
STAT606
Computing for Data Science

and Statistics
Lecture 7: Classes, Operators and Inheritance

Classes: programmer-defined types
Sometimes we use a collection of variables to represent a specific object

Example: we used a tuple of tuples to represent a matrix
Example: representing state of a board game

List of players, piece positions, etc.
Example: representing a statistical model

Want to support methods for estimation, data generation, etc.

Important point: these data structures quickly become very complicated,
and we want a way to encapsulate them. This is a core motivation (but

hardly the only one) for object-oriented programming.

Classes encapsulate data types

Example: I want to represent a point in 2-dimensional space ℝ2

Option 1: just represent a point by a 2-tuple

Classes encapsulate data types

Example: I want to represent a point in 2-dimensional space ℝ2

Option 1: just represent a point by a 2-tuple

Option 2: make a point class, so that we have a whole new data type
Additional good reasons for this will become apparent shortly!

Classes encapsulate data types

Example: I want to represent a point in 2-dimensional space ℝ2

Option 1: just represent a point by a 2-tuple

Option 2: make a point class, so that we have a whole new data type
Additional good reasons for this will become apparent shortly!

Credit: Running example adapted from A. B. Downey, Think Python

Class header declares a
new class, called Point.

Docstring provides explanation of what the class
represents, and a bit about what it does. This is an
ideal place to document your class.

Classes encapsulate data types

Credit: Running example adapted from A. B. Downey, Think Python

Class definition creates a class object, Point.

Note: By convention, class names
are written in CamelCase.

Example: I want to represent a point in 2-dimensional space ℝ2

Option 1: just represent a point by a 2-tuple

Option 2: make a point class, so that we have a whole new data type
Additional good reasons for this will become apparent shortly!

Creating an object: Instantiation

This defines a class Point, and
from here on we can create new
variables of type Point.

Creating an object: Instantiation

Creating a new object is called
instantiation. Here we are creating
an instance p of the class Point.

Indeed, p is of type Point.

Note: An instance is an individual object from a given class.
In general, the terms object and instance are interchangeable: an

object is an instantiation of a class.

Assigning Attributes This dot notation should look familiar.
Here, we are assigning values to attributes
x and y of the object p. This both creates
the attributes, and assigns their values.

Once the attributes are created, we can
access them, again with dot notation.

Assigning Attributes This dot notation should look familiar.
Here, we are assigning values to attributes
x and y of the object p. This both creates
the attributes, and assigns their values.

Once the attributes are created, we can
access them, again with dot notation.

Attempting to access an attribute that
an object doesn’t have is an error.

Thinking about Attributes: Object Diagrams

At this point, p is just an
object with no attributes.

class: Pointp

Thinking about Attributes: Object Diagrams

After these two lines, p
has attributes x and y.

class: Pointp

x

y

3.0

4.0

Thinking about Attributes: Object Diagrams

After these two lines, p
has attributes x and y.

class: Pointp

x

y

3.0

4.0

So dot notation p.x, essentially
says, look inside the object p
and find the attribute x.

Nesting Objects

class: Pointp

x

y

3.0

4.0

class: Rectangler

height

width

5.0

12.0

corner

Objects can have other objects as their attributes.
We often call the attribute object embedded.

Nesting Objects

Both of these blocks of code create
equivalent Rectangle objects.

Note here that instead of creating a point
and then embedding it, we embed a Point
object and then populate its attributes.

Objects are mutable

If my Rectangle object were
immutable, this line would be an error,
because I’m making an assignment.

Since objects are mutable, I can change
attributes of an object inside a function
and those changes remain in the object
in the __main__ namespace.

Returning Objects
Functions can return objects. Note that this
function is implicitly assuming that rdouble
has the attributes corner, height and
width. We will see how to do this soon.

The function creates a new Rectangle
and returns it. Note that it doesn’t
change the attributes of its argument.

Copying and Aliasing
Recall that aliasing is when two or more variables have the same referent

i.e., when two variables are identical

Aliasing can often cause unexpected problems
Solution: make copy of object; variables equivalent, but not identical

The copy module provides functions for
copying objects. p2 is a copy of p1, so
they should not be identical...

Copying and Aliasing
Recall that aliasing is when two or more variables have the same referent

i.e., when two variables are identical

Aliasing can often cause unexpected problems
Solution: make copy of object; variables equivalent, but not identical

The copy module provides functions for
copying objects. p2 is a copy of p1, so
they should not be identical...

...but they should be equivalent.

Copying and Aliasing
Recall that aliasing is when two or more variables have the same referent

i.e., when two variables are identical

Aliasing can often cause unexpected problems
Solution: make copy of object; variables equivalent, but not identical

The copy module provides functions for
copying objects. P2 is a copy of p1, so
they should not be identical...

...but they should be equivalent.

Hey, those were supposed to be equivalent! What’s up
with that? Answer: by default, for programmer-defined
types, == and is are the same. It’s up to you, the
programmer, to tell Python how to tell if two objects are
equivalent, by defining a method object.__eq__ .
We’ll come back to this.

Documentation for the copy module:
https://docs.python.org/3/library/copy.html

https://docs.python.org/3/library/copy.html

Copying and Aliasing

Here we construct a Rectangle, and
then copy it. Expected behavior is that
mutable attributes should not be
identical, and yet...

...evidently our copied objects still
have attributes that are identical.

Copying and Aliasing

class: Rectangler1

height

width

5.0

12.0

corner

class: Pointp

x

y

3.0

4.0

class: Rectangle

height

width

5.0

12.0

corner

r2

By default, copy.copy only copies the “top level” of
attributes. This is a problem if, for example, we have a
method like shift_rectangle that changes the
corner attribute. Calling shift_rectangle(r1)
would also change the corner attribute of r2.

Copying and Aliasing

copy.deepcopy is a recursive version of
copy.copy . So it recursively makes copies of
all attributes, and their attributes, and so on.

We often refer to copy.copy as a shallow
copy in contrast to copy.deepcopy .

Now when we test for identity we get
the expected behavior. Python has
created a copy of r1.corner .

copy.deepcopy documentation explains how the copying operation is carried out:
https://docs.python.org/3/library/copy.html#copy.deepcopy

https://docs.python.org/3/library/copy.html#copy.deepcopy

Pure functions vs modifiers
A pure function is a function that returns an object

...and does not modify any of its arguments

A modifier is a function that changes attributes of one or more of its arguments

double_sides is a pure function. It creates
a new object and returns it, without changing
the attributes of its argument r.

shift_rectangle changes the attributes
of its argument rec, so it is a modifier. We
say that the function has side effects, in
that it causes changes outside its scope.

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Pure functions vs modifiers
Why should one prefer one over the other?

Pure functions
Are often easier to debug and verify (i.e., check correctness)

https://en.wikipedia.org/wiki/Formal_verification
Common in functional programming

Modifiers
Often faster and more efficient
Common in object-oriented programming

https://en.wikipedia.org/wiki/Formal_verification

Modifiers vs Methods
A modifier is a function that changes attributes of its arguments

A method is like a function, but it is provided by an object.

Define a class representing a 24-hour time.

Class supports a method called
print_time , which prints a string
representation of the time.

Every method must include self as its first argument.
The idea is that the object is, in some sense, the object
on which the method is being called.

Credit: Running example adapted from A. B. Downey, Think Python

More on Methods

int_to_time is a pure
function that creates and
returns a new Time object.

Time.time_to_int is a method, but it is still a
pure function in that it has no side effects.

More on Modifiers

I cropped out time_to_int and
print_time for space.

Two different versions of the same
operation. One is a pure function
(pure method?), that does not
change attributes of the caller. The
second method is a modifier.

The modifier method does indeed
change the attributes of the caller.

More on Modifiers

Here’s an error you may encounter.
How the heck did increment_pure
get 3 arguments?!

More on Modifiers

Here’s an error you may encounter.
How the heck did increment_pure
get 3 arguments?!

Answer: the caller is considered an
argument (because of self)!

Recap: Objects, so far
So far: creating classes, attributes, methods

Next steps:
How to implement operators (+, *, string conversion, etc)
More complicated methods
Inheritance

We will not come anywhere near covering OOP in its entirety
My goal is only to make sure you see the general concepts
Take a software engineering course to learn the deeper principles of OOP

Creating objects: the __init__ method

__init__ is a special method that gets
called when we instantiate an object. This
one takes four arguments.

If we supply fewer than three arguments to
__init__ , it defaults the extras, assigning from
left to right until it runs out of arguments.

Note: arguments that are not keyword
arguments are called positional arguments.

Creating objects: the __init__ method

Important point: notice how much cleaner this is than
creating an object and then assigning attributes like we
did earlier. Defining an __init__ method also lets us
ensure that there are certain attributes that are always
populated in an object. This avoids the risk of an
AttributeError sneaking up on us later. Best
practice is to create all of the attributes that an object is
going to have at initialization. Once again, Python
allows you to do something, but it’s best never to do it!

While we’re on the subject...
Useful functions to know for debugging purposes: vars and getattr

vars returns a dictionary keyed on attribute
names, values are attribute values.

This is a useful pattern for debugging. Downey recommends
encapsulating it in a function like print_attrs(obj) . I think
this is a bit extreme. You should be using test cases and sanity
checks to debug rather than examining the contents of objects.

Objects to strings: the __str__ method

__str__ is a special method that returns a
string representation of the object. Print will
always try to call this method via str().

From the documentation: str(object) returns object.__str__(),
which is the “informal” or nicely printable string representation of
object. For string objects, this is the string itself. If object does not
have a __str__() method, then str() falls back to returning repr(object).
https://docs.python.org/3.5/library/stdtypes.html#str

https://docs.python.org/3.5/reference/datamodel.html#object.__str__
https://docs.python.org/3.5/reference/datamodel.html#object.__str__
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#repr
https://docs.python.org/3.5/library/stdtypes.html#str

Overloading operators
We can get other operators (+, *, /, comparisons, etc) by defining special functions

__init__ and __str__
cropped for space.

Defining the __add__ operator lets us use +
with Time objects. This is called overloading
the + operator. All operators in Python have
special names like this. More information:
https://docs.python.org/3/reference/datamodel.h
tml#specialnames

https://docs.python.org/3/reference/datamodel.html#specialnames
https://docs.python.org/3/reference/datamodel.html#specialnames

Type-based dispatch

Other methods
cropped for space.

isinstance returns True iff
its first argument is of the type
given by its second argument.

Depending on the type of other, our method
behaves differently. This is called type-based
dispatch. This is in keeping with Python’s
general approach of always trying to do
something sensible with inputs.

Type-based dispatch

Our + operator isn’t commutative! This is because
int + Time causes Python to call the
int.__add__ operator, which doesn’t know how
to add a Time to an int. We have to define a
Time.__radd__ operator for this to work.

Type-based dispatch

Simple solution:
def __radd__(self, other):

return self.__add__(other)

Our + operator isn’t commutative! This is because
int + Time causes Python to call the
int.__add__ operator, which doesn’t know how
to add a Time to an int. We have to define a
Time.__radd__ operator for this to work.

Polymorphism
Type-based dispatch is useful, but tedious

Better: write functions that work for many types

Examples:
String functions often work on tuples
int functions often work on floats or complex

hist below is a good example of
polymorphism. Works for all sequences!

Functions that work for many types are
called polymorphic. Polymorphism is
useful because it allows code reuse.

Interface and Implementation
Key distinction in object-oriented programming

Interface is the set of methods supplied by a class
Implementation is how the methods are actually carried out

Important point: ability to change implementation without affecting interface

Example: our Time class was represented by hour, minutes and seconds
Could have equivalently represented as seconds since midnight
In either case, we can write all the same methods (addition, conversion, etc)

Interface and Implementation
Key distinction in object-oriented programming

Interface is the set of methods supplied by a class
Implementation is how the methods are actually carried out

Important point: ability to change implementation without affecting interface

Example: our Time class was represented by hour, minutes and seconds
Could have equivalently represented as seconds since midnight
In either case, we can write all the same methods (addition, conversion, etc)

Certain implementations make certain operations easier than others.
Example: comparing two times in our hours, minutes, seconds representation is complicated, but if Time

were represented as seconds since midnight, comparison becomes trivial. On the other hand, printing
hh:mm:ss representation of a Time is complicated if our implementation is seconds since midnight.

Inheritance
Inheritance is perhaps the most useful feature of object-oriented programming

Inheritance allows us to create new Classes from old ones

Our running example for this will follow Downey’s chapter 18
Objects are playing cards, hands and decks
Assumes some knowledge of Poker https://en.wikipedia.org/wiki/Poker

52 cards in a deck
4 suits: Spades > Hearts > Diamonds > Clubs
13 ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King

https://en.wikipedia.org/wiki/Poker

Creating our class

A card is specified by its suit and rank, so
those will be the attributes of the card class.
The default card will be the two of clubs.

Suit encoding
0 : Clubs
1 : Diamonds
2 : Hearts
3 : Spades

Rank encoding
0 : None
1 : Ace
2 : 2
3 : 3
…
10 : 10
11 : Jack
12 : Queen
13 : King

We will encode suits and ranks by
numbers, rather than strings. This
will make comparison easier.

This stage of choosing how you will represent objects
(and what objects to represent) is often the most
important part of the coding process. It’s well worth your
time to carefully plan and design your objects, how they
will be represented and what methods they will support.

Creating our class
Variables defined in a class but outside any
method are called class attributes. They are
shared across all instances of the class.

Instance attributes are assigned to a specific
object (e.g., rank and suit). Both class and
instance attributes are accessed via dot notation.

Here we use instance attributes
to index into class attributes.

Creating our class
Variables defined in a class but outside any
method are called class attributes. They are
shared across all instances of the class.

Instance attributes are assigned to a specific
object (e.g., rank and suit). Both class and
instance attributes are accessed via dot notation.

Here we use instance attributes
to index into class attributes.

https://en.wikipedia.org/wiki/Ace_of_Spades_(song)

https://en.wikipedia.org/wiki/Ace_of_Spades_(song)

More operators

Cropped for space.

We’ve chosen to order cards based on rank and
then suit, with aces low. So a jack is bigger than a
ten, regardless of the suit of either one. Downey
orders by suit first, then rank.

Now that we’ve defined the __eq__ operator,
we can check for equivalence correctly.

Objects with other objects
Define a new object representing a deck of cards.
A standard deck of playing cards is 52 cards, four
suits, 13 ranks per suit, etc.

Represent cards in the deck via a list.
To populate the list, just use a nested
for-loop to iterate over suits and ranks.

String representation of a deck will just be
the cards in the deck, in order, one per line.
Note that this produces a single string, but it
includes newline characters.

There’s another 45 or so
more strings down there...

Providing additional methods

One method for dealing a card off the “top” of
the deck, and one method for adding a card
back to the “top” of the deck.

After shuffling, the cards are not in the same
order as they were on initialization.

Note: methods like this that are really just
wrappers around other existing methods are
often called veneer or thin methods.

Let’s take stock
We have:

a class that represents playing cards (and some basic methods)
a class that represents a deck of cards (and some basic methods)

Now, the next logical thing we want is a class for representing a hand of cards
So we can actually represent a game of poker, hearts, bridge, etc.

The naïve approach would be to create a new class Hand from scratch
But a more graceful solution is to use inheritance

Key observation: a hand is a lot like a deck (it’s a collection of cards)
...of course, a hand is also different from a deck in some ways...

Inheritance
This syntax means that the class Hand inherits from
the class Deck. Inheritance means that Hand has all
the same methods and class attributes as Deck does.

We say that the child class Hand
inherits from the parent class Deck.

Inheritance
This syntax means that the class Hand inherits from
the class Deck. Inheritance means that Hand has all
the same methods and class attributes as Deck does.

So, for example, Hand has __init__ and shuffle
methods, and they are identical to those in Deck. Of
course, we quickly see that the __init__ inherited
from Deck isn’t quite what we want for Hand. A hand
of cards isn’t usually the entire deck...

So we already see the ways in which inheritance can
be useful, but we also see immediately that there’s no
free lunch here. We will have to override the
__init__ function inherited from Deck.

We say that the child class Hand
inherits from the parent class Deck.

Inheritance: methods and overriding

Redefining the __init__ method
overrides the one inherited from Deck.

Inheritance: methods and overriding

Redefining the __init__ method
overrides the one inherited from Deck.

Simple way to deal a single card from
the deck to the hand: pop a card off of
the deck, add it to the hand.

Now, when we initialize a Hand
object, it starts out empty.

Inheritance: methods and overriding

Encapsulate this pattern in a method
supplied by Deck, and we have a
method that deals cards to a hand.

The move_cards method is supplied by
Deck but it modifies both the caller and
the Hand object in the first argument.

Note: Hand also inherits the move_cards
method from Deck, so we have a way to move
cards from one hand to another (e.g., as at the
beginning of a round of hearts)

Inheritance: pros and cons
Pros:

Makes for simple, fast program development
Enables code reuse
Often reflects some natural structure of the problem

Cons:
Can make debugging challenging (e.g., where did this method come from?)
Code gets spread across multiple classes
Can accidentally override (or forget to override) a method

A Final Note on OOP
Object-oriented programming is ubiquitous in software development

Useful when designing large systems with many interacting parts
As a statistician, most systems you build are… not so complex

(At least not in the sense of requiring lots of interacting subsystems)

We’ve only scratched the surface of OOP
Not covered: factories, multiple inheritance, abstract classes…
Take a software engineering course to learn more about this

In my opinion, OOP isn’t especially useful for data scientists, anyway.
This isn’t to say that objects aren’t useful, only OOP as a paradigm
Understanding functional programming is far more important (next lecture)

