
STAT679: Computing for Data Science and Statistics 1

Homework 8: Structured Data

Due April 2, 11:59 pm

Worth 10 points

Instructions on writing and submitting your homework can be found on the course
webpage at http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/
hw_instructions.html. Failure to follow these instructions will result in lost points.
Please direct any questions the instructor.

1 Retrieving Data from the Web (7 points)

In this problem, we’ll scrape data from Wikipedia using BeautifulSoup. Documentation
for BeauitfulSoup can be found at https://www.crummy.com/software/BeautifulSoup/
bs4/doc/. As mentioned in lecture, there is another package, called requests, which
is becoming quite popular, which you are welcome to use for this problem instead, if
you wish. Documentation for the requests package can be found at http://docs.

python-requests.org/en/master/.
Suppose you are trying to choose a city to vacation in. A major factor in your decision

is weather. Conveniently, lots of weather information is present in the Wikipedia articles
for most world cities. Your job in this problem is to use BeautifulSoup to retrieve weather
information from Wikipedia articles. We should note that in practice, such information is
typically more easily obtained from, for example, the National Oceanic and Atmospheric
Administration (NOAA), in the case of American cities, and from analogous organizations
in other countries.

1. Look at a few Wikipedia pages corresponding to cities. For example:

• https://en.wikipedia.org/wiki/Madison,_Wisconsin

• https://en.wikipedia.org/wiki/Buenos_Aires

• https://en.wikipedia.org/wiki/Harbin

Note that most city pages include a table titled something like “Climate data for
[Cityname] (normals YYYY-YYYY, extremes YYYY-YYYY)” Find a Wikipedia
page for a city that includes such a table (such as one of the three above). In
your jupyter notebook, open the URL and read the HTML using either urllib or
requests, and parse it with BeautifulSoup using the standard parser, html.parser.
Have a look at the parsed HTML and find the climate data table, which will have
the tag table and will contain a child tag th containing a string similar to

Climate data for [Cityname] (normals YYYY-YYYY, extremes YYYY-YYYY).

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/hw_instructions.html
http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/hw_instructions.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
https://en.wikipedia.org/wiki/Madison,_Wisconsin
https://en.wikipedia.org/wiki/Buenos_Aires
https://en.wikipedia.org/wiki/Harbin


STAT679: Computing for Data Science and Statistics 2

Find the node in the BeautifulSoup object corresponding to this table. What is the
structure of this node of the tree (e.g., how many children does the table have, what
are their tags, etc.)? You may want to learn a bit about the structure of HTML
tables by looking at the resources available on these websites:

• https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

• https://www.w3schools.com/html/html_tables.asp

• https://www.w3.org/TR/html401/struct/tables.html

2. Write a function retrieve climate table that takes as its only argument a string
representing a URL, and returns the BeautifulSoup object corresponding to the
climate data table (if it exists in the page) and returns None if no such table exists on
the page. You should check that the URL is retrieved successfully, and raise an error
if urllib2 fails to successfully read the website. You may notice that some city pages
include more than one climate data table or several nested tables (see, for example,
https://en.wikipedia.org/wiki/Los_Angeles). In this case, your function may
arbitrarily choose one of the tables to return as a BeautifulSoup object. Note:
a good way to check for edge cases is to test your script on the Wikipedia pages
for a few of your favorite cities. The pages for Los Angeles, Hyderabad and Boston
will give good examples of edge cases that you should be able to handle. Of course,
there is no expectation that your code handle every possible edge case. That would
be impossible. Your code should, however, be reasonably robust to small differences
among some of the city pages you find when you start testing your code. Hint:
make use of the contents attribute of the BeautifulSoup objects and the ability
to change the elements of the contents list to Unicode.

3. As you look at some of the climate data tables, you may notice that different cities’
tables contain different information. For example, not all cities include snowfall data.
Write a function list_climate_table_row_names that takes as its only argument
a Wikipedia URL and returns a list of the row names of the climate data table,
or returns None if no such table exists. The list returned by your function should,
ideally, consist solely of Python strings (either Unicode or ASCII), and should not in-
clude any BeautifulSoup objects or HTML (Hint: see the BeautifulSoup method
get text()). The list returned by your script should not include an entry corre-
sponding to the Climate data for... row in the table. Second hint: you are
looking for HTML table header (th) objects. The HTML attribute scope is your
friend here, because in the context of an HTML table it tells you when a th tag is
the header of a row or a column.

4. The next natural step would be to write a function that takes a URL and a row
name and retrieves the data from that row of the climate data table (if the table
exists and has that row name). Doing this would require some complicated string
wrangling to get right, so I’ll spare you the trouble. Instead, please briefly describe
either in pseudo code or in plain English how you would accomplish this, using the
two functions you wrote above and the tools available to you in the BeautifulSoup

package. Note: just to be clear, you do not have to write any code for this last
step. Of course, if you want a challenge, you are welcome to try writing this code,
but it is not required for this assignment.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://www.w3schools.com/html/html_tables.asp
https://www.w3.org/TR/html401/struct/tables.html
https://en.wikipedia.org/wiki/Los_Angeles


STAT679: Computing for Data Science and Statistics 3

2 JSON (3 points)

In this problem, you’ll get a bit of practice working with JSON objects.

1. Download yelp_simplified.json from http://pages.stat.wisc.edu/~kdlevin/

teaching/Spring2021/STAT679/yelp_simplified.json. This file contains a string
representation of a JSON object generated by the Yelp API when I asked to retrieve
all restaurants matching the search term ’coffee’ within 200 meters of the UW-
Madison statistics department. I’ve removed some of the attributes for the sake
of simplicity. We’ll discuss how to interact with APIs like the Yelp API and oth-
ers later in the course. Load the JSON string into a Python json object called
yelp_json. Please include yelp_simplified.json in your submission. Hint: you
can read a JSON object directly from the file by creating a file handle f and writing
json.load(f). Don’t forget to close the file after you’re done reading from it!

2. The ’businesses’ attribute of the JSON attribute has as its value an array whose
elements are themselves JSON objects, each of which represents one of the three
establishments within 200 meters of the Medical Sciences Center matching my search
for ’coffee’. Extract this array (you can simply treat it as a Python list!) and
save it in a variable called search_results.

3. Pick out one of the JSON elements from the list search_results and examine its at-
tributes. Extract the attributes and save them in a Python list resto_attrs_sorted,
with the attributes sorted in non-decreasing order. Hint: the attributes of a JSON
object in the Python json module really are just the keys of a dictionary, so all you
need to do is extract the keys of a dictionary, save them in a list, and sort that list.

4. A few of us in the statistics department have decided to follow our passion for baking
and open the George E. P. Box Bakery in the basement of MSC. Create a Python
dictionary gepbox_json representing our bakery’s JSON object. It should have the
same structure as the other restaurants in the JSON search results. In particular:

• The name of our bakery on Yelp will be ’G. E. P. Box Bakery’.

• Since our bakery is brand new, let us set its ’review_count’ to 0.

• The ’categories’ attribute should be an array containing a single JSON object

{’alias’: ’cafes’, ’title’: ’Cafes’}

• Set the ’rating’ attribute to have value 5.0.

• The coordinates of the MSC are latitude 43.074281 and longitude -89.407391.

• We aim to provide affordable croissants to statisticians of all income levels. The
’price’ attribute should be a single dollar sign.

• The phone number will be the same as the department office: +16082622598.

• The other restaurants in the search results have a ’distance’ attribute, which
is the distance from MSC. Since our bakery is in the basement of MSC, you can
set the ’distance’ attribute to have value 0.0.

5. Use the Python json module to create a string representation of our gepbox_json

object, and save it in a file gepbox.json. Please include this file in your sub-
mission. Hint: to make sure that you have created your JSON file correctly, try
reading it back into Python using the same pattern you used above to read in
yelp_simplified.json.

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/yelp_simplified.json
http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/yelp_simplified.json

	Retrieving Data from the Web (7 points)
	JSON (3 points)

