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TensorFlow
Open source symbolic math library

Popular in ML, especially for neural networks

Developed by GoogleBrain
Google’s AI/Deep learning division
You may recall their major computer vision triumph circa 2012:
http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html

TensorFlow is not new, and not very special:
Many other symbolic math programs predate it!
TensorFlow is unique in how quickly it gained so much market share
Open-sourced only in 2015…
...and almost immediately became the dominant framework for NNs

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html


TensorFlow: Installation
Easiest: pip install tensorflow

Also easy: install in anaconda

More information: https://www.tensorflow.org/install/

Note: if you want to do fancier things (e.g., run on GPU instead of CPU), installation 
and setup gets a lot harder. For this course, we’re not going to worry about it. In 
general, for running on a GPU, if you don’t have access to a cluster with existing TF 
installation, you should consider paying for Amazon/GoogleCloud instances.

https://www.tensorflow.org/install/


Aside: TensorFlow, Versions and Upgrading
In 2019, TensorFlow made a major change from version 1.X to 2.X

This new version of TensorFlow made some fundamental changes
Added built-in support for Keras https://en.wikipedia.org/wiki/Keras
Added tricks for computational speedups such as eager execution

https://en.wikipedia.org/wiki/Eager_evaluation
Streamlined code for running models (more on this soon)

These changes are all good, but the changes hide some of the most interesting stuff that TensorFlow can 
do! I recommend that you at least look at the old TensorFlow, which you can install with

pip install tensorflow==1.15
Note: TF v1 documentation is archived at: https://www.tensorflow.org/versions/r1.15/api_docs/python/tf

https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Eager_evaluation
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf


Fundamental concepts of TensorFlow
Tensor

Recall that a tensor is really just an array of numbers
“Rank” of a tensor is the number of dimensions it has
So, a matrix is a rank-2 tensor, vector is rank 1, scalar rank 0
A cube of numbers is a 3-tensor, and so on

Computational graph
Directed graph that captures the “flow” of data through the program
Nodes are operations (i.e., computations)
Edges represent data sent between operations



Tensors

0-tensor (scalar) 1-tensor (vector)

2-tensor (matrix)
3-tensor

Note: most things you read will call this dimension the rank of the tensor, but you should know that 
some mathematicians use rank to mean the tensor generalization of linear algebraic rank. These 
people will usually use the term order instead.



Tensors: tf.Tensor objects
Tensors are represented in TensorFlow as tf.Tensor objects

Every tf.Tensor object has:
data type (e.g., int, float, string, …)
shape (e.g., 2-by-3-by-5, 5-by-5, 1-by-1, etc)

Shape encodes both rank and ‘length’ of each dimension

tf.Tensor objects are immutable
with slight exceptions, which we’ll talk about soon



Special tf.Tensor() objects
tf.constant: will not change its value during your program.

Like an immutable tensor

tf.placeholder: gets its value from elsewhere in your program
E.g., from training data or from results of other Tensor computations
Note: this was removed in TensorFlow v2; now handled by tf.function  (in a few slides!)

tf.Variable: represents a tensor whose value may change during execution
Unlike above tf.Tensor  types, tf.Variables  are mutable
Useful for ML, because we want to update parameters during training

tf.SparseTensor: most entries of a SparseTensor will be zero
TF stores this differently; saves on memory
Useful for applications where data is sparse, such as networks



Special tf.Tensor() objects
tf.constant: will not change its value during your program.

Like an immutable tensor

tf.placeholder: gets its value from elsewhere in your program
E.g., from training data or from results of other Tensor computations
Note: this was removed in TensorFlow v2; now handled by tf.function  (in a few slides!)

tf.Variable: represents a tensor whose value may change during execution
Unlike above tf.Tensor  types, tf.Variables  are mutable
Useful for ML, because we want to update parameters during training

tf.SparseTensor: most entries of a SparseTensor will be zero
TF stores this differently; saves on memory
Useful for applications where data is sparse, such as networks

For now, these three are the important ones.



Computational Graph
From the “Getting Started” guide: “A computational graph is a series of 
TensorFlow operations arranged into a graph of nodes.”

Every node takes zero or more tensors as input and outputs one or more tensors.

A TensorFlow program consists, essentially, of two sections:
1) Building the computational graph
2) Running the computational graph
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z

An example of a computational graph that 
represents the computation z = a*x + b .



TF as Dataflow
Dataflow is a term for frameworks in which computation is concerned with the 
pipeline by which the data is processed

Data transformed and combined via a series of operations
This view makes it clear when parallelization is possible…
...because dependence between operations can be read off the graph
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Stream_processing

This should sound familiar from PySpark!

https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Stream_processing


Note: strictly speaking, we haven’t actually built this graph, yet. For that, we need to create a 
tf.Graph  object, but working with this object directly is deprecated in TF version 2.

Building the Computational Graph
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z
Equivalent computational graph:

Here’s a snippet of a TF program in which 
we define a computational graph.



Building the Computational Graph
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a

x

z
Equivalent computational graph:

a, b and x here are constants, meaning they’re fixed for the duration of our program. 
Really, we want to, say, let x take values from a data set and let a and b be parameters 
that we can tune to fit that data. We’ll come back to this point.



Data types in TensorFlow
Four basic data types:

Strings
Integers
Floats
Complex numbers

Some flexibility in 
specifying precision

Every tf.Tensor()  object has a data type, accessed 
through the dtype attribute.

Note: if no dtype is specified, TF will do its best to figure it out from 
context, but this doesn’t always go as expected, such as when you want 
a vector of complex numbers. When in doubt, specify!



Creating Tensors
These are all rank-0 tensors.
Yes, tf.string  is a single item, 
and so is tf.complex .

To create a 1-tensor (i.e., a 
vector), just pass a list of scalars.

Note: all elements of a tf.Tensor  must be of the same data type. 
The one sneaky way around this is to serialize objects to strings and 
store them in a tensor with dtype=tf.string .



Creating Tensors

We can create a 1-by-1 matrix, 
which is different from a 1-vector, 
which is different from a scalar.



Creating Tensors

To create a matrix, we can 
pass a list of its rows.

Matrix populated in row-major order.



Creating Tensors Create a 5-by-5 matrix of all ones

Create a 4-tensor, which we could use 
to represent one second of 720p color 
video (27 frames per second, 
1280x720 resolution, 3 colors)



Tensor rank and shape
Rank: number of dimensions

Shape: sizes of the dimensions Rank 2, shape 3-by-4

Rank 3, shape 3-by-4-by-3

Note: This looks like a tuple, but it is actually its 
own special type, tf.TensorShape



Tensor Slices

It is often natural to refer to 
certain subsets of the entries 
of a tensor. A “subtensor” of 
a tensor is often called a 
slice, and the operation of 
picking out a slice is called 
slicing the tensor.



Tensor Indexing

One index is enough to 
specify a number in a 
vector (i.e., a 1-tensor)

Need two indices to pick 
out an entry of a matrix 
(i.e., a 2-tensor)



Tensor Slices

Create a vector from the 
second (zero-indexing!) 
row of the matrix.

Create a vector from the 
third column of the matrix.

Note: result is a “column vector” regardless of whether we slice a row or a column!

Use ':' to pick out all entries 
along a row or column. 



Tensor Slices

Sidenote: the data inside a Tensor 
object is really just a numpy array!

Use ':' to pick out all entries 
along a row or column. 



Tensor Slices
More complicated example: video processing

Four dimensions:
Pixels (height-by-width)
Three colors (RGB)
Time index (multiple frames)

...
Frame 0 Frame 1 Frame 2 Frame T



Tensor Slices
More complicated example: video processing

Four dimensions:
Pixels (height-by-width)
Three colors (RGB)
Time index (multiple frames)

...
Frame 0 Frame 1 Frame 2 Frame T

Test your understanding:
What is the rank of the “video” 
tensor below?



Tensor Slices
More complicated example: video processing

Four dimensions:
Pixels (height-by-width)
Three colors (RGB)
Time index (multiple frames)

...
Frame 0 Frame 1 Frame 2 Frame T

Test your understanding:
What is the rank of the “video” 
tensor below?

Answer: 4, since there are 
four dimensions; height, width, 
color and time. 



Tensor Slices

Pick out the 3-color 
1280-by-720 image that is 
the first frame of the video

Pick out only the blue 
channel of the video (see 
RGB on wikipedia)

Use ':' to pick out all entries 
along a row or column. 

Pick out only the red 
channel of the video



Reshaping tensors
Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?



Reshaping tensors
Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?

A: 3

Q: How many elements are in this x-by-y-by-z 3-tensor?



Reshaping tensors
Test your understanding:

Q: I have an x-by-y-by-z tensor. What is its rank?

A: 3

Q: How many elements are in this x-by-y-by-z 3-tensor?

A: x*y*z



Reshaping tensors
Reshape a 3-tensor into a 
4-tensor. Note that the 
shapes are consistent 
with one another.

Reshaping to an inconsistent 
shape results in an error.



Incorporating Variable Tensors
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z
Equivalent computational graph:

In practice, we want to be able to 
change a and b to adjust our model. 
Right now, they’re constants, and 
cannot be changed.



Incorporating Variable Tensors

*

+

b

a

x

z
Equivalent computational graph:

The solution is to make a and b Variable tensors.

In practice, we want to be able to 
change a and b to adjust our model. 
Right now, they’re constants, and 
cannot be changed.



Incorporating Variable Tensors
Declare a and b to be 
Variable tensors.

Change values of Variable tensors 
using the assign method.

Equivalent computational graph
b

a

x

tf.Variable

tf.constant
*

+



Incorporating Variable Tensors
Declare a and b to be 
Variable tensors.

Equivalent computational graph
b

a

x

tf.Variable

tf.constant
*

+

Change values of Variable tensors 
using the assign method.



Incorporating Variable Tensors
Declare a and b to be 
Variable tensors.

Note: in practice, we rarely need to use the 
assign method directly. It is mostly used 
under the hood by TensorFlow to change our 
parameters as we are fitting a model.

Equivalent computational graph
b

a

x

tf.Variable

tf.constant
*

+

Change values of Variable tensors 
using the assign method.



Building the computational graph: tf.function

Equivalent computational graph
b

a

x

tf.Variable

tf.constant
*

+

The predictor x is still a constant. What if I 
want to plug in new data to this linear model?



Building the computational graph: tf.function

Equivalent computational graph
b

a

x

tf.Variable

argument
*

+

We start with a Python function...

...which we then convert into a 
tf.Function  object.

And now we can evaluate this 
function on different values.



Building the computational graph: tf.function

Equivalent computational graph
b

a

x

tf.Variable

argument
*

+

We start with a Python function...

...which we then convert into a 
tf.Function  object.

And now we can evaluate this 
function on different values.

Note: we might like to have Variable tensors a and b 
defined inside linear_tf , but this can cause problems 
with TensorFlow’s eager execution.



Running TensorFlow

Operations are defined here, 
but we still haven’t actually 
computed anything, yet...

Evaluate our computational 
graph with particular values 
given to x and y.



Running TensorFlow

Note that we have the constants a and b 
defined locally in the function, this time. 
This is only an issue for Variable tensors.



Running TensorFlow

Once our tf.Function  is defined, we 
can evaluate it on a collection of 
arguments. For example, we might want to 
pass in a collection of (x,y) pairs.

Operations are defined here, 
but we still haven’t actually 
computed anything, yet...



Building a Simple Model: Linear Regression

W

x

linear_model
tf.Variable

data
*

+

b



Building a Simple Model: Linear Regression

Model: y = Wx + b

W

x

linear_model
tf.Variable

W and b are both rank-1 tensors, with 
values 0.5 and -1, respectively.

*

+

b

We’re using c and d in the function 
arguments just to avoid confusion 
with the global variables W and b.

data



Building a Simple Model: Linear Regression

W

x

linear_model
tf.Variable

*

+

b

A tf.Variable  can be a Tensor of any type and shape. 
The type and shape of the variable are specified by the 
initialization. After construction, the value can be changed 
using the assign method that we saw earlier.

data



Building a Simple Model: Linear Regression

W

x

linear_model
tf.Variable

*

+

b

Evaluate the model with 
different values of x.

data



Building a Simple Model: Linear Regression

*

+

b

W

x

linear_model

So far, we have a circuit that computes a linear regression estimate

To train our model, we need:
1) A loss function
2) An argument y for the training data dependent values



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

In TF v1, we could just keep building out this 
graph to define a loss function.

Warning: this code was run in TensorFlow 
version 1. It will not run in TF v2.



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

In TF v1, we could just keep building out this 
graph to define a loss function.In TF v2, this gets wrapped in the tf.Module  class, 

which is borrowed from Keras. The same basic 
structure is being built, but hidden inside an object.

Warning: this code was run in TensorFlow 
version 1. It will not run in TF v2.



Building a Simple Model: Linear Regression

*
+

b

W
linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

x



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

The Python super() function 
accesses the parent class (i.e., the 
class we are inheriting from).



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

The model parameters are 
tf.Variable  tensors stored as 
instance attributes. We could, if we 
wanted, initialize them randomly.



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Defining a __call__  method makes 
it so we can treat an instance of this 
class like a function. Objects like this 
are called callable.



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Note: tf.reduce_sum  does 
just what you think it does!



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Note: tf.reduce_sum  does 
just what you think it does!

Note: As you can see, the computational graph can get very complicated very 
quickly. TensorFlow has a set of built-in tools, collectively called TensorBoard, 

for handling some of this complexity: 
https://www.tensorflow.org/tensorboard/graphs

https://www.tensorflow.org/tensorboard/graphs


Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

Give (x,y) values to the model, 
evaluate its ability to replicate 
the observed y values.



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

The numpy() method retrieves 
the actual numpy object from 
inside the tf.Tensor .



Building a Simple Model: Linear Regression

*
+

b

W

x

linear_model

y

- tf.square
sq_err

tf.reduce_sum

loss

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
Change values of tf.Variables using assign method



Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
Change values of tf.Variables using assign method

Update the slope and intercept in 
the model to the correct values.



Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Update the slope and intercept in 
the model to the correct values.

Note: because W and b are rank-1 tensors, we have to pass 
their new values as length-1 lists, not scalars. 
linear_model.W.assign(-1)  would result in an error.

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
Change values of tf.Variables using assign method



Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
Change values of tf.Variables using assign method

Option 2: use closed-form solution for loss-minimizing W and b.
...but then what happens when we have a model with no closed-form solution?



Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
Change values of tf.Variables using assign method

Option 2: use closed-form solution for loss-minimizing W and b.
...but then what happens when we have a model with no closed-form solution?

Option 3: take advantage of automatic differentiation
Allows easy implementation of gradient descent and related techniques



Building a Simple Model: Linear Regression

How can we improve (i.e., decrease) this loss?

Option 1: set w and b manually.
We know W=-1, b=1 is the correct answer
Change values of tf.Variables using assign method

Option 2: use closed-form solution for loss-minimizing W and b.
...but then what happens when we have a model with no closed-form solution?

Option 3: take advantage of automatic differentiation
Allows easy implementation of gradient descent and related techniques

This is why we use TensorFlow!



Gradient Descent: Crash Course
Iterative optimization method for minimizing a function

At location (w, b), take gradient of loss function with respect to parameters
Take a gradient step in the direction of the gradient
Size of step changes over time according to learning rate



Gradient Descent: Crash Course
Iterative optimization method for minimizing a function

At location (w, b), take gradient of loss function with respect to parameters
Take a gradient step in the direction of the gradient
Size of step changes over time according to learning rate

In short, gradient descent is a method for minimizing a function, 
provided we can compute its gradient (i.e., derivative). It’s enough 
for this course to treat this as a black box.

For more information:
S. P. Boyd and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.
J. Nocedal and S. J. Wright (2006). Numerical Optimization. Springer.



Training a Simple Model: Linear Regression
Define a train function, which takes 
a single gradient step with respect to a 
model’s performance with respect to a 
loss function on data x and y, with a 
given learning rate .



Training a Simple Model: Linear Regression
The tf.GradientTape  object keeps 
track of our gradients. This is especially 
useful when we want to check whether 
or not our estimates have converged. 
Here, we just need it to do automatic 
differentiation for us.



Training a Simple Model: Linear Regression

Use the tf.GradientTape  to compute 
the gradient of the loss with respect to 
the current model parameters.

Caution: notice that loss is a Python function, 
and current_loss  is a tf.Tensor  that is 
output by that function. Breaking this pattern is a 
common source of bugs.



Training a Simple Model: Linear Regression

Update the parameters. assign_sub  is the 
tf.Variable  analogue of writing x = x-dx .



Training a Simple Model: Linear Regression

Initialize the model parameters randomly. 
tf.random.normal  is similar to numpy/scipy 
RNGs. Note that we need our random variables to 
be shape=[1]  to match the shapes of W and b.



Training a Simple Model: Linear Regression

Each iteration of this loop 
computes one gradient step and 
updates the variables accordingly.



Training a Simple Model: Linear Regression

Note: TensorBoard includes a set of 
tools for visualization, including for 
tracking loss, but the approach here  is 
quicker and easier for our purposes.



TensorFlow Estimators API: tf.estimators
tf.estimators is a TF module that simplifies model training and evaluation

Module allows one to run models on CPU or GPU, local or on GCP, etc

Simplifies much of the work of building the graph and estimating parameters

More information:
https://www.tensorflow.org/guide/estimator

Note: Keras in TensorFlow v2 serves similar purpose for specifying neural nets
https://www.tensorflow.org/guide/keras

https://www.tensorflow.org/guide/estimator
https://www.tensorflow.org/guide/keras

