
STAT606
Computing for Data Science

and Statistics
Lecture 11: numpy and scipy

Some examples adapted from A. Tewari @ UMichigan

Numerical computing in Python: numpy
One of a few increasingly-popular, free competitors to MATLAB

Numpy quickstart guide: https://numpy.org/doc/stable/user/quickstart.html

For MATLAB fans:
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html

Closely related package scipy is for optimization
See https://docs.scipy.org/doc/

https://numpy.org/doc/stable/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/

Installing packages
So far, we have only used built-in modules

But there are many modules/packages that do not come preinstalled

Ways to install packages:
At the conda prompt or in terminal: conda install numpy

https://conda.io/docs/user-guide/tasks/manage-pkgs.html
Using pip (recommended): pip install numpy

https://pip.pypa.io/en/stable/
Using UNIX/Linux package manager (not recommended)
From source (not recommended)

https://conda.io/docs/user-guide/tasks/manage-pkgs.html
https://pip.pypa.io/en/stable/

Installing packages with pip

keith@Steinhaus:~$ pip3 install beautifulsoup4
Collecting beautifulsoup4
 Downloading beautifulsoup4-4.6.0-py3-none-any.whl (86kB)

100% |████████████████████████████████| 92kB 1.4MB/s
Installing collected packages: beautifulsoup4
Successfully installed beautifulsoup4-4.6.0

If you have both Python 2 and Python 3
installed, make sure you specify which
one you want to install in!

The above command installs the package beautifulsoup4 .
We will use that later in the semester. To install numpy, type the
same command, but use numpy in place of beautifulsoup4 .

numpy data types

Five basic numerical data types:
boolean (bool)
integer (int)
unsigned integer (uint)
floating point (float)
complex (complex)

Many more complicated data types are available
e.g., each of the numerical types can vary in how many bits it uses
https://docs.scipy.org/doc/numpy/user/basics.types.html

import … as … lets us
import a package and
give it a shorter name.

Note that this is not the
same as a Python int.

https://docs.scipy.org/doc/numpy/user/basics.types.html

numpy data types

32-bit and 64-bit
representations are distinct!

As a rule, it’s best never to check for
equality of floats. Instead, check
whether they are within some error
tolerance of one another.

Data type followed by
underscore uses the default
number of bits. This default
varies by system.

numpy.array: numpy’s version of Python array (i.e., list)
Can be created from a Python list…

...by “shaping” an array…

...by “ranges”...

...or reading directly from a file
see https://docs.scipy.org/doc/numpy/user/basics.creation.html

np.zeros and np.ones generate arrays
of 0s or 1s, respectively. Shape parameter
(2,3) means to create a 2-D array with two
rows and three columns.

https://docs.scipy.org/doc/numpy/user/basics.creation.html

numpy allows arrays of arbitrary dimension (tensors)
1-dimensional arrays:

2-dimensional arrays (matrices):

3-dimensional arrays (“3-tensor”):

numpy allows arrays of arbitrary dimension (tensors)
1-dimensional arrays:

2-dimensional arrays (matrices):

3-dimensional arrays (“3-tensor”):

Every numpy array has a shape
attribute specifying its dimensions.
For example, an array with shape
(3,4) has three rows and four
columns. An array with shape (2,3,2)
is a 2-by-3-by-2 “box” of numbers.

Think of the shape of an array as specifying
how many indices we need to pick out an
entry of the array. For example, to pick out
a number from a 3-by-4 matrix, we must
specify a row and a column.

More on numpy.arange creation
np.arange(x): array version of Python’s range(x), like [0,1,2,...,x-1]

np.arange(x,y): array version of range(x,y), like [x,x+1,...,y-1]

np.arange(x,y,z): array of elements [x,y) in z-size increments.

More on numpy.arange creation
np.arange(x): array version of Python’s range(x), like [0,1,2,...,x-1]

np.arange(x,y): array version of range(x,y), like [x,x+1,...,y-1]

np.arange(x,y,z): array of elements [x,y) in z-size increments.

Related useful functions, that give better/clearer control of start/endpoints and
allow for multidimensional arrays:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html

numpy array indexing is highly expressive

Not very relevant to us right now…

...but this will come up again in a few weeks when we cover TensorFlow

Slices, strides, indexing from the end, etc.
Just like with Python lists.

More array indexing

From the documentation: When the index consists
of as many integer arrays as the array being indexed
has dimensions, the indexing is straight forward, but
different from slicing. Advanced indexes always are
broadcast and iterated as one.
https://docs.scipy.org/doc/numpy/reference/arrays.ind
exing.html#integer-array-indexing

If we specify fewer than the number
of indices, numpy assumes we mean
: in the remaining indices.

Warning: if you’re used to MATLAB or R,
this behavior will seem weird to you.

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-broadcasting
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-broadcasting
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#integer-array-indexing
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#integer-array-indexing

More array indexing
Numpy allows MATLAB/R-like indexing by Booleans

Believe it or not, this error is by design! The designers of numpy were
concerned about ambiguities in Boolean vector operations. In essence,
should (x>7) or (x<2) be a vector of Booleans or a single Boolean?

Boolean operations: np.any(), np.all()

axis argument picks which axis
along which to perform the Boolean
operation. If left unspecified, it treats
the array as a single vector.

Setting axis to be the first (i.e., 0-th)
axis yields the entrywise behavior we
wanted.

Just like the any and all
functions in Python proper.

Boolean operations: np.logical_and()
numpy also has built-in Boolean vector operations, which are simpler/clearer at
the cost of the expressiveness of np.any(), np.all().

This is an example of a numpy
“universal function” (ufunc), which
we’ll discuss more in a few slides.

Random numbers in numpy
np.random contains methods for generating random numbers

Lots more distributions:
https://docs.scipy.org/doc/numpy/reference/routines.random.html#distributions

https://docs.scipy.org/doc/numpy/reference/routines.random.html#distributions

np.random.choice(): random samples from data
np.random.choice(x,[size,replace,p])

Generates a sample of size elements from the array x, drawn with
(replace=True) or without (replace=False) replacement, with element
probabilities given by vector p.

shuffle() vs permutation()
np.random.shuffle(x)

randomly permutes entries of x in place
so x itself is changed by this operation!

np.random.permutation(x)
returns a random permutation of x
and x remains unchanged.

Compare with the Python list.sort()
and sorted() functions.

Statistics in numpy
numpy implements all the standard statistics functions you’ve come to expect

Statistics in numpy
Numpy deals with NaNs more gracefully than MATLAB/R:

For more statistical functions, see:
https://docs.scipy.org/doc/numpy-1.8.1/reference/routines.statistics.html

NaN is short for “not a number”. NaNs
typically arise either because or improper
mathematical operations (e.g., dividing by
zero) or to represent missing data.

nanmin, nanvar, etc compute
function after dropping NaNs.

https://docs.scipy.org/doc/numpy-1.8.1/reference/routines.statistics.html

Probability and statistics in scipy
(Almost) all the distributions you could possibly ever want:

https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#multivariate-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#discrete-distributions

More statistical functions (moments, kurtosis, statistical tests):
https://docs.scipy.org/doc/scipy/reference/stats.html#statistical-functions

Second argument is the name of a
distribution in scipy.stats

Kolmogorov-Smirnov test

scipy is a distinct Python
package, part of the numpy
ecosystem.

https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#multivariate-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#discrete-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#statistical-functions
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Matrix-vector operations in numpy

Trying to multiply two arrays, and
you get broadcast behavior, not a
matrix-vector product.

Broadcast multiplication still requires
that dimensions agree and all that.

Matrix-vector operations in numpy

Create a numpy matrix from a numpy
array. We can also create matrices from
strings with MATLAB-like syntax. See
documentation.

Numpy matrices support a whole bunch of
useful methods. See documentation:
https://docs.scipy.org/doc/numpy/reference/
generated/numpy.matrix.html

Now matrix-vector and vector-matrix
multiplication work as we want.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html

numpy/scipy universal functions (ufuncs)
From the documentation:

A universal function (or ufunc for short) is a function that operates on ndarrays in an
element-by-element fashion, supporting array broadcasting, type casting, and several other
standard features. That is, a ufunc is a “vectorized” wrapper for a function that takes a fixed number
of scalar inputs and produces a fixed number of scalar outputs.
https://docs.scipy.org/doc/numpy/reference/ufuncs.html

So ufuncs are vectorized operations, just like in R and MATLAB

https://docs.scipy.org/doc/numpy/reference/ufuncs.html

ufuncs in action
List comprehensions are great, but they’re not well-suited to numerical computing

Unlike Python lists, numpy arrays
support vectorized operations.

Sorting

Sorting is along the “last” axis by default.
Note contrast with np.any() . To treat
the array as a single vector, axis must
be set to None.

ASCII rears its head-- capital
letters are “smaller” than all
lower-case by default.

Original array is unchanged by use of
np.sort() , like Python’s built-in sorted()

A cautionary note
numpy/scipy have several similarly-named functions with different behaviors!

Example: np.amax, np.ndarray.max, np.maximum

The best way to avoid these confusions is to
1) Read the documentation carefully
2) Test your code!

