
STAT606
Computing for Data Science

and Statistics
Lecture 5: Files and Persistence

Persistent data
So far, we only know how to write “transient” programs

Data disappears once the program stops running

Files allow for persistence
Work done by a program can be saved to disk...
...and picked up again later for other uses.

Examples of persistent programs:
Operating systems
Databases
Servers

Key idea: Program information is stored permanently
(e.g., on a hard drive), so that we can start and stop
programs without losing state of the program (values
of variables, where we are in execution, etc).

Reading and Writing Files
Underlyingly, every file on your computer is just a string of bits…

...which are broken up into (for example) bytes…

...which correspond (in the case of text) to characters.

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 00

c a t

Reading files
keith@Steinhaus:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
keith@Steinhaus:~/demo$

Open the file demo.txt . This creates a file object f.
https://docs.python.org/3/glossary.html#term-file-object

Provides a method for reading a single line from
the file. The string ‘\n’ is a special character
that represents a new line. More on this soon.

https://docs.python.org/3/glossary.html#term-file-object

Reading files

Each time we call f.readline() ,
we get the next line of the file...

keith@Steinhaus:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
keith@Steinhaus:~/demo$

...until there are no more lines to read, at
which point the readline() method
returns the empty string whenever it is called.

Reading files We can treat f as an iterator, in which each
iteration gives us a line of the file.

Iterate over each word in the line
(splitting on ‘ ’ by default).

Remove the trailing punctuation
from the words of the file.

open() provides a bunch more (optional) arguments,
some of which we’ll discuss later.
https://docs.python.org/3/library/functions.html#open

https://docs.python.org/3/library/functions.html#open

Reading files
You may often see code written this way, using
the with keyword. We’ll see it in detail later. For
now, it suffices to know that this is equivalent to
what we did on the previous slide.

From the documentation: “It is good practice to use the with
keyword when dealing with file objects. The advantage is that
the file is properly closed after its suite finishes, even if an
exception is raised at some point.”
https://docs.python.org/3/reference/compound_stmts.html#with

In plain English: the with keyword does a bunch of error
checking and cleanup for you, automatically.

https://docs.python.org/3/reference/compound_stmts.html#with

Writing files
Open the file in write mode. If the file already exists,
this creates it anew, deleting its old contents.

If I try to read a file in write mode, I get an error.

Write to the file. This method returns the number
of characters written to the file. Note that ‘\n’
counts as a single character, the new line.

Writing files Open the file in write mode.
This overwrites the version of the
file created in the previous slide.

When we’re done, we close the file. This happens
automatically when the program ends, but it’s good
practice to close the file as soon as you’re done.

Each write appends to the end of the file.

Writing files Open the file in write mode.
This overwrites the version of the
file created in the previous slide.

When we’re done, we close the file. This happens
automatically when the program ends, but it’s good
practice to close the file as soon as you’re done.

Now, when I open the file for reading, I
can print out the lines one by one.

The lines of the file already include newlines on
the ends, so override Python’s default behavior
of printing a newline after each line.

Each write appends to the end of the file.

Python provides tools for formatting
strings. Example: easier way to print
an integer as a string.

%d : integer
%s : string
%f : floating point
More information:
https://docs.python.org/3/library/stdtypes.
html#printf-style-string-formatting

Can further control details of
formatting, such as number of
significant figures in printing floats.

Newer features for similar functionality:
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/stdtypes.html#str.format

Aside: Formatting Strings

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/stdtypes.html#str.format

Aside: Formatting Strings Note: Number of formatting
arguments must match the
length of the supplied tuple!

Saving objects to files: pickle
Sometimes it is useful to be able to turn an object into a string

pickle.dumps() (short for “dump string”)
creates a binary string representing an object.

This is a raw binary string that encodes the list t1. Each
symbol encodes one byte. More detail later in the course.
https://docs.python.org/3.6/library/functions.html#func-bytes
https://en.wikipedia.org/wiki/ASCII

https://docs.python.org/3.6/library/functions.html#func-bytes
https://en.wikipedia.org/wiki/ASCII

Saving objects to files: pickle
Sometimes it is useful to be able to turn an object into a string

We can now use this string to store (a representation
of) the list referenced by t1. We can write it to a file
for later reuse, use it as a key in a dictionary, etc.

Later on, to “unpickle” the string and turn it back into an
object, we use pickle.loads() (short for “load string”).

Important point: pickling stores a representation of the value, not
the variable! So after this assignment, t1 and t2 are equivalent...

...but not identical.

Locating files: the os module

os.getcwd() returns a string corresponding
to the current working directory.

os module lets us interact with the operating system.
https://docs.python.org/3.6/library/os.html

os.listdir() lists the contents of its argument,
or the current directory if no argument.

os.chdir() changes the working directory.
After calling chdir(), we’re in a different cwd.

https://docs.python.org/3.6/library/os.html

Locating files: the os module

This is called a path. It starts at the
root directory, ‘/’, and describes a
sequence of nested directories.

A path from the root to a file or directory is called
an absolute path. A path from the current
directory is called a relative path.

Use os.path.abspath to get the
absolute path to a file or directory.

Locating files: the os module

Check whether or not a file/directory exists.

Check whether or not this is a directory.
os.path.isfile() works analogously.

Handling errors: try/catch statements
Sometimes when an error occurs, we want to try and recover

Rather than just giving up and having Python yell at us.

Python has a special syntax for this: try:... except:...

Basic idea: try to do something, and if an error occurs, try something else.

Example: try to open a file for reading.
If that fails (e.g., because the file doesn’t exist) look for the file elsewhere

Handling errors: try/catch statements

Python attempts to execute the code in
the try block. If that runs successfully,
then we continue on.

If the try block fails (i.e., if there’s an
exception), then we run the code in the
except block.

Programmers call this kind of construction a try/catch statement,
even though the Python syntax uses try/except instead.

Handling errors: try/catch statements

Python attempts to execute the code in
the try block. If that runs successfully,
then we continue on.

If the try block fails (i.e., if there’s an
exception), then we run the code in the
except block.

Programmers call this kind of construction a try/catch statement,
even though the Python syntax uses try/except instead.

Note: this pattern is really only necessary in
particular situations where you know how you want
to recover from the error. Otherwise, it’s better to just
raise an error. I show it here because you’ll see this
pattern frequently “in the wild”.

Writing modules
Python provides modules (e.g., math, os, time)

But we can also write our own, and import from them with same syntax

prime.py

Writing modules

prime.py

Import everything defined in prime, so we can call it
without the prefix. Can also import specific functions:
from prime import is_square

Caution: be careful that you don’t cause
a collision with an existing function or a
function in another module!

