
STAT606
Computing for Data Science 

and Statistics
Lecture 15-16: Structured Data from the Web



Lots of interesting data resides on websites
HTML : HyperText Markup Language

Specifies basically everything you see on the Internet

XML : EXtensible Markup Language
Designed to be an easier way for storing data, similar framework to HTML

JSON : JavaScript Object Notation
Designed to be a saner version of XML

SQL : Structured Query Language
IBM-designed language for interacting with databases 

APIs : Application Programming Interface
Allow interaction with website functionality (e.g., Google maps)



Three Aspects of Data on the Web
Location: URL (Uniform Resource Locator), IP address

Specifies location of a computer on a network

Protocol: HTTP, HTTPS, FTP, SMTP
Specifies how computers on a network should communicate with one another

Content: HTML, JSON, XML (for example)
Contains actual information, e.g., tells browser what to display and how

We’ll mostly be concerned with website content. Wikipedia has good entries on network 
protocols. The classic textbook is Computer Networks by A. S. Tanenbaum.



Client-server model

Client Server
HTTP Request

HTTP Response (e.g., webpage)

HTTP is
Connectionless: after a request is made, the client disconnects and waits
Stateless: server and client “forget about each other” after a request
Media agnostic: any kind of data can be sent over HTTP

Client asks the server 
for information, server 
returns information.



Anatomy of a URL

https://www.wisc.edu/wisconsin-idea/

Protocol Hostname Filename

Specifies how the client 
(i.e., your browser) will 
communicate with server.

Gives a human-readable 
name to location of the 
server on the network.

Names a specific file on 
the server that the client 
wishes to access.

Note: often the extension of the file will indicate what type it is (e.g., html, txt, pdf, etc), 
but not always. Often, one must determine the type of the file based on its contents. 
This can almost always be done automatically.

https://www.wisc.edu/wisconsin-idea/


Accessing websites in Python: urllib
Python library for opening URLs and interacting with websites

https://docs.python.org/3/howto/urllib2.html

Software development community is moving towards requests
https://requests.readthedocs.io/en/master/
a bit over-powered for what we want to do, but feel free to use it in HWs

Note: Python 3 split what was previously urllib2 in Python 2 into several 
related submodules of urllib. You should be aware of this in case you end up 
having to migrate code from Python 2 to Python 3 or vice-versa.

https://docs.python.org/3/howto/urllib2.html
https://requests.readthedocs.io/en/master/


urllib.request.urlopen() : opens the given url, returns a file-like object

Three basic methods
getcode() : return the HTTP status code of the response
geturl() : return URL of the resource retrieved (e.g., see if redirected)
info() : return meta-information from the page, such as headers

Using urllib



getcode()

HTTP includes success/error status codes
Ex: 200 OK, 301 Moved Permanently, 404 Not Found, 503 Service Unavailable
See https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Note: I cropped a bunch of 
error information, which will 
normally be useful!

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_errors


geturl()

Different URLs, owing to 
automatic redirect.

https://en.wikipedia.org/wiki/URL_redirection

https://en.wikipedia.org/wiki/URL_redirection


info()

Returns a dictionary-like object with information about the page you retrieved.

This can be useful when you aren’t sure of content type or 
character set used by a website, though nowadays most of 
those things are handled automatically by parsers.



HTML Crash Course
HTML is a markup language.

<tag_name attr1=”value” attr2=”differentValue”>String contents</tag_name>

Basic unit: tag
(usually) a start and end tag, like <p>contents</p>

Contents of a tag may contain more tags:
<head><title>The Title</title></head>
<p>This tag links to <a href=”google.com”>Google</a></p>



HTML Crash Course
<tag_name attr1=”value” attr2=”differentValue”>String contents</tag_name>

Tags have attributes, which are specified after the tag name, in (key,value) pairs of 
the form key=”val”

Example: hyperlink tags
<a href=”pages.stat.wisc.edu/~kdlevin”>My webpage</a>
Corresponds to a link to My personal webpage. 
The href attribute specifies where the hyperlink should point.

http://pages.stat.wisc.edu/~kdlevin


HTML Crash Course: Recap
<tag_name attr1=”value” attr2=”differentValue”>String contents</tag_name>

tag Attribute names Attribute values Contents

Of special interest in your homework: HTML tables
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

    https://www.w3schools.com/html/html_tables.asp
    https://www.w3.org/TR/html401/struct/tables.html

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://www.w3schools.com/html/html_tables.asp
https://www.w3.org/TR/html401/struct/tables.html


Okay, back to urllib
urllib reads a webpage (full of HTML) and returns a “response” object

The response object can be treated like a file:



Okay, back to urllib
urllib reads a webpage (full of HTML) and returns a “response” object

The response object can be treated like a file:

What a mess! How am I supposed to do anything with this?!



Parsing HTML/XML in Python: beautifulsoup
Python library for working with HTML/XML data

Builds nice tree representation of markup data…
...and provides tools for working with that tree

Documentation: https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Good tutorial: 
http://www.pythonforbeginners.com/python-on-the-web/beautifulsoup-4-python/

Installation: pip install beautifulsoup or follow instructions for conda or...

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.pythonforbeginners.com/python-on-the-web/beautifulsoup-4-python/


Parsing HTML/XML in Python: beautifulsoup
BeautifulSoup turns HTML mess into a (sometimes complex) tree

Four basic kinds of objects:
Tag: corresponds to HTML tags

<[name] [attr]=”xyz”>[string]</[name]> )
Two important attributes: tag.name, tag.string
Also has dictionary-like structure for accessing attributes

NavigableString: special kind of string for use in bs4

BeautifulSoup: represents the HTML document itself

Comment: special kind of NavigableString for HTML comments



Example (from the BeautifulSoup docs)

Follow along at home: https://www.crummy.com/software/BeautifulSoup/bs4/doc/#quick-start

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#quick-start


BeautifulSoup supports “pretty 
printing” of HTML documents.



BeautifulSoup allows navigation of the HTML tags

Finds all the tags that have the 
name ‘a’, which is the HTML 
tag for a link.

The ‘href’ attribute in a tag 
with name ‘a’ contains the 
actual url for use in the link.



A note on attributes
HTML attributes and Python attributes are different things!

But in BeautifulSoup they collide in a weird way

BeautifulSoup tags have their HTML attributes accessible like a dictionary:

BeautifulSoup tags have their children accessible as Python attributes:



HTML tree structure

<html>
<head>

<body>

<title> The Dormouse’s story

<p> The Dormouse’s story<b>

Once upon a time there were three little sisters; and their names were

<a><p>

<p>

<a>

<a>

Elsie

Lacie

and

Tillie

; and they all lived at the bottom of a well.

...

Tags

Strings



HTML tree structure

<html>
<head>

<body>

<title> The Dormouse’s story

<p> The Dormouse’s story<b>

Once upon a time there were three little sisters; and their names were

<a><p>

<p>

<a>

<a>

Elsie

Lacie

and

Tillie

; and they all lived at the bottom of a well.

...

Tags

Strings

Question: what are the attributes of 
this node in the tree? That is, what 
are the attributes of this tag?



HTML tree structure

<html>
<head>

<body>

<title> The Dormouse’s story

<p> The Dormouse’s story<b>

Once upon a time there were three little sisters; and their names were

<a><p>

<p>

<a>

<a>

Elsie

Lacie

and

Tillie

; and they all lived at the bottom of a well.

...

Tags

Strings

Question: what are the attributes of 
this node in the tree? That is, what 
are the attributes of this tag?



Navigating the HTML tree

Can go down the tree by 
asking for tags of tags of...

If a tag’s child is a 
string, access it 
with tag.string

Tag name gets 
the first tag of that 
type in the tree.



Navigating the HTML tree

Access a list of children of a 
tag with .contents

Or get the same information in a 
Python iterator with .children

Recurse down the whole tree 
with .descendants



Navigating the HTML tree

Access a tag’s parent tag 
with .parent

Get the whole chain of parents 
back to the root with .parents

The tree structure means 
that every tag has a parent 
(except the “root” tag, which 
has parent “None”).

Move “left and right” in the tree 
with .previous_sibling  and 
.next_sibling



Searching the tree: find_all and related methods
Finds all tags with name ‘p’

Finds all tags with names 
matching either ‘a’ or ‘b’

Finds all tags whose names 
match the given regex.



More about find_all
Pass in a function that returns 
True/False given a tag, and 
find_all  will return only the 
tags that evaluate True

Note: by default, find_all recurses down the whole 
tree, but you can have it only search the immediate children 
of the tag by passing the flag recursive=False .

See https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all for more.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all


Flattening contents: get_text()

This <p> tag contains a full 
sentence, but some parts 
of that sentence are links, 
so p.string  fails. What 
do I do if I want to get the 
full string without the links?

Note: common cause of 
bugs/errors in BeautifulSoup  
is trying to access tag.string  
when it doesn’t exist!



XML - eXtensible Markup Language, .xml
https://en.wikipedia.org/wiki/XML

Core idea: separate data from its presentation
Note that HTML doesn’t do this-- the HTML for the webpage is the data

But XML is tag-based, very similar to HTML

BeautifulSoup will parse XML
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

We won’t talk much about XML, because it’s falling out of favor, replaced by...

https://en.wikipedia.org/wiki/XML
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser


JSON - JavaScript Object Notation
https://en.wikipedia.org/wiki/JSON

Commonly used by website APIs

Basic building blocks:
attribute–value pairs
array data

Example (right) from wikipedia:
Possible JSON representation of a person

https://en.wikipedia.org/wiki/JSON


Python json module
JSON string encoding 
information about physicist 
John Bardeen

json.loads  parses a string 
and returns a JSON object.

json.dumps  turns a JSON 
object back into a string.



Python json module

JSON object returned by 
json.loads  acts just like a 
Python dictionary.



JSON objects can have very complicated structure



JSON objects can have very complicated structure

This can get out of hand quickly, if 
you’re trying to work with large 
collections of data. For an 
application like that, you are better 
off using a database, about which 
we’ll learn in our next lecture. 


