
STAT606
Computing for Data Science

and Statistics
Lecture 20: Hadoop and the mrjob package

Some slides adapted from C. Budak (UMichigan)

Recap
Previous lecture: Hadoop/MapReduce framework in general

This lecture: actually doing things

In particular: mrjob Python package
https://mrjob.readthedocs.io/en/latest/
Installation: pip install mrjob (or conda, or install from source...)

https://mrjob.readthedocs.io/en/latest/

Recap: Basic concepts
Mapper: takes a (key,value) pair as input

Outputs zero or more (key,value) pairs
Outputs grouped by key

Combiner: takes a key and a subset of values for that key as input
Outputs zero or more (key,value) pairs
Runs after the mapper, only on a slice of the data
Must be idempotent

Reducer: takes a key and all values for that key as input
Outputs zero or more (key,value) pairs

Recap: a prototypical MapReduce program

<k2,v2> <k2,v2’> <k3,v3>map combine reduce

Input

<k1,v1>

Output

Note: this output could be made the input to another MR program.

Recap: Basic concepts
Step: One sequence of map, combine, reduce

All three are optional, but must have at least one!

Node: a computing unit (e.g., a server in a rack)

Job tracker: a single node in charge of coordinating a Hadoop job
Assigns tasks to worker nodes

Worker node: a node that performs actual computations in Hadoop
e.g., computes the Map and Reduce functions

Python mrjob package
Developed at Yelp for simplifying/prototyping MapReduce jobs
https://engineeringblog.yelp.com/2010/10/mrjob-distributed-computing-for-everybody.html

mrjob acts like a wrapper around Hadoop Streaming
Hadoop Streaming makes Hadoop computing model available to languages other than Java

But mrjob can also be run without a Hadoop instance at all!
e.g., locally on your machine

https://engineeringblog.yelp.com/2010/10/mrjob-distributed-computing-for-everybody.html

Why use mrjob?
Fast prototyping

Can run locally without a Hadoop cluster...
...but can also run atop Hadoop or Spark

Much simpler interface than Java Hadoop

Sensible error messages
i.e., usually there’s a Python traceback error if something goes wrong
Because everything runs “in Python”

MRJob.{mapper, combiner, reducer}

Details: https://mrjob.readthedocs.io/en/latest/guides/writing-mrjobs.html

MRJob.mapper(key, value)
key – parsed from input; value – parsed from input.
Yields zero or more tuples of (out_key, out_value).

MRJob.combiner(key, values)
key – yielded by mapper; value – generator yielding all values from node corresponding to key.
Yields one or more tuples of (out_key, out_value)

MRJob.reducer(key, values)
key – key yielded by mapper; value – generator yielding all values from corresponding to key.
Yields one or more tuples of (out_key, out_value)

https://mrjob.readthedocs.io/en/latest/guides/writing-mrjobs.html

Basic mrjob script
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$
keith@Steinhaus:~$ python mr_wc.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_wc.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_wc.keith.20171105.022629.949354/output[...]
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_wc.keith.20171105.022629.949354...
keith@Steinhaus:~$

mr_wc.py

Basic mrjob script
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$
keith@Steinhaus:~$ python mr_wc.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_wc.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_wc.keith.20171105.022629.949354/output[...]
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_wc.keith.20171105.022629.949354...
keith@Steinhaus:~$

mr_wc.py

Contents of our example file.

Basic mrjob script
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$
keith@Steinhaus:~$ python mr_wc.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_wc.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_wc.keith.20171105.022629.949354/output[...]
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_wc.keith.20171105.022629.949354...
keith@Steinhaus:~$

mr_wc.py

Calling the mrjob program,
with my_file.txt as input.

Basic mrjob script
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$
keith@Steinhaus:~$ python mr_wc.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_wc.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_wc.keith.20171105.022629.949354/output[...]
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_wc.keith.20171105.022629.949354...
keith@Steinhaus:~$

mr_wc.py Logging information related to
setup of Hadoop streaming.

Basic mrjob script
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$
keith@Steinhaus:~$ python mr_wc.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_wc.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_wc.keith.20171105.022629.949354/output[...]
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_wc.keith.20171105.022629.949354...
keith@Steinhaus:~$

mr_wc.py

Program output: number of characters,
words and lines in the file.

Basic mrjob script
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$
keith@Steinhaus:~$ python mr_wc.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_wc.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_wc.keith.20171105.022629.949354/output[...]
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_wc.keith.20171105.022629.949354...
keith@Steinhaus:~$

mr_wc.py

mr_wc.py

Basic mrjob script

Each mrjob program you write requires defining
a class, which extends the MRJob class.

These mapper and reducer methods are
precisely the Map and Reduce operations in our
job. Recall the difference between the yield
keyword and the return keyword.

This is a MapReduce job that counts the
number of characters, words, and lines in a file.

This if-statement will run precisely when we call
this script from the command line.

mr_wc.py

Basic mrjob script

MRJob class already provides a method run(),
which MRWordFrequencyCount inherits, but we
need to define at least one of mapper, reducer
or combiner .

This is a MapReduce job that counts the
number of characters, words, and lines in a file.

mr_wc.py

Basic mrjob script

In mrjob, an MRJob object implements one or
more steps of a MapReduce program. Recall that
a step is a single Map->Reduce->Combine chain.
All three are optional, but must have at least one
in each step.

Methods defining the steps go here.

If we have more than one step, then we have to
do a bit more work… (we’ll come back to this)

This is a MapReduce job that counts the
number of characters, words, and lines in a file.

mr_wc.py

Basic mrjob script

Warning: do not forget these two lines,
or else your script will not run!

This is a MapReduce job that counts the
number of characters, words, and lines in a file.

mr_wc.py

Basic mrjob script: recap
keith@Steinhaus:~$ cat my_file.txt
Here is a first line.
And here is a second one.
Another line.
The quick brown fox jumps over the lazy dog.
keith@Steinhaus:~$ python mr_wc.py my_file.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory
/tmp/mr_wc.keith.20171105.022629.949354
Streaming final output from
/tmp/mr_wc.keith.20171105.022629.949354/output...
"chars" 103
"lines" 4
"words" 22
Removing temp directory
/tmp/mr_wc.keith.20171105.022629.949354...
keith@Steinhaus:~$

More complicated jobs: multiple steps

keith@Steinhau:~$ python mr_most_common_word.py moby_dick.txt
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 2...
Creating temp directory
/tmp/mr_most_common_word.keith.20171105.032400.702113
Running step 2 of 2...
Streaming final output from
/tmp/mr_most_common_word.keith.20171105.032400.702113/output...
14711 "the"
Removing temp directory
/tmp/mr_most_common_word.keith.20171105.032400.702113...
keith@Steinhaus:~$

To have more than one step, we need to override
the existing definition of the method steps() in
MRJob. The new steps() method must return a
list of MRStep objects.

An MRStep object specifies a mapper, combiner
and reducer. All three are optional, but must
specify at least one.

First step: count words

This pattern should look
familiar. It implements
word counting.

One key difference, because
this reducer output is going to
be the input to another step.

Second step: find the largest count.

Note: word_count_pairs is like a list
of pairs. Refer to how Python max works
on a list of tuples.

Note: combiner and reducer are the
same operation in this example,
provided we ignore the fact that
reducer has a special output format

More complicated reducers: Python’s reduce
So far our reducers have used Python built-in functions sum and max

More complicated reducers: Python’s reduce
So far our reducers have used Python built-in functions sum and max

What if I want to multiply the values instead of sum?
Python does not have product() function analogous to sum()...

What if my values aren’t numbers, but I have a sum defined on them?
e.g., tuples representing vectors
Want (a,b)+(x,y)=(a+x,b+y), but tuples don’t support this addition

Solution: use functools.reduce

More complicated reducers: Python’s reduce

Using reduce and lambda, we can
get just about any reducer we want.

Note: this example was run in Python 2. You’ll need
to import functools to do this in Python 3.

keith:~$ cat numbers.txt
2.0
2.5
0.25
8.0
0.5
keith:~$ python2 mr_bigproduct.py numbers.txt
[Logging information]
Running step 1 of 1...
[more logging information]
null 5.0
Removing temp directory
/var/folders/_x/7mc2lxl971zcmcjw603x22600000gn/
T/mr_bigproduct.keith.20210404.055815.504152...
keith@Steinhaus:~$

Note: numbers are successfully
extracted from input and multiplied
with one another.

Running mrjob on a Hadoop cluster
We’ve already seen how to run mrjob from the command line.

Previous examples emulated Hadoop
But no actual Hadoop instance was running!

That’s fine for prototyping and testing…

...but how do I actually run it on a Hadoop cluster?

We need access to a computer cluster!
This semester, we will use Google Cloud Platform.

Overview:
Google Cloud Platform (GCP) is Google’s distributed computing service

● Cloud computing: rent computers (and storage) by the minute
● ML tools (e.g., support for TensorFlow and related tools)
● Large-scale database (e.g., HDFS and HBase for Hadoop)

Dataproc: Google’s service for running Apache Hadoop jobs

Homework 11 will walk you through the process
of running your mrjob program on a GCP
Dataproc cluster (i.e., Hadoop server).

Step 1: access Google Cloud console, which gives a
terminal in which to interact with Google Cloud.
https://console.cloud.google.com/

https://console.cloud.google.com/

Running mrjob on a cluster

keith@cloudshell:~$ python2 mr_wc.py myfile.txt -r dataproc
No configs found; falling back on auto-configurationNo configs specified for
dataproc runnerusing existing temp bucket mrjob-us-west1-94b1020a1dfb26ce
[More logging information, redacted for space]
[...]
Streaming final output from
gs://mrjob-us-west1-94b1020a1dfb26ce/tmp/mr_wc.kdlevin.20210403.050421.847299/
output/…
"chars" 103
"lines" 4
"words" 22
Removing temp directory /tmp/mr_wc.kdlevin.20210403.050421.847299...Attempting
to terminate clustercluster mrjob-us-west1-0249c94657283a00 successfully
terminated
keith@cloudshell: ~$

On a compute cluster, we call mrjob
just like on our local machine.

Running mrjob on a cluster

keith@cloudshell:~$ python2 mr_wc.py myfile.txt -r dataproc
No configs found; falling back on auto-configurationNo configs specified for
dataproc runnerusing existing temp bucket mrjob-us-west1-94b1020a1dfb26ce
[More logging information, redacted for space]
[...]
Streaming final output from
gs://mrjob-us-west1-94b1020a1dfb26ce/tmp/mr_wc.kdlevin.20210403.050421.847299/
output/…
"chars" 103
"lines" 4
"words" 22
Removing temp directory /tmp/mr_wc.kdlevin.20210403.050421.847299...Attempting
to terminate clustercluster mrjob-us-west1-0249c94657283a00 successfully
terminated
keith@cloudshell: ~$

One important difference: need to specify
that we want to run on the Hadoop cluster

Running mrjob on a cluster

keith@cloudshell:~$ python2 mr_wc.py myfile.txt -r dataproc
No configs found; falling back on auto-configurationNo configs specified for
dataproc runnerusing existing temp bucket mrjob-us-west1-94b1020a1dfb26ce
[More logging information, redacted for space]
[...]
Streaming final output from
gs://mrjob-us-west1-94b1020a1dfb26ce/tmp/mr_wc.kdlevin.20210403.050421.847299/
output/…
"chars" 103
"lines" 4
"words" 22
Removing temp directory /tmp/mr_wc.kdlevin.20210403.050421.847299...Attempting
to terminate clustercluster mrjob-us-west1-0249c94657283a00 successfully
terminated
keith@cloudshell: ~$

You’ll see a bit more logging information
than you’re used to from before...

Running mrjob on a cluster

keith@cloudshell:~$ python2 mr_wc.py myfile.txt -r dataproc
No configs found; falling back on auto-configurationNo configs specified for
dataproc runnerusing existing temp bucket mrjob-us-west1-94b1020a1dfb26ce
[More logging information, redacted for space]
[...]
Streaming final output from
gs://mrjob-us-west1-94b1020a1dfb26ce/tmp/mr_wc.kdlevin.20210403.050421.847299/
output/…
"chars" 103
"lines" 4
"words" 22
Removing temp directory /tmp/mr_wc.kdlevin.20210403.050421.847299...Attempting
to terminate clustercluster mrjob-us-west1-0249c94657283a00 successfully
terminated
keith@cloudshell: ~$

But output will still include your key-value pairs.

mrjob hides complexity of MapReduce
We need only define mapper, reducer, combiner

Package handles everything else
Most importantly, interacting with Hadoop

But mrjob does provide powerful tools for specifying Hadoop configuration
https://mrjob.readthedocs.io/en/latest/guides/configs-hadoopy-runners.html

You don’t have to worry about any of this in this course, but you
should be aware of it in case you need it in the future.

https://mrjob.readthedocs.io/en/latest/guides/configs-hadoopy-runners.html

mrjob: protocols
mrjob assumes that all data is “newline-delimited bytes”

That is, newlines separate lines of input
Each line is a single unit to be processed in isolation

(e.g., a line of words to count, an entry in a database, etc)

mrjob handles inputs and outputs via protocols
Protocol is an object that has read() and write() methods
read(): convert bytes to (key,value) pairs
write(): convert (key,value) pairs to bytes

mrjob: protocols
Controlled by setting three variables in config file mrjob.conf:

INPUT_PROTOCOL, INTERNAL_PROTOCOL, OUTPUT_PROTOCOL

Defaults:
INPUT_PROTOCOL = mrjob.protocol.RawValueProtocol
INTERNAL_PROTOCOL = mrjob.protocol.JSONProtocol
OUTPUT_PROTOCOL = mrjob.protocol.JSONProtocol

Again, you don’t have to worry about this in this

course, but you should be aware of it.

Data passed around internally via
JSON. This is precisely the kind of
thing that JSON is good for.

