
STAT 605
Data Science Computing

Introduction to sed and awk

Editing text streams: sed
sed is short for stream editor

One of the most powerful and versatile UNIX tools

Commonly paired with awk
small command line language for string processing

Has lots of features, but we’ll focus on one: substitutions

keith:~$ echo "hello world" | sed 's/hello/goodbye/g'
goodbye world

s for substitute Replace this... ...with this.

g for globally, meaning
everywhere in the input.

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

'*' works like in egrep

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

Test your understanding: is
the sed regex matcher greedy?

‘*’ Works like in egrep

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

Test your understanding: is
the sed * operator greedy?

Answer: yes! If it were lazy,
above would output just a
mess of ‘b’s

‘*’ Works like in egrep

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

Test your understanding: is
the sed * operator greedy?

Answer: yes! If it were lazy,
above would output just a
mess of ‘b’s

As promised, most of your knowledge of
regexes in egrep will transfer directly to
sed, as well as other tools (e.g., vim,
emacs, Python and perl)

‘*’ Works like in egrep

Editing text streams: sed
sed commands can include regular expressions

keith:~$ echo "a aa aaa" | sed 's/a*/b/g'
b b b

‘*’ Works like in egrep

Basic syntax of sed s commands:
sed ‘s/regexp/replacement/flags’

keith:~$ echo "a aa aaa" | sed -E 's/a+/b/g'
b b b
keith:~$ To use “extended” regexes, need to give

-E flag (there is no esed, unfortunately).

Editing text streams: sed
Basic syntax of sed s commands:
sed ‘s/regexp/replacement/flags’

keith:~$ echo "a aa aaa" | sed -E 's/a+/b/g'
b b b
keith:~$ echo "a aa aaa" | sed -E 's|a+|b|g'
b b b
keith:~$ echo "a| aa| aaa| aaaa" | sed -E 's/a+\|/b/g'
b b b aaaa
keith:~$

Can use any single
character in place of /.

Special characters have
to be escaped.

Of course, we’re only barely scratching the surface:
https://www.gnu.org/software/sed/manual/html_node/index.html#Top

https://www.gnu.org/software/sed/manual/html_node/index.html#Top

Quick and dirty text processing: awk
awk is a command-line program that runs its own programming language, AWK

Like grep and sed, awk operates on a data stream, read from its stdin
Primarily designed for text processing

awk is a data driven programming language
“Describe what pattern to look for, and what to do when you find it.”
In contrast to procedural programming languages (e.g., R and Python)

Much of what follows is based on materials from The GNU Awk User’s Guide
available at https://www.gnu.org/software/gawk/manual/gawk.html

https://www.gnu.org/software/gawk/manual/gawk.html

Basic awk: patterns and actions
Basic awk program: series of (pattern, action) pairs.

awk reads its input one line at a time
When input matches a pattern, perform its associated action

pattern { action }
pattern { action }
...

Written on separate lines, by convention, though this isn’t required

Succinctly summarized by A. V. Aho (the A in AWK):
AWK reads the input a line at a time. A line is scanned for each pattern in the
program, and for each pattern that matches, the associated action is executed.

Running awk on the command line

keith:~$ awk 'program' input-file1 input-file2 ...
keith:~$
keith:~$ awk -f program-file input-file1 input-file2 ...
keith:~$
keith:~$ cat input-file | awk -f program-file
keith:~$

Write a short program, run it with input(s)
read from files given on command line.

When running longer programs,
it’s easier to write our program in
a file and read it into awk.

We can also have awk operate on its stdin,
instead. This is, in my experience, the most
common way of invoking awk.

keith:~$ cat print.awk
{ print }
keith:~$ echo "dog cat goat bird" | awk -f print.awk
dog cat goat bird
keith:~$

Our first awk programs

keith:~$ awk 'BEGIN { print "Hello, world." }'
Hello, world.
keith:~$
keith:~$ echo "This is a string." | awk '{ print }'
This is a string.
keith:~$

The BEGIN pattern tells awk to run this
command before doing anything with its
input (of which there is none).

A line with no condition will
always be executed.

awk applies its (condition,action) pairs to
every line of input. In this case, we are just
printing every line of input that awk sees.

We’ve written the same program,
but now it is stored in print.awk .

Comments in awk

keith:~$ cat commented_print.awk
This program just prints its stdin.
Not particularly interesting, I'd say.
{ print }
keith@:~/$ echo "dog cat goat bird" | awk -f commented_print.awk
dog cat goat bird
keith:~$ echo "words words words" | awk '{print} # This is a comment.'
words words words
keith:~$

is the comment character in awk
(just like bash, R and Python).

awk built-in variables
awk breaks each line up into fields (i.e., columns), split on whitespace by default

awk has some built-in variables to refer to these fields, similar to bash scripts...
$0 : the entire current line
$1, $2, $3, … : the field variables

...and also has some other useful variables (these do not require dollar signs):
NF : the number of fields in the current line
NR : the number of records read so far
See documentation for a full list of built-in variables

or see https://www.gnu.org/software/gawk/manual/gawk.html

https://www.gnu.org/software/gawk/manual/gawk.html

Example file: name, phone number, email, relation
keith:~$ cat mail-list.txt
Amelia 555-5553 amelia.zodiacusque@gmail.com F
Anthony 555-3412 anthony.asserturo@hotmail.com A
Becky 555-7685 becky.algebrarum@gmail.com A
Bill 555-1675 bill.drowning@hotmail.com A
Broderick 555-0542 broderick.aliquotiens@yahoo.com R
Camilla 555-2912 camilla.infusarum@skynet.be R
Fabius 555-1234 fabius.undevicesimus@ucb.edu F
Julie 555-6699 julie.perscrutabor@skeeve.com F
Martin 555-6480 martin.codicibus@hotmail.com A
Samuel 555-3430 samuel.lanceolis@shu.edu A
Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R
keith:~$

A : acquaintance
F : friend
R : relative

Rules using regexes

keith:~$ awk '/\.edu/ { print $0 }' mail-list.txt
Fabius 555-1234 fabius.undevicesimus@ucb.edu F
Samuel 555-3430 samuel.lanceolis@shu.edu A
Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R
keith:~$ awk '/[[:space:]]F$/ { print $1, $3 }' mail-list.txt
Amelia amelia.zodiacusque@gmail.com
Fabius fabius.undevicesimus@ucb.edu
Julie julie.perscrutabor@skeeve.com
keith:~$

We can create rules that apply only to lines matching a regex
If a line contains the
string '.edu', print
the whole line.

Print the name and email (fields 1 and 3) of
friends. “friend” entries end with a capital F, so
that’s what our regex looks for. The comma in
the print statement is necessary to put a space
between fields 1 and 3.

Comparison patterns

keith:~$ cat mail-list.txt | awk 'length($1) > 6'
Anthony 555-3412 anthony.asserturo@hotmail.com A
Broderick 555-0542 broderick.aliquotiens@yahoo.com R
Camilla 555-2912 camilla.infusarum@skynet.be R
Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R
keith:~$ awk '{ if (length($1) > max) max = length($1) }; END { print max }'
mail-list.txt
9
keith:~$

This pattern matches lines whose
first field is longer than 6 characters We didn’t specify an action.

The default is to print the
whole line, like print $0 .

This pattern finds the length of the
longest name. Note that we did not
have to declare the variable max.

The END pattern runs once we have
reached the end of the input.

Multiple rules

keith:~$ awk '/12/ { print $2 }; /21/ { print $2 }' mail-list.txt
555-3412
555-2912
555-1234
555-2127
555-2127
keith:~$
keith:~$ awk '/12/ && /21/ { print $2 }' mail-list.txt
555-2127
keith:~$

Our awk program can include multiple rules.
A line can match multiple rules, in which
case it gets processed multiple times.

2127 matches both /12/ and /21/

&& is the AND operator. A line must match
both of these regexes to match the pattern.

See https://www.gnu.org/software/gawk/manual/gawk.html#Boolean-Ops for more on Boolean operators.

https://www.gnu.org/software/gawk/manual/gawk.html#Boolean-Ops

What else?
awk is a kind of command-line swiss army knife

A non-exhaustive list of things we haven’t discussed:
For- and while-loops
Importing variables from the shell into awk
Defining functions in awk

The best place to learn more is
The GNU Awk User’s Guide
https://www.gnu.org/software/gawk/manual/gawk.html

Also recommended:
sed & awk, 2nd Edition by D. Dougherty and A. Robbins. O’Reilly Media

https://www.gnu.org/software/gawk/manual/gawk.html

