar 12 11:09 gen_demo_data.py
-rw-r--r-- 1 klevin statistics 39 Mar 12 11:12 poly.py
-rw-r--r-- 1 klevin statistics 239 Mar 12 11:09 prime.py
-rw-r--r-- 1 klevin statistics 1269 Mar 12 11:09 ps_demo.py
-rw-r--r-- 1 klevin statistics 746 Mar 12 11:09 ps_wordcount.py
drwxr-xr-x 2 klevin statistics 75 Mar 12 11:18 __pycache__
-rw-r--r-- 1 klevin statistics 251 Mar 12 11:09 scientists.txt

UNIX Groups
On UNIX-like systems, files are owned by users

On UNIX/Linux/MacOS: These specific columns specify owner permissions.
The owner has these permissions on these files.

Legend
d : directory
r : read access
w : write access
x : execute access

[klevin@cavium-thunderx-login01 pyspark_demo]$ ls -l
total 241
-rw-r--r-- 1 klevin statistics 1170 Mar 12 11:09 gen_demo_data.py
-rw-r--r-- 1 klevin statistics 39 Mar 12 11:12 poly.py
-rw-r--r-- 1 klevin statistics 239 Mar 12 11:09 prime.py
-rw-r--r-- 1 klevin statistics 1269 Mar 12 11:09 ps_demo.py
-rw-r--r-- 1 klevin statistics 746 Mar 12 11:09 ps_wordcount.py
drwxr-xr-x 2 klevin statistics 75 Mar 12 11:18 __pycache__
-rw-r--r-- 1 klevin statistics 251 Mar 12 11:09 scientists.txt

UNIX Groups
On UNIX-like systems, files are owned by users

Sets of users, called groups, can be granted special permissions

On UNIX/Linux/MacOS: This column lists what group owns the file

Legend
d : directory
r : read access
w : write access
x : execute access

[klevin@cavium-thunderx-login01 pyspark_demo]$ ls -l
total 241
-rw-r--r-- 1 klevin statistics 1170 Mar 12 11:09 gen_demo_data.py
-rw-r--r-- 1 klevin statistics 39 Mar 12 11:12 poly.py
-rw-r--r-- 1 klevin statistics 239 Mar 12 11:09 prime.py
-rw-r--r-- 1 klevin statistics 1269 Mar 12 11:09 ps_demo.py
-rw-r--r-- 1 klevin statistics 746 Mar 12 11:09 ps_wordcount.py
drwxr-xr-x 2 klevin statistics 75 Mar 12 11:18 __pycache__
-rw-r--r-- 1 klevin statistics 251 Mar 12 11:09 scientists.txt

UNIX Groups
On UNIX-like systems, files are owned by users

Sets of users, called groups, can be granted special permissions

On UNIX/Linux/MacOS:
These specific columns specify group permissions.
Anyone in the statistics group has these
permissions on these files.

Legend
d : directory
r : read access
w : write access
x : execute access

[klevin@cavium-thunderx-login01 pyspark_demo]$ ls -l
total 241
-rw-r--r-- 1 klevin statistics 1170 Mar 12 11:09 gen_demo_data.py
-rw-r--r-- 1 klevin statistics 39 Mar 12 11:12 poly.py
-rw-r--r-- 1 klevin statistics 239 Mar 12 11:09 prime.py
-rw-r--r-- 1 klevin statistics 1269 Mar 12 11:09 ps_demo.py
-rw-r--r-- 1 klevin statistics 746 Mar 12 11:09 ps_wordcount.py
drwxr-xr-x 2 klevin statistics 75 Mar 12 11:18 __pycache__
-rw-r--r-- 1 klevin statistics 251 Mar 12 11:09 scientists.txt

UNIX Groups
On UNIX-like systems, files are owned by users

Sets of users, called groups, can be granted special permissions

On UNIX/Linux/MacOS: These specific columns specify the permissions for
everyone else on the system (i.e., anyone who is not
klevin and not in the statistics group.

Legend
d : directory
r : read access
w : write access
x : execute access

Changing permissions: chmod
We can change the permissions on a file with the chmod command

Usage: chmod <who><+-=><permissions> [file]
Who: u for owner, g for group, o for others, a for all
Add/set/remove: + to add, - to remove, = to set to these permissions
Permissions: r for read, w for write, x for execute

keith:~$ ls -l
total 8
-rw-r--r--@ 1 keith staff 13 Sep 16 18:39 myfile.txt
keith:~$ chmod go+w myfile.txt
keith:~$ ls -l
total 8
-rw-rw-rw-@ 1 keith staff 13 Sep 16 18:39 myfile.txt

Group and others have only read permissions

Group and others have gained the write permission.

Scripting in bash
bash (short for “Bourne again shell”) is the Ubuntu command line program

Bash is a programming language unto itself
We can write for-loops, if-then statements, etc., just like in other languages

Example: cat the contents of every file in a directory

Example: look at each file in a directory and change its ownership permissions

Example: rename every file in a directory to change its name to all lower-case

Bash scripting lets us combine the “single-purpose”
command line tools into powerful, complex, reusable
programs. It is worth your time to learn this well!

When shouldn’t I use bash?
bash is a scripting language

That means it’s useful for prototyping and “quick-and-dirty” tasks…
...but it’s less well-suited to other problems

bash is not the best tool for the job if you need
Complicated mathematical operations (e.g., floating point arithmetic)
High-throughput tasks (bash is very slow)
Data structures (e.g., R vectors)

Anatomy of a bash script
By convention, we write bash scripts with a .sh extension: my_script.sh

And every script starts with a “crunch-bang”, #! (see man magic for more):
#!/bin/sh
(echo $SHELL will tell you which shell you’re using)

This tells the system what shell to use when running this script

We run our script (provided we have execute permissions!)
like any other command line program:

keith:~$./my_script.sh

See the lecture video for a demonstration of
writing a simple bash script.

Exercises: Part 1
1) Write a bash script called “my_first_script.sh” that echos your username (have

a look at the command whoami), the date (see the command date) and what
shell you’re using (recall the $SHELL internal variable)

2) Use chmod to make it so that the owner can read, write and execute the file,
while the rest of the group and all other users are only able to read (hint:
chmod X=Y makes it so that X has exactly the permissions Y, where Y can
be, for example, rw for read and write access but not execute).

Variables in bash
We declare a variable (and assign it a value) with

variable_name=VALUE

We retrieve the value of a variable with
$variable_name

We can also give a variable the output of a program in two different ways:
username=$(whoami)
contents=`echo my_file.txt`

Note: variables can have any capitalization we want, but by convention, variables
that we create are lower-case, with upper-case variables, like $SHELL, reserved
for global or system-level variables (called “internal variables”).

Accessing command line arguments
Command line arguments are accessible as variables $1, $2, $3,...

variable $# stores the number of command line args
$* stores list of all command line arguments
$0 is the name of the running file

Related: we can define functions in bash
function my_new_function() {

Arguments are accessible as $1, $2, …
}
Once we have defined a function, we can reuse it elsewhere in our script

Example: Inside the running
./my_script.sh file.txt bar stat605 ,
cat $1 would cat the contents of file.txt
echo $3 would print “stat605”
echo $0 would print “my_script.sh”

See the lecture video for a demonstration of
creating and using variables in bash.

Exercises: Part 2
1) Write a script called my_grep.sh that takes two command line arguments, a

file and a string. Make your script use grep to search for the given string in the
given file. Note: this is yet another rather silly example, since we are writing a
script to do what grep already does for us. It’s the kind of thing that we
wouldn’t do in practice, but it’s a good way to get you familiar with bash.

2) Write a script called count_args.sh that takes any number of command
line arguments, and prints the number of arguments that it got. Hint: use the
built-in $* variable.

Conditional statements
if [CONDITION]; then
 CODE TO EXECUTE
fi

keith:~$ a="dog"; b="cat";
keith:~$ if [$a = $b]; then echo "a and b are equal (as strings)"; fi
keith:~$ a="cat"; b="cat";
keith:~$ if [$a = $b]; then echo "a and b are equal (as strings)"; fi

a and b are equal (as strings)

keith:~$

Note: bash has different symbols for string
comparison and numerical comparison.
Refer to man test to read more.

Unlike many programming languages, bash doesn’t
have Boolean types (i.e., values TRUE and FALSE).
Instead, 0 is “true” in bash, and 1 is “false”. Yes, I
agree it’s counter-intuitive!

Conditional statements
if [CONDITION]; then
 CODE TO EXECUTE
fi

keith:~$ a="dog"; b="cat";
keith:~$ if [$a = $b]; then echo "a and b are equal (as strings)"; fi
keith:~$ a="cat"; b="cat";
keith:~$ if [$a = $b]; then echo "a and b are equal (as strings)"; fi

a and b are equal (as strings)

keith:~$ [9 -eq 6]
keith:~$ echo $?
1
keith:~$

Note: bash has different symbols for string
comparison and numerical comparison.
Refer to man test to read more.

Unlike many programming languages, bash doesn’t
have Boolean types (i.e., values TRUE and FALSE).
Instead, 0 is “true” in bash, and 1 is “false”. Yes, I
agree it’s counter-intuitive!

$? always holds the result of the previous command.

Conditional statements
if [CONDITION]; then
 CODE TO EXECUTE
elif [CONDITION2]; then
 CODE FOR COND2
else

DIFFERENT CODE
fi

keith:~$ a="dog"; b="cat";
keith:~$ if [$a = $b]; then echo "a and b are equal (as strings)"; else
echo "a and b are NOT equal"; fi
a and b are NOT equal
keith:~$

See the lecture video for a demonstration of
using conditionals in bash.

Exercises: Part 3
1) Create a bash script called compare.sh that takes two numbers as its

arguments, and prints “greater” if the first argument is greater than the
second, “less” if the first argument is less than the second, and “equal”
otherwise. You may assume the inputs are both numbers.

2) Add error checking to compare.sh by using a conditional to check that two
arguments were supplied. If the number of arguments is not as expected,
print a message saying so, and exit with the exit status 1, using exit 1 (see
https://tldp.org/LDP/abs/html/exit-status.html for more on exit and exit
status). Use echo “MESSAGE” 1>&2, to print your message to stderr.
This redirects echo’s stdout to the stderr of our script. See
https://tldp.org/LDP/abs/html/io-redirection.html for more information.

https://tldp.org/LDP/abs/html/exit-status.html
https://tldp.org/LDP/abs/html/io-redirection.html

Loops: for and while
for i in LIST; do

body of for-loop
done;

while [CONDITION]; do
body of while-loop

done;

Bash also features the more exotic until-loop, which is like the opposite of a while loop. It runs
until the condition evaluates to true. Just write until instead of while in the code above.

LIST is usually just a collection of strings separated
by spaces. It can be the output of another program, a
pattern we’ll see in the VM.

Execute this code repeatedly so long
as CONDITION evaluates to true.

See the lecture video for a demonstration of
using for-loops and while-loops in bash.

Exercises: Part 4
1) Create a bash script first_lines.sh that prints the first line of every file in

the current directory.

2) Write a script list_dirs.sh that prints the names of all the directories in
the current directory, one per line.

3) Create a bash script called my_head.sh, that mimics the behavior of head
(except for the flags), by taking two command line arguments: a file and a
number, say, N. Print the first N lines of the file (if N is bigger than the number
of lines in the file, then your script should just print the whole file). Hint: the
syntax while read line; do [code]; done will read one line at a time
from stdin into the variable $line, accessible inside the while-loop. See
here for an example: https://linuxhint.com/read_file_line_by_line_bash/

https://linuxhint.com/read_file_line_by_line_bash/

