
STAT 605
Data Science Computing

grep and regular expressions

Text data is ubiquitous
Examples:

Biostatistics (DNA/RNA/protein sequences)

Databases (e.g., census data, product inventory)

Log files (program names, IP addresses, user IDs, etc)

Medical records (case histories, doctors’ notes, medication lists)

Social media (Facebook, twitter, etc)

How is text data stored?
Underlyingly, every file on your computer is just a string of bits…

...which are broken up into (for example) bytes…

...which correspond to (in the case of text) characters.

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 00

c a t

How is text data stored?

Some encodings (e.g., UTF-8 and UTF-16) use “variable-length” encoding, in
which different characters may use different numbers of bytes.

We’ll concentrate (today, at least) on ASCII, which uses fixed-length encodings.

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

c a t

ASCII (American Standard Code for Information Interchange)
8-bit* fixed-length encoding, file stored as stream of bytes

Each byte encodes a character
Letter, number, symbol or “special” characters (e.g., tabs, newlines, NULL)

Delimiter: one or more characters used to specify boundaries
Ex: space (‘ ’, ASCII 32), tab (‘\t’, ASCII 9), newline (‘\n’, ASCII 10)

https://en.wikipedia.org/wiki/ASCII

*technically, each ASCII character is 7 bits, with the 8th bit reserved for error checking.
See https://en.wikipedia.org/wiki/Parity_bit

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Parity_bit

Caution!
Different OSs follow slightly different conventions when saving text files!

Most common issue:
● UNIX/Linux/MacOS: newlines stored as ‘\n’
● DOS/Windows: stored as ‘\r\n’ (carriage return, then newline)

When in doubt, use a tool like UNIX/Linux xxd (hexdump) to inspect raw bytes
xxd is also in MacOS; available in cygwin on Windows

Unicode
Universal encoding of (almost) all of the world’s writing systems

Each symbol is assigned a unique code point, a four- or five-digit hex number
● Unique number assigned to a given character U+XXXX
● ‘U+’ for unicode, XXXX is the code point (in hexadecimal)
● Example: 😎=U+1F60E, ∰=U+2230; http://www.unicode.org/ for more

Variable-length encoding
● UTF-8: 1 byte for first 128 code points, 2+ bytes for higher code points
● Result: ASCII is a subset of UTF-8

Most R files are ASCII; newer versions of Rstudio support unicode;
newer versions of Python (i.e., 3+) encode scripts in unicode by default.

http://www.unicode.org/

Matching text: regular expressions (“regexes”)

Suppose I want to find all addresses in a
big text document. How to do this?

Regexes describe sets of strings.

They allow concise specification for
matching patterns in text

Image credit: Randall Munroe, XKCD #208

Specifics vary from one program to
another (grep, vim, emacs, sed), but the
basics that you learn in this course will
generalize with minimal changes.

grep: pattern matching on the command line

grep takes two basic arguments:
1. A pattern to search for
2. A collection of text to search through

grep will look for the pattern and find everywhere it matches in the text

grep <pattern> [filename] searches for pattern in the file

Example: grep goat example1.txt
finds all instances of the string goat in the file example1.txt

Command line regexes: grep

keith@Steinhaus:~$ cat myfile.txt
hello world.
keith@Steinhaus:~$ grep 'hello' myfile.txt
hello world.
keith@Steinhaus:~$ grep 'goat' myfile.txt
keith@Steinhaus:~$
keith@Steinhaus:~$ cat myfile.txt | grep 'hello'
hello world.
keith@Steinhaus:~$ echo “Hello” | grep ‘hello’
keith@Steinhaus:~$

Searches for the string hello in
the file myfile.txt , prints all
matching lines to stdout.

String goat does not occur in
myfile.txt , so no lines to print.

grep can also be made to search
for a pattern in its stdin.

grep is case-sensitive by default. You can turn this off with the -i flag.

What about more complicated matches?
grep would not be very useful if all we could do is search for strings like ‘dog’

Power of regexes lies in specifying complicated patterns. Examples:
Whitespace characters: ‘\t’, ‘\n’, ‘\r’
Matching classes of characters (e.g., digits, whitespace, alphanumerics)
Special characters: . ^ $ * + ? { } [] \ | ()

We’ll discuss meaning of special characters shortly

Special characters must be escaped with backslash ‘\’
Ex: match a string containing the letter x followed by a period

keith@Steinhaus:~$ echo 'x.' | grep 'x\.'
x.
keith@Steinhaus:~$

Special characters: basics
Some characters have special meaning

These are: . ^ $ * + ? { } [] \ | ()

We’ll talk about some of these today; for others, see man re_format

Important: special characters must be escaped to match literally!

keith:~/regex_demo$ echo '$2' | grep '$2'
$2
keith:~/regex_demo$ echo '$2' | egrep '$2'
keith:~/regex_demo$ echo '$2' | egrep '\$2'
$2
keith:~/regex_demo$

We use grep -E or egrep
(“extended grep”) for these
characters to have their
special meanings

Without escaping, $ is a special character that matches
the end of a line. The escaped \$ matches a literal $.

Special characters: sets and ranges
Can match “sets” of characters using square brackets:

● ‘[aeiou]’ matches any one of the characters ’a’,’e’,’i’,’o’,’u’
● ‘[^aeiou]’ matches any one character NOT in the set.

keith:~/regex_demo$ echo 'cat' | grep 'c[aeiuo]t'
cat
keith:~/regex_demo$ echo 'cot' | grep 'c[aeiuo]t'
cot
keith:~/regex_demo$ echo 'cut' | grep 'c[aeiuo]t'
cut
keith:~/regex_demo$ echo 'cdt' | egrep 'c[aeiou]t'
keith:~/regex_demo$ echo 'cdt' | egrep 'c[^aeiou]t'
cdt
keith:~/regex_demo$

Special characters: sets and ranges
Can also match “ranges”:

● Ex: ‘[a-z]’ matches lower case letters
○ Ranges calculated according to ASCII numbering

● Ex: ‘[0-9A-Fa-f]’ will match any hexadecimal digit
● To match literal ‘-’, put it first or last (e.g. ‘[-az]’, ‘[1-5-]’)

keith:~/regex_demo$ echo 'a b c d' | grep '[a-d]'
a b c d
keith:~/regex_demo$ echo 'a b c d' | grep '[e-z]'
keith:~/regex_demo$ echo 'A1' | grep '[A-Z][0-9]'
A1
keith:~/regex_demo$ echo 'A1' | grep '[a-z][0-9]'
keith:~/regex_demo$ echo 'upper-case' | grep '[-xyz]case'
upper-case
keith:~/regex_demo$

Special characters: sets and ranges
Special characters lose special meaning inside square brackets:

● Ex: ‘[(+*)]’ will match any of ‘(‘, ‘+’, ‘\’, ‘*’, or ‘)’
● To match ‘^’ literal, make sure it isn’t first: ‘[(+*)^]’

keith:~/regex_demo$ echo '2+2=4' | grep '[(+-)]'
2+2=4
keith:~/regex_demo$ echo '1=2' | grep '[(+-)]'
keith:~/regex_demo$ echo '\ is the escape character.' | grep '[\.,]'
\ is the escape character.
keith:~/regex_demo$ echo '2pi' | grep '[^a-z0-9]'
keith:~/regex_demo$ echo '2^7' | grep '[0-9][a-z^][0-9]'
2^7
keith:~/regex_demo$ echo 'e^pi' | grep '[0-9][a-z^][0-9]'
keith:~/regex_demo$

Special characters and sets
‘^’ : matches beginning of a line (i.e., matches “empty string” ‘’ at start of line)

‘$’ : matches end of a line (i.e., matches empty string before a newline)

‘.’ : wildcard, matches any character other than a newline

‘[[:space:]]’ : matches whitespace (spaces, tabs, newlines)

‘[[:digit:]]’ : matches a digit (0,1,2,3,4,5,6,7,8,9), equivalent to [0-9]

‘\w’ : matches a “word” character (number, letter or underscore ‘_’)

‘\b’ : matches boundary between word (‘\w’) and non-word characters

keith:~$ echo 'bad' | egrep '^b.d$'
bad
keith:~$

keith:~$ echo 'bid' | egrep '^b.d$'
bid
keith:~$

keith:~$ echo 'bids' | egrep '^b.d$'
keith:~$

keith:~$ echo 'abad' | egrep '^b.d$'
keith:~$

Example: beginning and end of lines, wildcards

‘.’ matches ‘a’, and start- and
end-lines match correctly.

Matching fails because of ‘s’ at
end of string, which means that
‘d’ is not followed by end-of-line.

‘.’ matches ‘i’, and start- and
end-lines match correctly.

Matching fails because of ‘a’ at
start of string, which means that
‘b’ is not the start of the string.

Matching multiple substrings
Regexes may match multiple times on a single lines

grep -o prints each match on a separate lines.

keith:~$ echo 'goat goat bird goat' | grep 'goat'
goat goat bird goat
keith:~$ echo 'goat goat bird goat' | grep -o 'goat'
goat
goat
goat
keith:~$ echo '12345' | egrep -o '[[:digit:]][[:digit:]]'
12
34
keith:~$

keith:~$ string1="c\ta t\ns\t";
keith:~$ echo -e "$string1" | egrep -o '[[:space:]]'

keith:~$ echo -e "$string1" | egrep -o '\s\b'

keith:~$

Example: whitespace and boundaries
‘[[:space:]]’ matches any whitespace.
That includes spaces, tabs and newlines.

The trailing tab in string1 isn’t
matched, because it isn’t followed by
a whitespace-word boundary.

...but grep searches each line of
input, so the newline isn’t matched--
it separates two lines.

Reminder: -e flag tells echo to treat
backslashed characters as special. So this
prints the \t as a tab and the \n as a newline.

Character classes and complements
‘[[:space:]]’, equivalent to ‘\s’; complemented as ‘\S’ or ‘[^[:space]]’

‘[[:digit:]’; complemented as ‘[^[:digit:]]’

‘\w’ complemented as ‘\W’ to match anything that isn’t alphanumeric or ‘_’

‘\b’ : complemented as ‘\B’ to match NOT at a word boundary

Character classes: complements
‘\S’ : complements ‘\s’ (equivalent to [[:space:]];

matches anything that isn’t whitespace

keith:~$ echo -e "c\ta t\ns\t" | egrep -o "\S"
c
a
t
s
keith:~$ echo -e "c\ta t\ns\t" | egrep -o "[^[:space:]]"
c
a
t
s
keith:~$ [[:space:]] matches all whitespace

characters (space, tab, newline, etc), so
its complement matches everything else.

Character classes: complements
‘[[:digit:]’ complemented as ‘[^[:digit:]]’

keith:~$ echo -e 'a1 $25 2pi' | egrep -o "[[:digit:]]"
1
2
5
2
keith:~$ echo -e ‘a1 $25 2pi’ | egrep -o "[^[:digit:]]"
a

p
i
keith:~$

Important: we need single-quotes around the string,
here. If we use double-quotes, bash interprets $25 as
“the value of the variable named 25”.

See https://www.gnu.org/software/bash/manual/html_node/Quoting.html#Quoting for more on string quoting.

https://www.gnu.org/software/bash/manual/html_node/Quoting.html#Quoting

Character classes: complements
‘\w’ : complemented as ‘\W’

keith:~$ echo 'a-b_2 $5.' | egrep -o '\w'
a
b
_
2
5
keith:~$ echo 'a-b_2 $5.' | egrep -o '\W'
-

$
.
keith:~$

‘\w’ matches alphanumerics and the underscore, so
‘\W’ matches everything other than those characters.

Character classes: complements
‘\b’ : complemented as ‘\B’; matches NOT at a word boundary

keith:~$ echo 'Here is a surge of words' | egrep -o '\b[aeiou]\b'
a
keith:~$ echo 'Here is a surge of words' | egrep -o '\B[aeiou]\B'
e
u
o
keith:~$ echo 'Here is a surge of words' | egrep '\B[aeiou]\B'
Here is a surge of words
keith:~$

‘\b’ and ‘\B’ are a bit tricky-- they match the
empty string, ‘’, between two other characters.

Matching and repetition
‘*’ : zero or more of the previous item

‘+’ : one or more of the previous item

‘?’ : zero or one of the previous item

keith:~$ echo 'ct cat caat' | egrep -o 'ca*t'
ct
cat
caat
keith:~$ echo 'ct cat caat' | egrep -o 'ca+t'
cat
caat
keith:~$ echo 'ct cat caat' | egrep -o 'ca?t'
ct
cat
keith:~$

‘a*’ matches 0 or more instances
of ‘a’, so it match the empty string
between c and t in ‘cat’.

Matching and repetition
‘{4}’ : exactly four of the previous item

‘{3,}’ : three or more of previous item

‘{2,5}’ : between two and five (inclusive) of previous item

keith:~$ echo 'ct cat caat caaat' | egrep -o 'ca{2}t'
caat
keith:~$ echo 'ct cat caat caaat' | egrep -o 'ca{2,}t'
caat
caaat
keith:~$ echo 'ct cat caat caaat' | egrep -o 'ca{1,2}t'
cat
Caat
keith:~$

Test your understanding
Which of the following will match ’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match ’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match ’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match ’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match ’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match ’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match ’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Test your understanding
Which of the following will match r’^[[:digit:]]{2,4}\s’?

‘7 a1’

‘747 Boeing’

‘C7777 C7778’

‘12345 ’

‘1234\tqq’

‘Boeing 747’

Or clauses: |
‘|’ (“pipe”) is a special character that allows one to specify “or” clauses

Example: I want to match the word “cat” or the word “dog”

Solution: ‘(cat|dog)’

Note: parentheses are not strictly
necessary here, but parentheses
tend to make for easier reading and
avoid possible ambiguity. It’s a
good habit to just use them.

keith:~$ echo "cat" | egrep '(cat|dog)'
cat
keith:~$ echo "dog" | egrep '(cat|dog)'
dog
keith:~$ echo "goat" | egrep '(cat|dog)'
keith:~$

Or clauses: | is greedy!
What happens when an expression using pipe can match many different ways?

What’s going on here?!

Matching with ‘|’ is greedy
Tries to match as much of the string as possible with the regex.
When it cannot make a longer match, it returns the match…

...and starts trying to make another.
Note: this behavior can be changed using flags. Refer to the documentation.

keith:~$ echo "aaaa" | egrep -o "a|aa|aaa"
aaa
a
keith:~$

keith:~$ echo "aaaa" | egrep -o "a+"
aaaa
keith:~$ echo "aaaa" | grep -P -o "a+?"
a
a
a
a
keith:~$

Matching, greediness and laziness
The opposite of greedy matching is lazy matching

Perl regexes (a slight variant of the egrep regexes), can be made lazy with ?

‘a+’ gobbles up the whole string,
because the regex is greedy by default.

In Perl regexes, ‘?’ modifies operators
like ‘+’ and ‘*’ to not be greedy, and
we get lazy matching.

-P flag tells grep to use Perl regexes
(very similar to extended grep).

Backreferences
Can refer to an earlier match within the same regex!

A group is a portion of the regular expression inside parentheses
‘\N’, where N is a number, references the N-th group

Example: find strings of the form ‘X X’,where X is any non-whitespace string.

keith:~$ echo "cat cat" | egrep "([^[:space:]]+) \1"
cat cat
keith:~$ echo "cat dog" | egrep "([^[:space:]]+) \1"
keith:~$

[^[:space:]]+ matches ‘cat’. Then \1
attempts to match a second copy of the same
string that ^[:space:]]+ matched.

Backreferences
Backrefs allows very complicated pattern matching!

Test your understanding:
Describe what strings ‘([[:digit:]]+)([A-Z]+):\1+\2’ matches
What about ‘([a-zA-Z]+).*\1’?

Backreferences
Backrefs allows very complicated pattern matching!

Test your understanding:
Describe what strings ‘([[:digit:]]+)([A-Z]+):\1+\2’ matches
What about ‘([a-zA-Z]+).*\1’?

‘([[:digit:]]+)([A-Z]+):\1+\2’
Matches strings of the form XY:X+Y, where X is a string of one or more digits,
and Y is a string of more than one capital letters.

Backreferences
Backrefs allows very complicated pattern matching!

Test your understanding:
Describe what strings ‘([[:digit:]]+)([A-Z]+):\1+\2’ matches
What about ‘([a-zA-Z]+).*\1’?

‘([[:digit:]]+)([A-Z]+):\1+\2’
Matches strings of the form XY:X+Y, where X is a string of one or more digits,
and Y is a string of more than one capital letters.

‘([a-zA-Z]+).*\1’
Matches strings of the form XYX, where X is a string of one or more letters,
And Y is a string of zero or more characters (other than newlines)

Backreferences
Backrefs allows very complicated pattern matching!

Test your understanding:
Describe what strings ‘([[:digit:]]+)([A-Z]+):\1+\2’ matches?
What about ‘([a-zA-Z]+).*\1’?

Tougher question:
Is it possible to write a regular expression that matches palindromes?
Answer: Strictly speaking, no. https://en.wikipedia.org/wiki/Regular_language
Better answer: ...but if your matcher provides enough bells and whistles...

https://en.wikipedia.org/wiki/Regular_language

Backreferences

From man regex: Back references are a dreadful botch, posing major
problems for efficient implementations. They are also somewhat vaguely
defined (does "a\(\(b\)*\2\)*d" match "abbbd"?). Avoid using them.

All that being said…

I wouldn’t go so far as to say “never use backrefs”...
... but they can cause confusion, so write them carefully!

Debugging
When in doubt, test your regexes!

A bit of googling will find you lots of tools for doing this…
...or you can just do your testing directly on the command line

Try to come up with string examples that should and shouldn’t match your regex

Don’t forget the edge cases
Should the empty string match your pattern?
What about a string of length one?

Generating strings: brace expansions
We can use similar ideas to those in regexes to generate sequences of strings

String list: generates a sequence of strings
{first_string,second_string,third_string}
expands into first_string second_string third_string

keith:~$ echo {'string1','string2','string3'}
string1 string2 string3
keith:~$ echo "hello "{'Alice','Bob','Carol'}", nice to meet you."
hello Alice, nice to meet you. hello Bob, nice to meet you. hello Carol,
nice to meet you.
keith:~$ echo {A,B,C}{1,2}
A1 A2 B1 B2 C1 C2
keith:~$ echo {A,B,C}{1,2,{x,y,z}}
A1 A2 Ax Ay Az B1 B2 Bx By Bz C1 C2 Cx Cy Cz
keith:~$

We can nest brace expansions. The
rules for expansion remain the same,
but apply recursively.

Generating strings: brace expansions
Range list: generates a sequence of ordered strings

{a..b} expands into a sequence from a to b separated by spaces

keith:~$ echo {1..12}
1 2 3 4 5 6 7 8 9 10 11 12
keith:~$ echo {a..h}
a b c d e f g h
keith:~$ echo {10..1}
10 9 8 7 6 5 4 3 2 1
keith:~$ echo {A..F}{1,2,3}
A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3
keith:~$

We can create sequences of numbers,
letters, any characters, really-- bash does
its best to figure out what we meant.

Using brace expansions to describe files
Example: cat u{wisc,mich,mass}.txt

will cat the files uwisc.txt, umich.txt and umass.txt

We can also use regex-like patterns
Example: ls my_dir/*.txt will list all .txt files in the directory my_dir

keith:~$ ls
keith:~$ for f in `echo "1 2 3 4 5"`; do echo "$f" > ${f}.txt; done
keith:~$ ls
1.txt 2.txt 3.txt 4.txt 5.txt
keith:~$ ls [2-4].txt
2.txt 3.txt 4.txt
keith:~$ rm {1,3,5}.txt
keith:~$ ls
2.txt 4.txt
keith:~$

Curly braces around the variable name
avoid ambiguity in string concatenation.

Notation very similar to the regex set
notation is available on the command line.

Exercises
1) Write a regular expression that matches all strings consisting only of letters

(either upper or lower-case) and that start and end with a vowel (though not
necessarily the same vowel), with one or more consonants in between. For
the purposes of this question, a vowel is one of a, e, i, o and u (whether upper
or lower case) and a consonant is any other letter except y (so y is neither a
consonant nor a vowel).

2) Write a shell script that counts how many numbers from 1000 to 5000
inclusive consist entirely of the digits {1,2,3}. Hint: use a brace expansion to
enumerate 1000 to 5000, pipe it to grep, then pipe it to wc.

