STATG606

Computing for Data Science
and Statistics

Lecture 5: Files and Persistence

Persistent data

So far, we only know how to write “transient” programs
Data disappears once the program stops running

Files allow for persistence
Work done by a program can be saved to disk...
...and picked up again later for other uses.

Examples of persistent programs:

Operatlng SyStemS Key idea: Program information is stored permanently
Databases (e.g., on a hard drive), so that we can start and stop

Servers

programs without losing state of the program (values
of variables, where we are in execution, etc).

Reading and Writing Files

Underlyingly, every file on your computer is just a string of bits...
0[1[1]o]ojo]1]1]o[1[1[o[oo]o]1]o|1[1]1[o[1]0]o]

...which are broken up into (for example) bytes...

...which correspond (in the case of text) to characters.

o01]1[ojo]o[1]1]o[1]1]o[o]o]o[1]o]1{1][1]0[1]0]0
C a t

Reading files

keith@Steinhaus:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.

Here is the third line.
keith@Steinhaus:~/demo$S

f = open(’demo.txt’) Open the file demo . txt. This creates a file object .

type(f) https://docs.python.org/3/glossary.html#term-file-object

_i1o0.TextIOWrapper

Provides a method for reading a single line from
f.readline() . the file. The string *\n’ is a special character
that represents a new line. More on this soon.

'This is a demo file.\n'

https://docs.python.org/3/glossary.html#term-file-object

keith@Steinhaus:~/demo$ cat demo.txt
This is a demo file.

Read|ng f||eS It is a text file, containing three lines of text.

Here 1s the third line.
f = open('demo.txt') keith@Steinhaus:~/demo$

f.readline()

'This is a demo file.\n' <

Each time we call £.readline (),
we get the next line of the file...

f.readline() -

'It is a text file, containip@#”three lines of text.\n'

f.readline()

'Here is the third line.\n'

...until there are no more lines to read, at
f.readline() - which point the readline () method
returns the empty string whenever it is called.

Read | ng f|IeS We can treat £ as an iterator, in which each
1 £ = open('demo.txt') iteration gives us a line of the file.

2 for line in f:
3 for wd in line.split():
4 print(wd.strip('.,"'))
_ Iterate over each word in the line
";215 (splitting on * ’ by default).
a
demo
file
It Remove the trailing punctuation
is
a
text
file
containing
three
lines open () provides a bunch more (optional) arguments,
of some of which we’ll discuss later.
text https://docs.python.org/3/library/functions.html#open
Here
is
the
third

line

https://docs.python.org/3/library/functions.html#open

Reading files

1 with open('demo.txt') as f:
for line in f£:
for wd in line.split():
print (wd.strip('.,"')) now, it suffices to know that this is equivalent to

what we did on the previous slide.

You may often see code written this way, using
the with keyword. We'll see it in detail later. For

This
is

a
demo
file
i; From the documentation: “It is good practice to use the with

a keyword when dealing with file objects. The advantage is that
text the file is properly closed after its suite finishes, even if an
file exception is raised at some point.”

::ntai“ing https://docs.python.org/3/reference/compound stmts.html#with
ree

lines

£
Zext In plain English: the with keyword does a bunch of error
Here checking and cleanup for you, automatically.

is
the
third
line

https://docs.python.org/3/reference/compound_stmts.html#with

Open the file in write mode. If the file already exists,

Wr|t| ng f||eS this creates it anew, deleting its old contents.

1 £ = open('animals.txt', 'w')

2 f.read() g If | try to read a file in write mode, | get an error.
UnsupportedOperation Traceback (most recent call last)
<ipython-input-29-3blef477003a> in <module>()

1l £ = open('animals.txt’', 'w')

-——==> 2 f.read()

UnsupportedOperation: not readable

Write to the file. This method returns the number

1 f.write('cat\n"')
2 f.write('dog\n')
3 f.write('bird\n')

f.write('goat\n')

of characters written to the file. Note that ‘\n’
counts as a single character, the new line.

Wr|t| ng f||eS Open the file in write mode.

This overwrites the version of the
file created in the previous slide.

L B T T T B

= open(' 'animals.txt', 'w')
kot pgln’] -
.write('dog\n') Each write appends to the end of the file.
.write('bird\n')
.write('goatin') When we'’re done, we close the file. This happens
.close() - automatically when the program ends, but it's good

practice to close the file as soon as you're done.

Writing files

.

cat
dog
bird
goat

= open(' 'animals.txt’,

w')

Open the file in write mode.
This overwrites the version of the
file created in the previous slide.

.write('cat\n') =

f

f
f.write('dog\n') «@—
f.write('bird\n')
f.write('goat\n')

f

.close() <

Each write appends to the end of the file.

When we're done, we close the file. This happens

f = open('animals.txt’',
for line in f:
print(line, end="")

lrl)

automatically when the program ends, but it's good
practice to close the file as soon as you're done.

Now, when | open the file for reading, |
can print out the lines one by one.

The lines of the file already include newlines on

the ends, so override Python’s default behavior
of printing a newline after each line.

Aside: Formatting Strings

Python provides tools for formatting

1| x =23 . . .
2 print('x = 8d' % x) <« strlpgs. Example: easier way to print
an integer as a string.
X = 23
1 animal = 'unicorn' ?d.iwﬂgger
2 print('My pet $s' % animal) 6S'Sﬂ”n9 _
s : floating point
My pet unicorn More information:
https://docs.python.org/3/library/stdtypes.

html#printf-style-string-formatting

1l x = 2.718; y = 1.618
2 print('$f divided by %f is %f' % (x,y.,x/y))

2.718000 divided by 1.618000 is 1.679852 Can further control details of
formatting, such as number of

significant figures in printing floats.

1 print('%.3f divided by %.3f is %.8f' % (x,y.,x/y))

2.718 divided by 1.618 is 1.67985167
Newer features for similar functionality:

https://docs.python.org/3/reference/lexical analysis.html#f-strings
https://docs.python.org/3/library/stdtypes.htmli#str.format

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/stdtypes.html#str.format

AS|de Formatt|ng StrlngS Note: Number of formatting

arguments must match the

1 x =2.718; y = 1.618 length of the supplied tuple!
2 print('$f divided by %f is %f' % (x,y,x/y,1.0))

TypeError Traceback (most recent call last)
<ipython-input-46- eb736fce3612> in <module>()

lx=2.718; y =
~===> 2 print('%f d1v1ded by $f is %f' % (x,y,x/y,1.0))

TypeError: not all arguments converted during string formatting

X =2.718; y = 1.618
print('%$f divided by %f is $%f' % (x,Y))

N

TypeError Traceback (most recent call last)
<ipython-input-47- b2e6a26d3415> in <module>()
lx=2.718; y = 1.¢

--==> 2 print('%f divided by $f is %f' % (x,Y))

TypeError: not enough arguments for format string

Saving objects to files: pickle

Sometimes it is useful to be able to turn an object into a string

1 import pickle ' . —
2 t1 = [1, 'two',3.0] pickle.dumps () (shortfor “dump string”)

> creates a binary string representing an object.

3 8 = pickle.dumps(tl)
4 s

b'\x80\x03]1g\x00(K\x01X\x03\x00\x00\x00twogq\x01GE\x08\x00\x00\x00\x00\x00\x00e. "'

1 t2 = pickle.loads(s)

> | 43 w2 This is a raw binary string that encodes the list t1. Each

symbol encodes one byte. More detail later in the course.
Prue https://docs.python.org/3.6/library/functions.htmi#func-bytes
https://en.wikipedia.org/wiki/ASCII

1 tl1 is t2

False

https://docs.python.org/3.6/library/functions.html#func-bytes
https://en.wikipedia.org/wiki/ASCII

Saving objects to files: pickle

Sometimes it is useful to be able to turn an object into a string

Ly amant prCkle We can now use this string to store (a representation
- t1 = [1, two ,3.0] of) the list referenced by t1. We can write it to a file

? 8 = pickle.dumps(tl) for later reuse, use it as a key in a dictionary, etc.
L s

b'\x80\x03]1g\x00(K\x01X\x03\x00\x00\x00twogq\x01GE\x08\x00\x00\x00\x00\x00\x00e. "'

Later on, to “unpickle” the string and turn it back into an

1 t2 = pickle.loads(s) . .
object, we use pickle.loads () (short for “load string”).

2 tl==t2

True
Important point: pickling stores a representation of the value, not
11 18 €2 the variable! So after this assignment, t1 and t2 are equivalent...

False ...but not identical.

Locating files: the os module

os module lets us interact with the operating system.

I import os _ i
2 cwd = os.getcwd() https://docs.python.org/3.6/library/os.html
3 cwd

'/Users/keith/demo/L6_Files'

os.getcwd () returns a string corresponding

to the current working directory.
I os.listdir()
['data', 'scripts']
os.listdir () lists the contents of its argument,
| os.listdir('data') <@ or the current directory if no argument.

[‘numbers.txt', 'pi.txt']

| os.chdir('data') g os.chdir () changes the working directory.

2 os.getcwd()

After calling chdir (), we're in a different cwd.

'/Users/keith/demo/L6 Files/data'

https://docs.python.org/3.6/library/os.html

Locating files: the os module

1 import os
2 cwd = os.getcwd()
i cwd

'/Users/keith/demo/L6_Files'

1 os.listdir()

['data’, 'scripts']

1 os.listdir('data’) ‘

['numbers.txt', 'pi.txt']

| os.path.abspath('data/pi.txt')

'/Users/keith/demo/L6_Files/data/pi.txt'

This is called a path. It starts at the
root directory, '/’ , and describes a
sequence of nested directories.

A path from the root to a file or directory is called
an absolute path. A path from the current
directory is called a relative path.

Use os.path.abspath to getthe
absolute path to a file or directory.

Locating files: the os module

1 import os
2 os.chdir('/Users/keith/demo/L6 Files')
3 os.listdir('data')

['extra', 'numbers.txt', 'pi.txt']

1 os.path.exists('data/pi.txt')

True Check whether or not a file/directory exists.

1 os.path.exists('data/nonsense.txt')

False

os.path.isdir('data/extra’) o :
Check whether or not this is a directory.

True os.path.isfile () works analogously.

1 os.path.isdir('data/numbers.txt')

False

Handling errors: try/catch statements

Sometimes when an error occurs, we want to try and recover
Rather than just giving up and having Python yell at us.

Python has a special syntax for this: try:... except:...
Basic idea: try to do something, and if an error occurs, try something else.

Example: try to open a file for reading.
If that fails (e.g., because the file doesn'’t exist) look for the file elsewhere

Handling errors: try/catch statements

1 import os
2 os.listdir()

['backup file.txt', 'data', 'scripts'] Python attempts to execute the code in
the try block. If that runs successfully,
1 try: then we continue on.
2 f = open('nonsense.txt’')
3 except:
4 f = open('backup_file.txt') If the try block fails (i.e., if there’s an
5 f.read() exception), then we run the code in the

'This is a backup file.\n' except block.

Programmers call this kind of construction a try/catch statement,
even though the Python syntax uses try/except instead.

Handling errors: try/catch statements

| import os Note: this pattern is really only necessary in
) os.listdir() particular situations where you know how you want
to recover from the error. Otherwise, it's better to just
['backup_file.txt', §raise an error. | show it here because you'll see this
pattern frequently “in the wild”.

l try:
2 f = open('nonsense.txt’')

3 except:
: f = open('backup_file.txt') If the try block fails (i.e., if there’s an
5 f.read() exception), then we run the code in the

'This is a backup file.\n' except block.

Programmers call this kind of construction a try/catch statement,
even though the Python syntax uses try/except instead.

Writing modules

Python provides modules (e.g., math, os, time)

But we can also write our own, and import from them with same syntax

1 import prime
2 prime.is prime(2)

True

1 prime.is prime(3)

True

1 prime.is prime(l)

False

1 prime.is prime(23)

True

import math prime.py
def is prime(n):
if n <= 1:
return False
elif n==2:
return True
else:
ulim = math.ceil(math.sgrt(n))
for k in range(2,ulim+l):
if n¥k==0:
return False
return True

Writing modules

from prime import *
is _prime(7)

1 is_square(7)

False

1 is_prime(373)

True

Caution: be careful that you don’t cause

a collision with an existing function or a
function in another module!

Import everything defined in prime, so we can call it

without the prefix. Can also import specific functions:
from prime import 1is square

}—

e

W N

—

(-

W N

O oo ~J O

(-

& Y-S

N

import math

def

def

prime.py

is prime(n):
if n <= 1:

return
elif n==2:

return
else:

ulim = math.ceil(math.sgrt(n))

for k in range(2,ulim+l):

if n%k==0:
return False

return True
is_square(n):
r = int(math.sqrt(n))
return(r*r==n or (r+l)*(r+l)==n)

False

True

