
STAT606
Computing for Data Science

and Statistics
Lecture 19: MapReduce

Some slides adapted from C. Budak (UMichigan) and R. Burns (JHU)

Parallel processing and “big data”
The next few lectures will focus on “big data” and the MapReduce framework

This lecture: overview of the MapReduce framework

Next lectures:

Python package mrjob, which implements MapReduce

Apache Spark and the Hadoop file system

PySpark (if time permits)

The big data “revolution”
Sloan Digital Sky Survey https://www.sdss.org/

Generating so many images that most will never be looked at...

Genomics data: https://en.wikipedia.org/wiki/Genome_project

Web crawls
>20e9 webpages; ~400TB just to store pages (without images, etc)

Social media data
Twitter: ~500e6 tweets per day
YouTube: >300 hours of content uploaded per minute

(and that number is several years old, now)

https://www.sdss.org/
https://en.wikipedia.org/wiki/Genome_project

Three aspects to big data
Volume: data at the TB or PB scale

Requires new processing paradigms
e.g., Distributed computing, streaming model

Velocity: data is generated at unprecedented rate
e.g., web traffic data, twitter, climate/weather data

Variety: data comes in many different formats
Databases, but also unstructured text, audio, video…
Messy data requires different tools

This requires a very different approach to computing from
what we were accustomed to prior to about 2005.

How to count all the books in the library?

Peabody Library, Baltimore, MD USA

How to count all the books in the library?

Peabody Library, Baltimore, MD USA

I’ll count this side... ...you count this side...

...and then we add our
counts together.

Congratulations!
You now understand the MapReduce framework!

Basic idea:
Split up a task into independent subtasks
Specify how to combine results of subtasks to get your answer

Independent subtasks is a crucial point, here:
If we constantly have to share information, then it’s inefficient to split the task
Because we’ll spend more time communicating than actually counting

Assumptions of MapReduce
● Task can be split into pieces

● Pieces can be processed in parallel...

● ...with minimal communication between processes.

● Results of each piece can be combined to obtain answer.

Problems that have these properties are often described as being
embarrassingly parallel: https://en.wikipedia.org/wiki/Embarrassingly_parallel

https://en.wikipedia.org/wiki/Embarrassingly_parallel

MapReduce: the workhorse of “big data”
Hadoop, Google MapReduce, Spark, etc are all based on this framework

1) Specify a “map” operation to be applied to every element in a data set
2) Specify a “reduce” operation for combining the list into an output

Then we split the data among a bunch of machines, and combine their results

MapReduce isn’t really new to you
You already know the Map pattern:

Python: [f(x) for x in mylist]

...and the Reduce pattern:
Python: sum([f(x) for x in mylist]) (map and reduce)
SQL: aggregation functions are like “reduce” operations

The only thing that’s new is the computing model

Reduce
...

MapReduce, schematically, cartoonishly
Map: f(x) = 2x

Reduce: sum

2 3 5 8 1 1 ... 7

Map

4 6 10 16 2 2 ... 14

105

...but this hides the distributed computation.

Reduce

MapReduce, schematically (slightly more accurately)

Map: f(x) = 2x

Reduce: sum

2 3 5 8 2 1 ... 4

Map

4 6 10 16 4 2 ...

105

Machine 1 Machine 2 ... Machine M

3 7

8 6 14

Map Map

20 22 28...
Reduce

Reduce (again)

Fundamental unit of MapReduce: (key,value) pairs
Examples:

Linguistic data: <word, count>
Enrollment data: <student, major>
Climate data: <location, wind speed>

Values can be more complicated objects in some environments
e.g., lists, dictionaries, other data structures

Social media data: <person, list_of_friends>

Apache Hadoop doesn’t support this directly
but can be made to work via some hacking

mrjob and Spark are a little more flexible

Less boring example: word counts

Suppose we have a giant collection of books...
e.g., Google ngrams: https://books.google.com/ngrams/info

...and we want to count how many times each word appears in the collection.

Divide and Conquer!
1. Everyone takes a book, and makes a list of (word,count) pairs.
2. Combine the lists, adding the counts with the same word keys.

This still fits our framework, but it’s a little more complicated…

...and it’s just the kind of problem that MapReduce is designed to solve.

https://books.google.com/ngrams/info

Counting words in MapReduce: version 1

Document 1:
cat dog bird cat
rat dog cat

Document 2:
dog dog dog cat
rat bird

Document 3:
rat bird rat bird
rat bird goat

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1
dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

cat 4
dog 5
bird 5
rat 5
goat 1

Map

Output

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1

dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1

rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

Reduce

cat: 4
dog: 5
bird: 5
rat: 5
goat: 1

Blue boxes represent files. All
other different colors represent
individual machines.

Counting words in MapReduce: version 1

Document 1:
cat dog bird cat
rat dog cat

Document 2:
dog dog dog cat
rat bird

Document 3:
rat bird rat bird
rat bird goat

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1
dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

cat 4
dog 5
bird 5
rat 5
goat 1

Map

Output

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1

dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1

rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

Reduce

cat: 4
dog: 5
bird: 5
rat: 5
goat: 1

Problem: this communication
step is expensive!

Lots of
data

moving
around!

Solution: use a combiner

Counting words in MapReduce: version 2

Document 1:
cat dog bird cat
rat dog cat

Document 2:
dog dog dog cat
rat bird

Document 3:
rat bird rat bird
rat bird goat

cat: 3
dog: 2
bird: 1
rat: 1

dog: 3
cat: 1
rat: 1
bird: 1

rat: 3
bird: 3
goat: 1

Map

Output

Combine

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1

dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1

rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

cat: 3
dog: 2
bird: 1
rat: 1
dog: 3
cat: 1
rat: 1
bird: 1
rat: 3
bird: 3
goat: 1

Reduce

cat: 4
dog: 5
bird: 5
rat: 5
goat: 1

cat 4
dog 5
bird 5
rat 5
goat 1

The combine step is just a
reduce operation that runs on
the mappers before data is
sent to the reduce step.

Counting words in MapReduce: version 2

Document 1:
cat dog bird cat
rat dog cat

Document 2:
dog dog dog cat
rat bird

Document 3:
rat bird rat bird
rat bird goat

cat: 3
dog: 2
bird: 1
rat: 1

dog: 3
cat: 1
rat: 1
bird: 1

rat: 3
bird: 3
goat: 1

Map

Output

Combine

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1

dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1

rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

cat: 3
dog: 2
bird: 1
rat: 1
dog: 3
cat: 1
rat: 1
bird: 1
rat: 3
bird: 3
goat: 1

Reduce

cat: 4
dog: 5
bird: 5
rat: 5
goat: 1

cat 4
dog 5
bird 5
rat 5
goat 1

The total number of (key,value) pairs that we
send to the reducer has been reduced from 20
to 11. Communication over the network is slow,
so this is a big improvement!

Counting words in MapReduce: version 2

Document 1:
cat dog bird cat
rat dog cat

Document 2:
dog dog dog cat
rat bird

Document 3:
rat bird rat bird
rat bird goat

cat: 3
dog: 2
bird: 1
rat: 1

dog: 3
cat: 1
rat: 1
bird: 1

rat: 3
bird: 3
goat: 1

Map

Output

Combine

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1

dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1

rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

cat: 3
dog: 2
bird: 1
rat: 1
dog: 3
cat: 1
rat: 1
bird: 1
rat: 3
bird: 3
goat: 1

Reduce

cat: 4
dog: 5
bird: 5
rat: 5
goat: 1

cat 4
dog 5
bird 5
rat 5
goat 1

Problem: if there are lots of
keys, the reduce step is
going to be very slow.

Solution: parallelize the
reduce step! Assign each
machine its own set of keys.

Counting words in MapReduce version 3

Document 1:
cat dog bird cat
rat dog cat

Document 2:
dog dog dog cat
rat bird

Document 3:
rat bird rat bird
rat bird goat

cat: 3
dog: 2
bird: 1
rat: 1

dog: 3
cat: 1
rat: 1
bird: 1

rat: 3
bird: 3
goat: 1

cat: 3
cat: 1

dog: 2
dog: 3

bird: 1
bird: 1
bird: 3

rat: 1
rat: 1
rat: 3

goat: 1

cat: 4

dog: 5

bird: 5

rat: 5

goat: 1

cat 4
dog 5
bird 5
rat 5
goat 1

Map

Output

Combine

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1

dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1

rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

Shuffle Reduce

Counting words in MapReduce version 3

Document 1:
cat dog bird cat
rat dog cat

Document 2:
dog dog dog cat
rat bird

Document 3:
rat bird rat bird
rat bird goat

cat: 3
dog: 2
bird: 1
rat: 1

dog: 3
cat: 1
rat: 1
bird: 1

rat: 3
bird: 3
goat: 1

cat: 3
cat: 1

dog: 2
dog: 3

bird: 1
bird: 1
bird: 3

rat: 1
rat: 1
rat: 3

goat: 1

cat: 4

dog: 5

bird: 5

rat: 5

goat: 1

cat 4
dog 5
bird 5
rat 5
goat 1

Map

Output

Combine

cat: 1
dog: 1
bird: 1
cat: 1
rat: 1
dog: 1
cat : 1

dog: 1
dog: 1
dog: 1
cat: 1
rat: 1
bird: 1

rat: 1
bird: 1
rat: 1
bird: 1
rat: 1
bird: 1
goat: 1

Shuffle Reduce

Same
amount
of info

Note: this communication step
is no more expensive than
before. The reduce step is
parallelized, at the expense of
require more machines.

A prototypical MapReduce program
1. Read records (i.e., pieces of data) from file(s)

2. Map:
For each record, extract information you care about
Output this information in <key,value> pairs

3. Combine:
Sort and group the extracted <key,value> pairs based on their keys

4. Reduce:
For each group, summarize, filter, group, aggregate, etc. to obtain some new value, v2
Output the <key, v2> pair as a row in the results file

A prototypical MapReduce program

<k1,v1> <k1,v2> <k1,v3>map combine reduceInput

Output

Note: this output could be made the input to another MR program. We
call one of these input->map->combine->reduce->output chains a step.
Different platforms differ in how these steps are executed, a topic we’ll
discuss in our next two lectures.

Clarifying terminology
MapReduce: a large-scale computing framework initially developed at Google

Later open-sourced via the Apache Foundation as Hadoop MapReduce

Apache Hadoop: a set of open source tools from the Apache Foundation
Includes Hadoop MapReduce, Hadoop HDFS, Hadoop YARN

Hadoop MapReduce: implements the MapReduce framework

Hadoop YARN: resource manager that schedules Hadoop MapReduce jobs

Hadoop Distributed File System (HDFS): distributed file system
Designed for use with Hadoop MapReduce
Runs on same commodity hardware that MapReduce runs on

Note that there are a host of other loosely related programs, such as Apache Hive, Pig, Mahout and
HBase, most of which are designed to work atop HDFS.

MapReduce: vocabulary
Cluster: a collection of devices (i.e., computers)

Networked to enable fast communication, typically for purpose of distributed computing
Jobs scheduled by a program like Sun/Oracle grid engine, Slurm, TORQUE or YARN

https://en.wikipedia.org/wiki/Job_scheduler

Node: a single computing “unit” on a cluster
Roughly, computer==node, but can have multiple nodes per machine
Usually a piece of commodity (i.e., not specialized, inexpensive) hardware

Step: a single map->combine->reduce “chain”
A step need not contain all three of map, combine and reduce
Note: some documentation refers to each of map, combine and reduce as steps

Job: a sequence of one or more MapReduce steps

https://en.wikipedia.org/wiki/Job_scheduler

More terminology (useful for reading documentation)
NUMA: non-uniform memory access

Local memory is much faster to access than memory elsewhere on network
https://en.wikipedia.org/wiki/Non-uniform_memory_access

Commodity hardware: inexpensive, mass-produced computing hardware
As opposed to expensive specialized machines
E.g., servers in a data center

Hash function: a function that maps (arbitrary) objects to integers
Used in MapReduce to assign keys to nodes in the reduce step

https://en.wikipedia.org/wiki/Non-uniform_memory_access

So MapReduce makes things much easier
Instead of having to worry about splitting the data, organizing communication
between machines, etc., we only need to specify:

Map

Combine (optional)

Reduce

and the Hadoop backend will handle everything else.

MapReduce: under the hood
MR job consists of:

A job tracker or resource manager node
A number of worker nodes

Resource manager:
schedules and assigns tasks to workers
monitors workers, reschedules tasks if a worker node fails

https://en.wikipedia.org/wiki/Fault-tolerant_computer_system

Worker nodes:
Perform computations as directed by resource manager
Communicate results to downstream nodes (e.g., Mapper -> Reducer)

https://en.wikipedia.org/wiki/Fault-tolerant_computer_system

Hadoop v2 YARN schematic

Image credit: https://hortonworks.com/blog/apache-hadoop-yarn-concepts-and-applications/

Resource manager functions
only as a scheduler.

Note: manager is a
process (i.e., program)
that runs on a node and
controls processing of
data on that node.

So everything except
allocation of tasks is
performed at the worker
nodes. Even much of the
resource allocation is
done by worker nodes via
the ApplicationMaster.

https://hortonworks.com/blog/apache-hadoop-yarn-concepts-and-applications/

Hadoop v2 YARN schematic

Image credit: https://hortonworks.com/blog/apache-hadoop-yarn-concepts-and-applications/

Resource manager functions
only as a scheduler.

Note: manager is a
process (i.e., program)
that runs on a node and
controls processing of
data on that node.

So everything except
allocation of tasks is
performed at the worker
nodes. Even much of the
resource allocation is
done by worker nodes via
the ApplicationMaster.

You do not have to commit any of this to
memory, or even understand it all. The

important point here is that Hadoop/YARN
hides a whole bunch of complexity from
you so that you don’t have to worry about it.

https://hortonworks.com/blog/apache-hadoop-yarn-concepts-and-applications/

Hadoop Distributed File System (HDFS)
Storage system for Hadoop

File system is distributed across multiple nodes on the network
In contrast to, say, all of your files being on one computer

Fault tolerant
Multiple copies of files are stored on different nodes
If nodes fail, recovery is still possible

High-throughput
Many large files, accessible by multiple readers and writers, simultaneously

Details: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

HDFS Schematic

1

2

3

4

5

NameNode
Keeps track of where the file

“chunks” are stored.File1: 1, 2, 3
File2: 4, 5

5

5

4 4

3 3

2

2

11

NameNode also ensures
that changes to files are
propagated correctly and
helps recover from
DataNode failures.

DataNodes

HDFS Schematic

1

2

3

4

5

NameNode
Keeps track of where the file

“chunks” are stored.

5

5

4 4

3 3

2

2

11

When a DataNode fails, no
information is lost, because files are
replicated across many different
nodes. The NameNode will detect
the failure and arrange to boot up a
new DataNode with the lost parts.

DataNodes

File1: 1, 2, 3
File2: 4, 5

File1: 1, 2, 3
File2: 4, 5

HDFS Schematic

1

2

3

4

5

NameNode
Keeps track of where the file

“chunks” are stored.

5

5

4 4

3 3

2

2

11

NameNode also ensures
that changes to files are
propagated correctly and
helps recover from
DataNode failures.

DataNodes

Again, the important point is that HDFS does
all the hard work so you don’t have to!

