
STAT679: Computing for Data Science and Statistics 1

Homework 13: Building and Training Models in TensorFlow

Due May 7, 11:59 pm

Worth 20 points

Instructions on writing and submitting your homework can be found on the course
webpage at http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/
hw_instructions.html. Failure to follow these instructions will result in lost points.
Please direct any questions the instructor.

Note: this is the last assignment of the semester, and it doubles as your final exam. As
such, this homework requires a bit more of you compared to previous assignments in terms
of reading documentation and learning things (almost) from scratch. This is designed to
be a challenging assignment. As such, I do not expect every student to complete it. Don’t
worry about that. Start early, do your best, and post to the discussion board or come to
office hours if you run into trouble.

Another note: this assignment has you training several neural nets. This procedure
can be time-consuming, and if we were to run your notebook start to finish, like the
grading script usually does, this could take a very long time. For the sake of our sanity
(and the happiness of the computer running the grading script), please make sure that you
follow the instructions below and turn in Problem 3 in a separate notebook file. Failure
to follow these instructions will result in a penalty.

Important: Owing to the university grade submission deadline, you must turn in
this assignment in by 11:59pm on May 7th. You may not use late days to extend the
due date of this assignment.

1 Warmup: Constructing a 3-tensor (2 points)

You may have noticed that the TensorFlow logo, seen in Figure 1 below, is a 2-dimensional
depiction of a 3-dimensional orange structure, which casts shadows shaped like a “T” and
an “F”, depending on the direction of the light. The structure is five “cells” tall, four
wide and three deep.

Create a TensorFlow constant tensor tflogo with shape 5-by-4-by-3. This tensor will
represent the 5-by-4-by-3 volume that contains the orange structure depicted in the logo
(said another way, the orange structure is inscribed in this 5-by-4-by-3 volume). Each cell
of your tensor should correspond to one cell in this volume. Each entry of your tensor
should be 1 if and only if the corresponding cell is part of the orange structure, and should
be 0 otherwise. Looking at the logo, we see that the orange structure can be broken into
11 cubic cells, so your tensor tflogo should have precisely 11 non-zero entries. For the
sake of consistency, the (0, 3, 2)-entry of your tensor (using 0-indexing) should correspond
to the top rear corner of the structure where the cross of the “T” meets the top of the
“F”. Note: if you look carefully, the shadows in the logo do not correctly reflect the
orange structure—the shadow of the “T” is incorrectly drawn. Do not let this fool you!

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/hw_instructions.html
http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/hw_instructions.html

STAT679: Computing for Data Science and Statistics 2

Figure 1: The TensorFlow logo.

Hint: you may find it easier to create a numpy array representing the structure first,
then turn that numpy array into a TensorFlow constant. Second hint: as a sanity check,
try printing your tensor. You should see a series of 4-by-3 matrices, as though you were
looking at one horizontal slice of the tensor at a time, working your way from top to
bottom.

2 Ordinary Least Squares Linear Regression (6 points)

This problem will walk you through building and fitting a simple linear regression model,
expanding on the example from lecture. In particular, we will adapt the code from
lecture to define a class LinearModel that encodes linear regression for p-dimensional
data, instead of the 1-dimensional case from lecture. You are free to start from the
lecture code, which is available in the demo notebook on the course webpage or canvas,
or just copy-paste this (be mindful of weird indentation caused by copying from a pdf!):

class LinearModel(tf.Module):

def __init__(self, name=None):

super().__init__(name=name)

self.W = tf.Variable([1.0], dtype=tf.float32, name="slope")

self.b = tf.Variable([1.0], dtype=tf.float32, name="intercept")

def __call__(self, x):

return self.W * x + self.b

1. Override the initialization method to take an optional argument p, and initialize W

and b to be tensors with shapes (p,) and (1,), respectively, with entries initialized
to be independent standard normals. The argument p should default to p=1 and
your initialization method should raise an appropriate error in the event that this
argument is not a positive integer. Note: in the Keras tutorials below, we’ll see a
different way to do this using the tf.keras.layers submodule, which is expressly
designed for specifying multilayer perceptrons and neural nets. For this problem,
please just use TensorFlow Variable Tensor objects.

STAT679: Computing for Data Science and Statistics 3

2. Implement an additional method get_dimension that takes no arguments (other
than self) and returns the data dimension (i.e., the initialization argument p). You
are free to store p as a class attribute or read p from self.W.shape.

3. Implement the __call__ method so that the input x is a tf.Tensor of shape (n,p),
where

� n is a number of observations (not known ahead of time!) and

� p is the dimension specified upon initialization.

That is, each row of x is a vector of p predictors. The output of the call should be a
tf.Tensor of shape (n,), and should encode the prediction of the model applied to
each row of x. There is no need to perform error checking for this method. We will
leave it to TensorFlow to yell at us if x is of the wrong type or the wrong shape when
we try to multiply it. Hint: you will be tempted to write something like self.W *

x + self.b, but this will not work, owing to the shapes of W and x. Instead, look
at the tf.tensordot function.1

As a sanity check, try running the following code snippet (this assumes that you
have kept the names W and b for the slope and intercept; you’ll have to update it if
you chose something different):

linear_model = LinearModel(p=3)

linear_model.W.assign([1.0,1.0,1.0])

linear_model.b.assign([1.0])

x = tf.constant([[0,1,2],[3,4,5]], dtype=tf.float32)

linear_model(x)

The result should be a tensor that looks something like

<tf.Tensor: shape=(2,), dtype=float32, numpy=array([4., 13.], dtype=float32)>

4. Following the example from lecture, define a loss function loss that takes two ar-
guments, y_obsd and y_pred, which are two tf.Tensor objects of the same shape
(n,) for some positive integer n, and returns the mean squared error between the
two vectors. That is, it computes

1

n

n∑
i=1

(
yobsdi − ypredi

)2
.

Note that the example from lecture uses tf.reduce_sum, so you’ll need to read the
documentation to find out how to get the mean reduce operation. There is no need
to perform any error checking in this function.

5. Continuing to follow the example from lecture, define a function train that takes a
LinearModel object, a tf.Tensor X with shape (n,p), a tf.Tensor y with shape
(n,) and a float step_size (i.e., the learning rate parameter in the lecture code)
as its arguments.

train(model, x, y, step_size)

1https://www.tensorflow.org/api_docs/python/tf/tensordot

https://www.tensorflow.org/api_docs/python/tf/tensordot

STAT679: Computing for Data Science and Statistics 4

should compute the gradient of the loss with respect to the parameters and update
the model parameters accordingly, scaling the gradient vector by step_size.

6. The zip file at

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/HW13_lm.zip

contains two Numpy .npy files:

� lm_X.npy : contains a 400-by-6 matrix whose rows are the predictor variables
in a data set.

� lm_y.npy : contains a 400-dimensional vector whose entries are the responses.
The i-th entry of this vector is the response for the i-th row of the matrix in
lm_X.npy.

Please include these files in your submission so that we can run your code without
downloading them again. Note: we didn’t discuss reading numpy data from files.
To load the files, you can simply call

xtrain = np.load(’lm_X.npy’)}

to read the data into the variable xtrain, which will be a numpy array. You’ll need
to read the documentation to see how to then turn this into tf.Tensor objects, but
you should have a good guess already based on how we constructed them in lecture.

7. Use the code written in the previous subproblems to write a training loop to fit your
model to the data in lm_X.npy and lm_y.npy as training data. In the lecture code,
we kept the step size parameter fixed for all of training. As mentioned in lecture,
this is not necessarily a good idea, because it can lead to weird behavior if we choose
the learning rate poorly.2 There are myriad rules of thumb for choosing the learning
rate or choosing ways to make it change over time. A thorough discussion of these
is well outside the scope of this course, but I encourage you to play around with the
learning rate, including writing a loop in which it changes over time (most likely
you’ll want it to shrink toward zero as the step size increases). For the sake of
consistency, your training loop should proceed for one thousand steps, though it
should not take nearly this many steps to drive the loss to near-zero. The easiest
way to check that training has worked correctly is to look at the loss and verify that
it has stopped decreasing. In the current case, the problem is easy enough that you
should see the loss decrease to a fairly small number (say, less than 10). Create a plot
of the loss over the course of training and save it in a file called lm_training.pdf.
Please include this file in your submission.

8. The data was, in reality, generated with

W = (1, 1, 2, 3, 5, 8), b = −1.

Your estimated parameters should be quite close to these numbers, say, within an
additive error of 0.1. If they aren’t, that’s a good indication that there is a prob-
lem in your training loop. Once you are confident that you have trained the model
to a near-optimal solution, save your model’s learned parameters W and b (i.e., at-
tributes of your model object) in global variables W_lm_trained and b_lm_trained,
respectively.

2This article includes a thorough discussion of this point: https://towardsdatascience.com/

gradient-descent-the-learning-rate-and-the-importance-of-feature-scaling-6c0b416596e1

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/HW13_lm.zip
https://towardsdatascience.com/gradient-descent-the-learning-rate-and-the-importance-of-feature-scaling-6c0b416596e1
https://towardsdatascience.com/gradient-descent-the-learning-rate-and-the-importance-of-feature-scaling-6c0b416596e1

STAT679: Computing for Data Science and Statistics 5

3 Training a Basic Neural Net in tf.keras (4 points)

In this problem, you’ll get your first exposure to training a neural net in TensorFlow
Keras. Keras a submodule of TensorFlow, newly incorporated in version 2, which makes
it shockingly easy to build fairly complicated models. We will have an overview of some
of the basics of neural nets in our last lecture of the semester, Lecture 19, to be released
April 26, so you may want to wait until that lecture to tackle this, but it’s up to you.

Important: please complete these tutorials in a separate Jupyter notebook from the
one in which you complete the rest of the assignment. This notebook should be in a file
called NetID.tutorials.ipynb, where NetID is your NetID, in all lower-case letters.

1. The best way to gain a broad familiarity with TensorFlow Keras is to walk through
some of the tutorials. The tutorial at

https://www.tensorflow.org/tutorials/quickstart/beginner

will walk you through the process of building a simple neural net with dropout and
cross-entropy loss, and training the CNN on the famed MNIST data set. Please run
the code from this tutorial in your Jupyter notebook for submission. The result of
running the code in this tutorial is a pair of tf.keras.models.Sequential objects,
named model and probability_model, if you were copy-pasting the code exactly.
Save these models in the SavedModel format3 in directories named digits_prediction

and digits_probability, respectively, and include these directories in your sub-
mission. Note: as a sanity check, you can try loading your models back into memory
from these directories using tf.keras.models.load_model.4

2. The tutorial at

https://www.tensorflow.org/tutorials/keras/classification

Builds a broadly similar neural net, this time for classifying black and white images
of clothing, but gives a more detailed explanation of some of the preprocessing steps
and components of the model. Once again, if you’re copy-pasting the code exactly,
you will end up with two Keras models named model and probability_model. Save
these models in the SavedModel format in directories named fashion_prediction

and fashion_probability, respectively, and include these directories in your sub-
mission. Note: some of the variable names collide with those from the previous
tutorial. This should not be a problem, so long as if you are going to run the first
tutorial again, you do so from its beginning so that all the variables (e.g., model and
probability_model) get initialized properly.

4 Building and Training a Logistic Regression (6 points)

In this problem, you’ll use TensorFlow to build and train a logistic regression model, which
we will discuss briefly in Lecture 19. In this model, the binary response Y is distributed
as a Bernoulli random variable with success parameter σ(W TX + b), where

σ(z) =
1

1 + exp(−z)

3See https://www.tensorflow.org/tutorials/keras/save_and_load#savedmodel_format and https://

www.tensorflow.org/guide/saved_model
4https://www.tensorflow.org/api_docs/python/tf/keras/models/load_model

https://www.tensorflow.org/tutorials/quickstart/beginner
https://www.tensorflow.org/tutorials/keras/classification
https://www.tensorflow.org/tutorials/keras/save_and_load#savedmodel_format
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/api_docs/python/tf/keras/models/load_model

STAT679: Computing for Data Science and Statistics 6

is the logistic function, X and W are vectors of the same dimension, and b is a scalar.
We will use the tf.keras optimization framework to fit this model. Note that this is

a different approach from the one we took in the linear regression problem earlier in this
assignment. There, we simply computed the gradient and implemented gradient descent
ourselves. That is fine for small models, but once we are trying to train larger, more
complicated models, it’s better to make use of the machinery provided by TensorFlow.
Of course, logistic regression isn’t actually such a complicated model, but its use of a
nonlinearity applied to the output of a linear transformation makes it, in a sense, the
simplest neural network we can build, and it suffices to illustrate the basic challenges
that arise when we go from simple linear regression to a nonlinear model with a more
interesting loss function.

1. Define a class LogisticModel that encodes logistic regression for p-dimensional
data. You will likely find it easiest to start from the code you wrote above for the
LinearModel class above. Indeed, you might want to have LogisticModel inherit
from LinearModel, though that is not required. This model should have __init__

and __call__ methods, as well as a method get_dimension, just like LinearModel.

2. Override the initialization method to take an optional argument p, and initialize W

and b to be tensors with shapes (p,) and (1,), respectively, with entries drawn
independently from a standard normal. This optional argument should default to
p=1 and your initialization method should raise an appropriate error in the event
that this argument is not a positive integer. You are free to follow an approach
similar to that used in LinearModel or, if you prefer, you may use the Keras layers
framework, which you saw lecture and in the tutorial.

3. Implement an additional method get_dimension that takes no arguments (other
than self) and returns the data dimension (i.e., the initialization argument p). You
are free to store p as a class attribute or read p from self.W.shape.

4. Implement the __call__ method so that the input x is a tf.Tensor of shape (n,p),
where

� n is a number of observations (not known ahead of time!) and

� p is the dimension specified upon initialization.

That is, each row of x is a vector of p predictors. The output of the call should be
a tf.Tensor of shape (n,), corresponding to the output of the logistic regression
model, evaluated on the rows of x. There is no need to perform error checking for
this method. We will leave it to TensorFlow to yell at us if x is of the wrong type
or the wrong shape when we try to multiply it.

5. The zip file at

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/HW13_logistic.zip

contains four Numpy .npy files that contain train and test data generated from a
logistic model:

� logistic_xtest.npy : contains a 500-by-3 matrix whose rows are the inde-
pendent variables (predictors) from the test set.

http://pages.stat.wisc.edu/~kdlevin/teaching/Spring2021/STAT679/HW13_logistic.zip

STAT679: Computing for Data Science and Statistics 7

� logistic_xtrain.npy : contains a 2000-by-3 matrix whose rows are the inde-
pendent variables (predictors) from the train set.

� logistic_ytest.npy : contains a binary 500-dimensional vector of dependent
variables (responses) from the test set.

� logistic_ytrain.npy : contains a binary 2000-dimensional vector of depen-
dent variables (responses) from the train set.

Download these four files and include them in your submission so that we can run
your notebook without downloading the files again.

6. Initialize a LogisticModel object called logreg, with p=3. As a sanity check, if
you have loaded logistic_xtest.npy into a variable called logistic_xtest, you
should be able to call logreg(logistic_xtest) and get back a tensor with shape
TensorShape[500].

7. Following the demo code from Lecture 19 define a loss object5 called logreg_loss

that encodes the cross entropy between the output of the model and the observed
class labels.

8. Define an optimizer object6 called logreg_optimizer. You are free to choose an
optimizer as you see fit, and I encourage you to try different optimizers and exper-
iment with the learning rate (see the discussion of the training loop, below). You
will likely find that some optimizers perform better than others on this problem.

9. Define loss and accuracy objects (from the tf.keras.metrics submodule) for both
the train and test sets. That is, create variables train_loss, train_acc, test_loss
and test_acc, that encode the loss on the train and test data (measured according
to average cross entropy) and the accuracy on the train and test data.

10. Define functions train_step and test_step, both of which take arguments x and
y, in that order, where x is a Tensor of shape (n,p) that encodes a collection of n

predictors (one per row) and y is a Tensor of shape (n,) that encodes the responses
for the n predictors. train_step should use the tf.GradientTape pattern that we
saw in Lectures 18 and 19 to compute a gradient step to update the parameters
of the instance logreg that you created previously. Make sure that you use the
@tf.function decorator so that your code runs more quickly.

11. Write a training loop that optimizes the parameters of the model stored in logreg

based on the training data. You can use the test data as a dev set, if you like, to verify
that your model is actually learning something. You are encouraged to play around
with different choices of the number of training steps, the optimizer, the learning
rate... For that matter, if you want to try a different loss function altogether, you
are welcome to do so (but if you do, please use a different set of variable names for
your experimental model— logreg and the code designed to work with that should
still be fit according to cross entropy loss). Note: this is comparatively noisy data.
You are unlikely to be able to push the accuracy past about 0.75. That is fine.

5i.e., an object from the tf.keras.losses submodule: https://www.tensorflow.org/api_docs/python/tf/
keras/losses

6i.e., an object from the tf.keras.optimizers submodule, https://www.tensorflow.org/api_docs/python/
tf/keras/optimizers

https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

STAT679: Computing for Data Science and Statistics 8

12. Having fit logreg to the training data, what is the loss of your model on the test
data? Store the answer as a float in a variable logreg_test_loss. Similarly, store
the training data loss in a variable logreg_train_loss. How do they compare?

13. The training and test sets were, in reality, generated with

W = (1, 0,−2), b = 1.

Write TensorFlow expressions to compute the squared error in recovering W and b
separately. Store those errors in logreg_W_sqerr and logreg_b_sqerr. logreg_W_sqerr
should be the squared Frobenius norm of the error between your estimate and the
truth. Note: you need only evaluate the error of your final estimates, not at every
step of training.

5 Freebie: What do we do next? (2 points)

Under normal circumstances, the natural next step would be to go over to Google Cloud
Platform and use it to host a trained model to which we can submit instances (e.g., hand-
drawn digits) for classification. Unfortunately, there is a gap between TensorFlow and
Google Cloud Platform. While TensorFlow has moved on to version 2.X, much of GCP,
including the documentation and tutorials, is still built on TensorFlow 1.14 or 1.15. This
is further compounded by the fact that TensorFlow 1.15 is incompatible with the default
setup of Google Cloud Console. Getting around these hurdles is quite involved, and while
you would undoubtedly learn something by going through the process, it is not a good
use of your time. We will have to be content with seeing an overview of the process as it
would happen in TensorFlow version 1. I encourage you to keep an eye on Google Cloud’s
support for TensorFlow, which I imagine will extend to version 2 in the near future (this
is based entirely on my own speculation and expectations, not on any insider knowledge).

Read over the tutorial at

https://cloud.google.com/ai-platform/docs/getting-started-keras,

which walks through the process of building and training a TensorFlow Keras model on
Google’s AI Platform (previously called ML-Engine), and then deploying that model so
that we can submit instances (i.e., observations) for the model to classify.

You are welcome to try and complete the tutorial, but you are not required to do so.
This problem is a free 2 points. Just create a variable in your Jupyter notebook file called
tutorial with the Boolean value True.

https://cloud.google.com/ai-platform/docs/getting-started-keras

	Warmup: Constructing a 3-tensor (2 points)
	Ordinary Least Squares Linear Regression (6 points)
	Training a Basic Neural Net in tf.keras (4 points)
	Building and Training a Logistic Regression (6 points)
	Freebie: What do we do next? (2 points)

