
STAT679: Computing for Data Science and Statistics 1

Homework 12: PySpark

Due April 30, 11:59 pm

Worth 20 points

Instructions on writing and submitting your homework can be found on the course
webpage at http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/
hw_instructions.html. Failure to follow these instructions will result in lost points.
Please direct any questions the instructor.

Note: You will spend a lot of this assignment running jobs remotely on a compute
cluster rather than on your own laptop, so the set of things to turn in is slightly more com-
plicated than previous assignments. For your convenience, the last page of this handout
summarizes what you should turn in with your final submission.

1 Preliminaries: Set up a Storage Bucket (2 points)

Before we get started, create a storage bucket for this project, just like you did for Home-
work 11, this time called NetID-stat679-hw12, where NetID is your Wisconsin NetID
in all lower-case letters. All settings should be the same as the bucket you created for
Homework 11.

2 Warmup: Interactive PySpark on GCP (3 points)

Before we can do anything in PySpark, we have to get a server up and running.

1. Sign in to Google Cloud Platform, and make sure that you are in your project
that you created for Homework 11. Recall that this project should be named
NetID-stat679s21, where NetID is your Wisconsin NetID in all lower-case letters.
Open Google Cloud Console and type

gcloud dataproc clusters create CLUSTERNAME --region=REGION

where CLUSTERNAME is the name you wish to give your cluster (e.g., stat679hw12
or something like that; you are free to name this however you like) and REGION is a
valid region.1 You will need to wait a few minutes while Google Cloud sets up your
cluster (i.e., gets some computers to serve as your nodes, installs necessary software
on those computers, etc.). Once this process finishes, you will see a message to the
effect of Created [CLUSTERNAME] Cluster placed in zone [REGION]. Once you
have created this cluster, you should see it listed when you call

1See https://cloud.google.com/compute/docs/regions-zones or type gcloud app regions list in the
console.

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/hw_instructions.html
http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/hw_instructions.html
https://cloud.google.com/compute/docs/regions-zones


STAT679: Computing for Data Science and Statistics 2

gcloud dataproc clusters list --region=REGION

in the console, where REGION is the same as the argument supplied when you created
the cluster.

Important warning: any time you finish a working session (e.g., to take a break
and come back again later), consider deleting your cluster with

gcloud dataproc clusters delete CLUSTERNAME --region=REGION

to ensure that you are not paying to leave a cluster sitting unused. Of course, when
you come back to continue working, you will have to spin up the cluster again by
following the instructions above. Bear in mind that any files that you create on the
cluster are lost when you delete it, so be sure to move any files you want to keep
into a storage bucket (we discuss this point at more length below).

2. Okay, now that we have a cluster up and running, let’s try running an interactive
PySpark session. To do that, we need to log onto our cluster. We will ssh to the
master node on your Dataproc cluster. Double-check that you Dataproc cluster is
up and running by calling

gcloud dataproc clusters list --region=REGION

again (REGION should be set to whatever region you requested when you created the
cluster). If a cluster shows up in the list, go to the VM Instances dashboard,2 where
you should see a few entries listed. These correspond to the nodes in your cluster.
The names of these instances should all be prefixed with your cluster name. One of
them should end with -m. This is the master node in your cluster. To ssh to it, type
the command

gcloud compute ssh MASTERNODE --project=PROJECT --zone=ZONE

in the console, where MASTERNODE is the name of your cluster with the added suffix
-m (something like CLUSTERNAME-m), PROJECT is the name of your project (something
like NetID-stat679s21), and ZONE is the specific zone that your cluster is in. This
will have a form like REGION or REGION-X, where REGION is your specific region
specified when you launched the cluster, and X is a letter or number. If you’re not
sure, you can find the zone of your cluster in the “Zone” column of the VM instances
dashboard.

If all goes well, it won’t look like much has changed, except you’ll see that your
prompt in the console has changed to something like NetID@CLUSTERNAME-m. Alter-
natively, you can type the command hostname in the console, which should produce
an output of the form CLUSTERNAME-m.

Now you can start an interactive PySpark session by typing pyspark in the console.
When you do this, you’ll see some text appear, giving some setup information and
information about the version of Spark, and then you’ll see the interactive prompt
(>>>). The numbers.txt file from lecture is available at

2Compute Engine → VM instances in the sidebar; see https://cloud.google.com/compute/docs/instances

for more information

https://cloud.google.com/compute/docs/instances


STAT679: Computing for Data Science and Statistics 3

gs://uw-stat679s21-hw12/numbers.txt

Read it into an RDD in your PySpark interactive session and use a sequence of RDD
transformations and RDD actions to compute how many of the numbers in the file
are prime. You may make use of the function is_prime, which is defined in the
Python file

gs://uw-stat679s21-hw12/prime.py

Save the answer in a variable called number_of_primes in your Jupyter notebook
file for submission. Note: you can quit an interactive PySpark session either by
typing quit() at the prompt or by typing ctrl-D.3

Please also copy-paste into your Jupyter notebook file the sequence of PySpark
commands that you ran to obtain this answer. Important: paste these into a Raw

NBConvert or Markdown cell, not a Code cell. If you paste these commands into a
Jupyter Code cell, the grader script will try to run your PySpark commands in plain
old Python, which will cause errors.

Reminder: if you aren’t going to continue working on the next problem immedi-
ately, save credits by deleting your cluster.

3 Submitting a Job to Spark (6 points)

Now let’s try writing a PySpark script and submitting it to your Dataproc server.

1. First things first: make sure that you have a Dataproc cluster up and running by
typing

gcloud dataproc clusters list --region=REGION

where REGION is the region you specified upon cluster creation. Alternatively, you
can pull up the VM instances dashboard to see a list of your currently-running VM
instances (this list will include any running Dataproc clusters). If you don’t have a
Dataproc cluster up and running, follow the instructions from the previous problem
to create one.

2. Now let’s try running our example from lecture. The ps_wordcount.py script from
the lecture slides is available at

gs://uw-stat679s21-hw12/ps_wordcount.py}

(alternatively, you can download the demo code from this week’s lecture and upload
a copy to your own storage bucket).

gs://uw-stat679s21-hw12/war_and_peace.txt}

3ctrl-D inputs the “end-of-file” (EOF) symbol, which is a special ASCII character that basically means
“end of transmission”. Thus, it is a standard way to end an ssh or similar session in a terminal. See https:

//en.wikipedia.org/wiki/End-of-file for more.

https://en.wikipedia.org/wiki/End-of-file
https://en.wikipedia.org/wiki/End-of-file


STAT679: Computing for Data Science and Statistics 4

contains a slightly modified version of the Project Gutenberg UTF-8 copy of Leo
Tolstoy’s War and Peace.4 Submit a PySpark job to your Dataproc server that runs
ps_wordcount.py on war_and_peace.txt and outputs the results to a directory

gs://NetID-stat679-hw12/WP_wordcount}

where once again NetID is your NetID in all lower-case. Please also copy-paste the
command that you called to launch this job into a Raw NBConvert cell or a Markdown

cell in your Jupyter notebook file.

3. Concatenate the output of your script and store it in a file in your storage bucket at
gs://NetID-stat679-hw12/wp_output.txt. Please also include a copy of this file
in your submission.

4 Climate Data Revisited (9 points)

I used NOAA’s Climate Data Online service5 to collect daily historical temperature data
for Madison, WI, which has been gathered daily at Dane County Airport since 1939. I
have made this data available on GCP at

gs://uw-stat679s21-hw12/NOAA_MSN_temps.csv

Note: Once again, this file is not, in reality, large enough to warrant using MapReduce
or Spark, but it is good practice. Each line of this file has the form

DATE,TMAX,TMIN

where TMAX and TMIN are integers describing the maximum and minimum temperatures
(Fahrenheit) on a given day, and DATE encodes a date in the form YYYY-MM-DD.

You can see a few lines of the file by writing something like

gsutil cat -r 0-101 gs://uw-stat679s21-hw12/NOAA_MSN_temps.csv

to print out the first 102 bytes (six lines, at 17 bytes per line) of the file. This -r flag
to the gsutil cat command is the closest thing (to the best of my knowledge, anyway)
that gsutil has to the UNIX head command. Important: be careful when performing
read operations like this with very large files. Reading multiple GBs or, worse, TBs of
text into less or a similar command-line program can be very slow!

1. Write a PySpark script that reads two arguments from the command line, corre-
sponding to an input file and an output directory, in that order (the same as the
arguments for ps_wordcount.py) and computes the average maximum and min-
imum temperature for every year in the data set. The output should be of the
form

YYYY, avgmax, avgmin

where YYYY is an integer encoding a year, and avgmax and avgmin are floats encod-
ing the average maximum and minimum temperatures, respectively, for that year.
Note: the precise formatting here does not matter—just make sure that your output
has a line for each year in the data set and the maximum and minimum temperature
are ordered correctly. So, for example, an output like

4https://www.gutenberg.org/ebooks/2600
5https://www.ncdc.noaa.gov/cdo-web/

https://www.gutenberg.org/ebooks/2600
https://www.ncdc.noaa.gov/cdo-web/


STAT679: Computing for Data Science and Statistics 5

YYYY, (avgmax, avgmin)

is also fine. Save your script in a file called ps_year_avgs.py and include copies
in both your storage bucket and your submission. If you wrote any additional
Python code (e.g., function definitions in a separate Python file), please also include
this in your submission. Hint: you may find the reduceByKey and mapValues

transformations to be especially useful.

2. Run ps_year_avgs.py on the file NOAA_MSN_temps.csv in PySpark on a GCP Dat-
aproc server. Concatenate the output of your job into a single file called avgs.txt

and save this file in your storage bucket for this homework, and please also include
a copy in your submission.

3. Write a PySpark script whose command line arguments are the same as those of
ps_wordcount.py and ps_year_avgs.py and that computes, for each year in the
data set, the day on which the maximum temperature was achieved and the day on
which the minimum temperature was achieved (you may break ties as you see fit).
That is, each row of the output should be of a form like

YYYY, MM-DD, mm-dd

where MM-DD encodes the month and day on which the maximum occurred and mm-dd

encodes the month and day on which the minimum occurred. Note: the precise
formatting here does not matter—just make sure that your output has a line for
each year in the data set and the maximum and minimum temperature days are
ordered correctly and in the correct MM-DD format, that is fine. So, for example, an
output like

YYYY, (MM-DD, mm-dd)

or

YYYY, ’MM-DD’ ’mm-dd’

is also fine. Save your script in a file called ps_year_extremes.py. Please include
a copy of this script in your storage bucket and include a copy in your submission.
If you wrote any additional Python code (e.g., function definitions in a separate
Python file), please also include this in your submission. Hint: you may find it
easiest to find the maximum and minimum separately, and then combine the two
RDDs using the RDD transformation join.

4. Run your script on the file NOAA_MSN_temps.csv in PySpark on a GCP Dataproc
server. Concatenate the output of your job into a single file called extremes.txt

and save this file in your storage bucket for this homework, and please also include
a copy in your submission.



STAT679: Computing for Data Science and Statistics 6

What to turn in

Here is a list of what to turn in for each problem.

• Jupyter notebook file. You should turn in a Jupyter notebook file, as usual, that
includes your collaboration statements and summary of total time required for each
problem.

• Problem 1. You do not need to hand in anything for this problem. Simply make
sure that you have successfully created the storage bucket as specified in the problem.

• Problem 2. Your Jupyter notebook should include a variable called number_of_primes,
as well as a copy-paste of the sequence of PySpark commands that you ran in your
interactive PySpark session to count the primes. Important: make sure that these
are in a Raw NBConvert or Markdown cell, not a Code cell. If you paste these com-
mands into a Jupyter Code cell, the grader script will try to run your PySpark
commands in plain old Python, which will cause errors.

• Problem 3. Your Jupyter notebook file should include a copy-paste of the command
that you called to launch the word-counting script. Remember to paste this into a
Raw NBConvert cell or a Markdown cell, so avoid problems with the grader script.
Your storage bucket should include a file

gs://NetID-stat679-hw12/wp_output.txt

that stores the full output of your PySpark script. A copy of this file should also be
included in your submission.

• Problem 4. Your submission should include copies of the scripts ps_year_avgs.py
and ps_year_extremes.py, and copies of both of these scripts should also be saved
on your HW12 storage bucket. The outputs of these scripts, run on the Madison
NOAA data, should be saved in files called avgs.txt and extremes.txt, respec-
tively. Copies of both of these output files should be included in your submission
and saved in your storage bucket.

Reminder: make sure you don’t leave any clusters running on GCP! Check the VM
instance dashboard or call

gcloud dataproc clusters list --region=REGION

to make sure you don’t have any running instances.


	Preliminaries: Set up a Storage Bucket (2 points)
	Warmup: Interactive PySpark on GCP (3 points)
	Submitting a Job to Spark (6 points)
	Climate Data Revisited (9 points)

