
STAT606
Computing for Data Science

and Statistics
Lecture 18: APIs

Previously: Scraping Data from the Web
We used BeautifulSoup to process HTML that we read directly

We had to figure out where to find the data in the HTML
This was okay for simple things like Wikipedia…
...but what about large, complicated data sets?

E.g., Climate data from NOAA; Twitter/reddit/etc.; Google maps

Many websites support APIs, which make these tasks simpler

Instead of scraping for what we want, just ask!

Example: ask Google Maps for a computer repair shop near a given address

APIs: Application Programming Interfaces
Recall the implementation-interface distinction

APIs are an example of this!
The API provides a set of tools or functions for interacting with a web service

Example: Google Maps supplies tools for asking about addresses and directions
● Get information about a specific address
● Get directions from one address to another
● Get traffic information

These are supplied as interfaces that we can use…
...but their inner workings are hidden from us as end users

Interface: “what we can do”
Implementation: “how it is done”

Three common API approaches
Via a Python package

Service (e.g., Google maps, ESRI*) provides library for querying DB
Example: from arcgis.gis import GIS

Via a command-line tool
Example: twurl https://developer.twitter.com/

Via HTTP requests
We submit an HTTP request to a server
Supply additional parameters in URL to specify our query
Example: https://www.yelp.com/developers/documentation/v3/business_search

* ESRI is a GIS service, to which the university has a subscription: https://developers.arcgis.com/python/

Ultimately, all three of these
approaches end up submitting an
HTTP request to a server, which
typically returns information in the
form of a JSON or XML file.

https://developer.twitter.com/
https://www.yelp.com/developers/documentation/v3/business_search
https://developers.arcgis.com/python/

Reminder: Client-server model

Client Server
HTTP Request

HTTP Response (e.g., webpage)

Request can be as simple as “give me website X”...
...but we can also make more complicated requests.

Client asks the server
for information, server
returns information.

Web service APIs
Step 1: Create URL with query parameters

Example (non-working): www.example.com/search?key1=val1&key2=val2

Step 2: Make an HTTP request
Communicates to the server what kind of action we wish to perform
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Step 3: Server returns a response to your request
May be as simple as a code (e.g., 404 error)...
...but typically a JSON or XML file (e.g., in response to a DB query)

http://www.example.com/search?key1=value1&key2=value2
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

HTTP Requests
Allows a client to ask a server to perform an action on a resource

E.g., perform a search, modify a file, submit a form

Two main parts of an HTTP request:
URI: specifies a resource on the server
Method: specifies the action to be performed on the resource

HTTP request also includes (optional) additional information
E.g., specifying message encoding, length and language

More information:
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
RFC specifying HTTP requests: https://tools.ietf.org/html/rfc7231#section-4

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://tools.ietf.org/html/rfc7231#section-4

HTTP Request Methods
GET: retrieves information from the server

POST: sends information to the serve (e.g., a file for upload)

PUT: replace the URI with a client-supplied file

DELETE: delete the file indicated by the URI

CONNECT: establishes a tunnel (i.e., connection) with the server

More: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

See also Representational State Transfer:
https://en.wikipedia.org/wiki/Representational_state_transfer

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://en.wikipedia.org/wiki/Representational_state_transfer

Submitting HTTP Requests: Parameters
We submit an HTTP request to a URL, e.g., api.example.com

but often we want to further specify our request with parameters

Example: when we ask Google Maps for directions, we need to specify:
● Start location, destination
● Mode of transportation (e.g., walking, bike, bus, plane, train, automobile)

We do this with URL parameters, passed as key-value pairs

Example: api.example.com/server?course=STAT606&location=UWMadison
Passes two parameters: course, with value STAT606

and location, with value UWMadison.
Roughly comparable to Python keyword arguments.

http://api.example.com
http://api.example.com/server?course=STAT679&location=UWMadison

Refresher: JSON
JavaScript Object Notation

https://en.wikipedia.org/wiki/JSON

Commonly used by website APIs

Basic building blocks:
attribute–value pairs
array data

Example (right) from wikipedia:
Possible JSON representation of a person

https://en.wikipedia.org/wiki/JSON

Refresher: Python json module
JSON string encoding
information about physicist
John Bardeen

json.loads parses a string
and returns a JSON object.

json.dumps turns a JSON
object back into a string.

Refresher: Python json module

JSON object returned by
json.loads acts just like a
Python dictionary.

Example: Querying Yelp’s Business Search Service
I am sitting at my desk, woefully under-caffeinated

I could open a new browser tab and search for coffee nearby…
...but why leave the comfort of my Jupyter notebook?

Yelp provides several services under their “Fusion API”
https://www.yelp.com/developers/documentation/v3/get_started

We’ll use the business search endpoint
Supports queries that return businesses reviewed on Yelp
https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/get_started
https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service
URL to which to direct
our request, specified in
Yelp’s documentation.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

Yelp requires that we obtain an
API key to use for authentication.
You must register with Yelp to
obtain such a key.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

We are going to pass a dictionary
of parameter values for
requests to use in constructing
a GET request for us.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

The resulting URL looks like this (can be access with r.url):
https://api.yelp.com/v3/businesses/search?term=coffee&radius=1000&location=1300+University+Ave%2C+Madison+WI
Notice that if you try to follow that link, you’ll get an error asking for an authentication token.

https://www.yelp.com/developers/documentation/v3/business_search
https://api.yelp.com/v3/businesses/search?term=coffee&radius=1000&location=1300+University+Ave%2C+Madison+WI

Example: Querying Yelp’s Business Search Service

This line actually submits the GET request to the
URL, and includes the authorization header and
our search parameters. requests handles all
the annoying formatting and construction of the
HTTP request for us.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Example: Querying Yelp’s Business Search Service

requests packages up the JSON object returned
by Yelp, if we ask for it. Recall that JSON objects in
Python are really just dictionaries, so it makes sense
that r.json() is a dictionary.

Documentation: https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

The businesses attribute of the JSON
object returned by Yelp is a list of
dictionaries, one dictionary per result.
The name of each business is stored in
its alias key.

See Yelp’s documentation for more
information on the structure of the
returned JSON object.
https://www.yelp.com/developers/doc
umentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search
https://www.yelp.com/developers/documentation/v3/business_search

More interesting API services
National Oceanic and Atmospheric Administration (NOAA)

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

ESRI ArcGIS
https://developers.arcgis.com/python/

MediaWiki (includes API for accessing Wikipedia pages)
https://www.mediawiki.org/wiki/API:Main_page

Open Movie Database (OMDb)
https://omdbapi.com/

Major League Baseball
http://statsapi.mlb.com/docs

Of course, these are just examples. Just about
every large tech company provides an API, as
do most groups/agencies that collect data.

https://www.ncdc.noaa.gov/cdo-web/webservices/v2
https://developers.arcgis.com/python/
https://www.mediawiki.org/wiki/API:Main_page
https://omdbapi.com/
http://statsapi.mlb.com/docs

