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Abstract

Partial least squares (PLS) is a well known dimension reduction method which has

been recently adapted for high dimensional classification problems. We develop sparse

versions of the recently proposed two PLS-based classification methods using sparse

partial least squares (SPLS). These sparse versions aim to achieve variable selection

and dimension reduction simultaneously. We consider both binary and multicategory

classification. We provide analytical and simulation-based insights about the variable

selection properties of these approaches and benchmark them on well known publicly

available datasets that involve tumor classification with high dimensional gene expres-

sion data. We show that incorporation of SPLS into a generalized linear model (GLM)

framework provides higher sensitivity in variable selection for multicategory classifica-

tion with unbalanced sample sizes between classes. As the sample size increases, the

two-stage approach provides comparable sensitivity with better specificity in variable

selection. In binary classification and multicategory classification with balanced sam-

ple sizes, the two-stage approach provides comparable variable selection and prediction

accuracy as the GLM version and is computationally more efficient.

R package, datasets and results of computational experiments on additional pub-

licly available gene expression datasets are available in the online supplements.
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1 Introduction

Partial least squares (PLS), a well known dimension reduction method (Wold 1966) in chemo-

metrics, has been gaining a lot of attention in high dimensional classification problems of

computational biology. Traditionally designed for continuous response, PLS has been pro-

moted as a multivariate linear regression method that can deal with large number of pre-

dictors (p), small sample size (n), and high collinearity among predictors. PLS operates by

forming linear combinations of the predictors in a supervised manner, i.e., using the response,

and then regresses the response on these latent variables. It can handle both univariate and

multivariate response and is computationally fast. Furthermore, projection of the whole

data on a low dimensional space facilitates graphical representation of the data. All of these

properties make PLS an attractive candidate for high dimensional genomic data problems

such as classification of tumor samples that are in the order of tens or hundreds based on

thousands of features, i.e., gene expression.

Since PLS is originally designed for continuous response, its adaption to classification

for high dimensional data is relatively recent. Barker and Rayens (2003) justified use of

PLS for classification by establishing its connection to Fisher’s linear discriminant analysis.

Previous work that utilizes PLS for high dimensional data classification can be grouped into

two. Nguyen and Rocke (2002a), Nguyen and Rocke (2002b), and Boulesteix (2004) employ a

two-stage procedure. We will refer to this procedure as PLSDA (PLS Discriminant Analysis)

throughout the manuscript. In the first stage, response is treated as a continuous variable

and PLS is employed to construct latent variables that are linear combinations of the original

predictors. In the subsequent step, an off-the-shelf classification method is used since the

number of latent variables constructed in the first stage is usually much smaller than the

sample size. As a consequence, the large p, small n problem often diminishes. Logistic

regression, linear discriminant analysis, and quadratic discriminant analysis are some of

the examples of the classification methods used in the second step. When the response is

multicategorical, the first step in this procedure is replaced by multivariate response PLS by

transforming the original categorical response into a numerical response matrix using dummy

coding. The second line of work for PLS classification (Marx 1996; Ding and Gentleman 2004;

Fort and Lambert-Lacroix 2005) incorporates PLS into a Generalized Linear Model (GLM)

framework, referred to as GPLS hereafter. In GLMs, the log likelihood is usually maximized
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using the Newton-Raphson algorithm which in turn results in the iteratively re-weighted

least squares (IRLS) method. Marx (1996), Ding and Gentleman (2004), and Fort and

Lambert-Lacroix (2005) adopt PLS for classification by solving the weighted least squares

problem arising within the IRLS method with PLS. Marx (1996) proposed such an approach

for general GLMs and Ding and Gentleman (2004) studied it specifically for the classification

problems and developed the multinomial regression version. Ding and Gentleman (2004) also

applied Firth’s procedure (Firth 1993) in order to avoid the common non-convergence and

infinite parameter estimates problems of the logistic regression in large p, small n problems.

In contrast, Fort and Lambert-Lacroix (2005) incorporated a ridge penalty within the GLM

framework for the same purpose.

Boulesteix (2004) studied classification with PLSDA in depth across many high dimen-

sional cancer datasets and concluded that it performs competitively with the best state-

of-the-art classification methods such as K-Nearest Neighbours, Support Vector Machines

and PAM (Tibshirani et al. 2002) for such datasets. In the computational experiments of

Ding and Gentleman (2004), GPLS achieved lower classification error rates than the two-

stage PLSDA especially for the multicategory classification in high dimensional expression

datasets.

Although PLS can deal with more predictors than there are samples, all of the above

approaches often utilize variable filtering as a pre-processing step before the PLS fit. Selecting

variables based on two-sample t-test statistic is commonly used for binary classification

(Nguyen and Rocke 2002b). For multicategory classification, all pairwise t-filter proposed by

Nguyen and Rocke (2002a) or ratio of the between-sum-of-squares to within-sum-of-squares

(BSS/WSS) are commonly used (Boulesteix 2004). Once the variables are ranked based on

a criterion, a subset of high ranking variables are further passed down to PLSDA or GPLS.

Boulesteix (2004) established that ordering of the variables based on the BSS/WSS approach

coincides with the ordering produced by the absolute values of the coefficients for the first

PLS component. Although these pre-selection approaches often improve the performance

of PLS classification by filtering out noise, their choice is often arbitrary and there is no

established and computationally easy way of deciding what number of top ranking variables

should be passed down to PLS classification. Furthermore, commonly used variable filtering

approaches are all univariate and ignore correlations among variables. Recently, Chun and

Keleş (in press) provided both theoretical and empirical results that the performance of PLS
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is ultimately affected by the large number of predictors in modern genomic data analysis. In

particular, existence of high number of irrelevant variables leads to inconsistency of coefficient

estimates in the linear regression setting. As a result, Chun and Keleş (in press) proposed

sparse partial least squares (SPLS) regression which promotes variable selection within the

course of PLS dimension reduction. Specifically, SPLS imposes sparsity when constructing

the direction vectors, thereby the resulting latent variables depend only on a subset of the

original set of predictors. This sparsity principle provides easy interpretation and correlations

among the covariates are also well taken care of using the PLS framework. Moreover, SPLS

is computationally efficient with a tunable sparsity parameter.

In this paper, we propose two new methods extending SPLS to classification problems.

The first is SPLS discriminant analysis (SPLSDA) and the second is Sparse Generalized

PLS (SGPLS). Both of these improve the two lines of PLS classification approaches re-

viewed above by employing variable selection and dimension reduction simultaneously. Our

computational experiments indicate that SPLSDA and SGPLS outperform their PLS coun-

terparts and in general perform comparably. We further establish that SGPLS has higher

sensitivity than SPLSDA in variable selection when the classes are highly unbalanced in

terms of their sample sizes. However, as the sample sizes increase, the variable selection

performance of SPLSDA improves. It shows comparable variable selection sensitivity but

has better specificity. The rest of the paper is organized as follows. The next section briefly

reviews SPLS within the context of linear regression. In Section 3, we introduce SPLS-based

classification approaches for both binary and multicategory responses. We present simula-

tion studies and computational experiments with real datasets and compare our methods to

competing ones in Sections 4 and 5. We end with a discussion in Section 6.

2 Simultaneous Dimension Reduction and Variable Se-

lection with SPLS

Let Y n×q and Xn×p represent the column centered response and the predictor matrices,

respectively. PLS regression assumes latent components T n×K underlying both Y and X.

Hence, the PLS model is given by Y = TQT + F and X = TP T + E, where P p×K and

Qq×K are coefficients (loadings) and En×p and F n×q are errors. The latent components T
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are defined as T = XW , where W p×K are K direction vectors (1 ≤ K ≤ min {n, p}). The

main machinery of PLS is to find these direction vectors. The k-th direction vector ŵk is

obtained by solving the following optimization problem,

max
w
wTMw subject to wTw = 1 and wTSXXŵl = 0 l = 1, · · · , k − 1, (1)

whereM = XTY Y TX and SXX represents the sample covariance matrix of the predictors.

For univariate PLS, this objective function can be interpreted as follows (Frank and Friedman

1993):

max
w

cor2 (Y ,Xw) var (Xw) .

SPLS (Chun and Keleş in press) incorporates variable selection into PLS by solving the

following minimization problem instead of the original PLS formulation (1):

min
w,c
−κwTMw + (1− κ) (c− w)T M (c− w) + λ1 ‖c‖1 + λ2 ‖c‖2 , (2)

subject to wTw = 1, where M = XTY Y TX. This formulation promotes exact zero

property by imposing L1 penalty onto a surrogate of direction vector (c) instead of the

original direction vector (w), while keeping w and c close to each other. Here, L2 penalty

takes care of the potential singularity of M . This formulation can be solved efficiently as

described in Chun and Keleş (in press). One special case is worth mentioning here. If the

response Y is univariate, then the solution of this formulation results in a soft thresholded

direction vector:

ĉ = (|Z| − λ1/2)+ sign (Z) ,

where Z = XTY/||XTY || and (x)+ = max(0, x). Chun and Keleş (in press) recast this

soft thresholding as

ĉ =

(
|Z| − η max

1≤j≤p
|Zj|

)
+

sign (Z) ,
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where 0 ≤ η ≤ 1 and justify setting 0 < κ ≤ 0.5 and λ2 = ∞. Therefore, we have two

key tuning parameters, η and K, in this formulation. Note that controlling η instead of the

direction vector specific sparsity parameters λk, k = 1, · · · , K, avoids combinatorial tuning

of the set of sparsity parameters and provides a bounded range for the sparsity parameter,

i.e., 0 ≤ η ≤ 1. Furthermore, if η = 0, then SPLS coincides with PLS.

3 Classification with SPLS

3.1 SPLS Discriminant Analysis

SPLSDA (SPLS Discriminant Analysis) is a direct application of the original SPLS and

closely follows the PLSDA approach of Nguyen and Rocke (2002a,b). We first construct

latent components using SPLS regression by treating the categorical response as a continuous

variable. For binary response, we use {0, 1} dummy coding. We will provide below some

further motivation for this choice. For multicategorical response, we utilize the reference cell

coding employed by Nguyen and Rocke (2002a) and Boulesteix (2004). This coding scheme

assumes that the response can be one of the (G+ 1) classes denoted by 0, 1, · · · , G, where 0

is the ’baseline’ class, e.g., control group. Then, the recoded response matrix is defined as a

n × (G + 1) matrix with elements y∗i,(g+1) = I(yi = g) for i = 1, · · · , n and g = 0, 1, · · · , G,

where I(A) is an indicator function of event A. The resulting response matrix Y ∗ is column

centered before the SPLS fit. After construction of the latent components, we fit a classifier.

For the last step of SPLSDA, we can choose from multiple classification methods because

the number of latent components (K) is usually much smaller than the sample size n. Linear

classifiers such as linear discriminant analysis (LDA) and logistic regression are commonly

used. In this context, linear classifiers might be more preferable from the interpretation

point of view. Let β̂
LC

denote coefficient estimates of the latent components from a linear

classifier. Then, we can obtain coefficient estimates for the original predictors as β̂ = Wβ̂LC

because T β̂
LC

= XWβ̂
LC

= Xβ̂.

A curious aspect of the above procedure is treating the categorical response as a con-

tinuous variable and the choice of the dummy coding. We next investigate this aspect for

both multicategory and binary classification. Proofs of theorems 1 and 2 are provided in

Appendix.
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Theorem 1. Consider the response matrix Y with reference cell coding and let Y ∗ represent

its column centered version. Let µ̂j,g and ng be the sample mean of the j-th predictor in

class g and the sample size of class g, respectively. Let n be the overall sample size, i.e.,

n = n0 + n1 + · · ·+ nG, and n−g be the sample size excluding g-th class, i.e., n−g = n− ng.
Then, the first direction vector of SPLS is obtained by

ĉ = argmaxc

G∑
g=0

(ngn−g
n

)2
(

p∑
j=1

cj(µ̂j,g − µ̂j,−g)

)2

− λ1 ‖c‖1 ,

where cj is the j-th element of the direction vector c.

This result indicates that contribution of each class to the construction of direction

vectors is affected simultaneously by both the class sample size (through (ngn−g/n)) and

the discrepancy between the within- and out-of-class sample means across predictors. As

a result, the first direction vector of SPLS is likely to be most affected by the class with

larger sample size when the effect sizes of the predictors across the classes are comparable.

We next consider the binary classification case where the effect of class size diminishes since

(ngn−g/n) is the same for both classes.

Theorem 2. Consider the binary response Y with {0, 1} dummy coding. Then, the first

direction vector of SPLS with the mean centered response Y ∗ has components of the form:

ĉj = a (|µ̂j,1 − µ̂j,0| − λ∗1)+ sign (µ̂j,1 − µ̂j,0) , j = 1, · · · , p,

where λ∗1 is a linear function of the sparsity parameter λ1 on the first direction vector and

a is some positive constant which does not depend on j. Moreover, if the columns of the

predictor matrix are scaled to unit variance, then

ĉj = a (f(|tj|)− λ∗1)+ sign (tj) , j = 1, · · · , p,

where tj is the two sample t-statistic for j-th variable and f is some strictly monotone function

that does not depend on j.

In summary, for binary classification, the j-th element of the first direction vector of

SPLSDA is equivalent to the soft thresholded difference of the sample means of the two
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classes for the j-th predictor up to a scalar. Moreover, if the columns of the predictor matrix

are scaled to unit variance, then it is equivalent to soft thresholded two sample t-statistic for

the j-th predictor up to a scalar. This result is an extension of the property that ordering

of the variables based on the first PLS component coincides with the ordering based on the

widely used ratio of between to within sum-of-squares (Boulesteix 2004). Furthermore, it

establishes the connection of SPLSDA to variable filtering with two sample t-statistics that

is commonly employed for binary classification. As a result, SPLSDA has the ability to

include variables that variable filtering would select in construction of very first direction

vector. Moreover, it can select additional variables, i.e., variables that become significant

once the response is adjusted for other variables, in the construction of the subsequent

direction vectors.

This simple extension of SPLS for classification has two appealing properties. First,

it inherits the simultaneous dimension reduction and variable selection property of SPLS.

Second, it is computationally efficient since it only requires computational time of one run

of SPLS and a classifier.

3.2 Sparse Generalized Partial Least Squares (SGPLS)

We next develop SGPLS (Sparse Generalized PLS) as a more principled version of SPLS

classification. It extends SPLS to the GLM framework. Consider the logistic regression

model with the logit link function:

log

(
pi

1− pi

)
= xTi β,

where pi = P (yi = 1 | xi) and xi is the i-th row vector of X. The log likelihood can be

explicitly written as

l (β) =
∑n

i=1

{
yix

T
i β − log

(
1 + exp(xTi β)

)}
.

This minimization problem can be solved with the Newton-Raphson algorithm which results

in the iteratively re-weighted least squares (IRLS). Specifically, for the current estimates β̃,
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we solve the following weighted least squares problem:

min
β

∑n

i=1
vi
(
zi − xTi β

)2
, (3)

where

p̃i = exp(xTi β̃)/
(

1 + exp(xTi β̃)
)

(estimated success probability), (4)

zi = xTi β̃ + (yi − p̃i)/ (p̃i (1− p̃i)) (working response), (5)

vi = p̃i (1− p̃i) (weights). (6)

SPLS can be incorporated into the GLM framework by solving this weighted least squares

problem using SPLS. In particular, the direction vectors of SGPLS are obtained by solving

the following optimization problem:

min
w,c
−κwTMw + (1− κ) (c− w)T M (c− w) + λ1 ‖c‖1 + λ2 ‖c‖2 (7)

subject to wTw = 1, where M = XTV zzTV X, V is a diagonal matrix with entries vi,

and z = (z1, · · · , zn) is the vector of working responses. When w and c become close to

each other at convergence, the resulting direction vector can be interpreted as follows:

ĉ = arg max
c

{
cor2

(
V 1/2z,V 1/2Xc

)
var
(
V 1/2Xc

)
− λ1 ‖c‖1 − λ2 ‖c‖2

}
.

In the case of univariate response, the solution of the above formulation coincides with an

univariate soft thresholded direction vector. Specifically, the solution is given by

ĉ = (|Z| − η max
1≤j≤p

|Zj|)+sign(Z),

where Z = XTV z/||XTV z||.
SGPLS can be generalized to the multicategorical response by considering the following

multinomial model:

log

(
pig
pi0

)
= xTi βg,

for g = 1, · · · , G and pig = P (yi = g | xi). We set the coefficient β0 for the baseline to

zero for identifiability. In the multinomial logistic regression model, the log-likelihood to be
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maximized is given by:

l (β) =
∑n

i=1

{∑G

g=1
yigx

T
i βg − log

(
1 +

∑G

g=1
exp(xTi βg)

)}
.

This log likelihood can be maximized using the Newton-Raphson algorithm as in the case of

logistic regression model. However, since all the regression coefficients are replaced with their

vector counterparts to accommodate multicategory response, such a naive implementation

requires large sparse matrix calculations. In order to avoid this, we iteratively solve the

profile log likelihood for βg while fixing βl, l 6= g, for g, l = 1, · · · , G. Specifically, for the

current estimates β̃ and class g, we solve the following weighted least squares problem:

min
βg

∑n

i=1
vig
(
zig − xTi βg

)2
, (8)

where

p̃ig = exp(xTi β̃g)/

(
1 +

G∑
g=1

exp(xTi β̃g)

)
(estimated success probability), (9)

zig = xTi β̃g + (yig − p̃ig)/ (p̃ig (1− p̃ig)) (working response), (10)

vig = p̃ig (1− p̃ig) (weights). (11)

This problem has a similar form to that of the binary classification. Hence, we can obtain the

weighted SPLS direction vectors similarly. As a result, we avoid large matrix calculations

and fully take advantage of the block diagonality of the weight matrix. Our computational

experiments indicated that this approach is computationally more efficient than the naive

Newton-Raphson approach (data not shown). A similar approach was also employed in

Friedman et al. (2008). SGPLS can be summarized as an algorithm as follows:
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SGPLS algorithm (binary and multicategorical response)

1. Initialize the number of iterations nstep = 0, active set, i.e. set of selected variables

for SPLS A = {}, and change in estimates ∆β̂ = ∞. Initialize estimated success

probabilities as follows using the non-centered version Y ∗∗ of the dummy coded

response: p̂i = (y∗∗i + 0.5)/2 for binary response and p̂ig = 2(y∗∗ig + 0.5)/(G + 3) for

multicategorical response.

2. While ( ∆β̂ > ε and n.step < max.step ),

(a) • Binary response.

i. If n.step > 0, calculate p̂i as in (4) for the current estimate β̂
current

.

ii. Update zi and vi given in (5) and (6) using p̂i.

iii. Obtain β̂ by solving the SGPLS equation in (7) for given η and K.

• Multicategorical response.

For g = 1, · · · , G:

i. If n.step > 0, calculate p̂ig as in (9) for the current estimate β̂
current

.

ii. Update zig and vig given in (10) and (11) using p̂ig.

iii. Obtain β̂g by solving the SGPLS equation in (7) with given η and K.

(b) Update ∆β̂ = mean(|β̂ − β̂current|)/mean(|β̂current|), β̂current = β̂, and

nstep = nstep+ 1.

4 Simulation Studies

Boulesteix (2004) compared PLS-based dimension reduction and classification with some

of the best stat-of-the-art classification methods on several datasets with computational

experiments and illustrated that it is best in terms of classification accuracy for most of

the datasets. Therefore, in this section, we compare and contrast our proposed methods,

SPLSDA and SGPLS, with PLSDA and GPLS which utilize PLS principle without built-in

variable selection. Previous work for both PLSDA and GPLS show that their classification

accuracy might depend on the number of variables included as a result of variable filtering
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a priori to PLS fit. Hence, we also consider versions of PLSDA and GPLS with variable

filtering. Specifically, we consider t-statistic for binary classification and all pairwise t-

filter for multicategory classification. For binary classification, the two sample t-statistic

is calculated for all the variables. Then, variables are ranked according to their absolute

value of t-statistics and the top ranking variables are passed down to PLS fit. There are no

well-established rules for thresholding the ranked list of variables (Boulesteix 2004). In our

simulations, we treat the top m variables to include as a tuning parameter. For multicategory

classification, all (G+1)G/2 pairwise absolute mean differences of j-th variable, |µ̂j,g− µ̂j,g′|,
are computed and then compared to a critical score,

tα/2,n−(G+1)

√
MSE

(
1

ng
+

1

ng′

)
,

for g < g′ ∈ {0, 1, · · · , G}, where MSE is the estimate of variability from the analysis of

variance (ANOVA) model with one factor and (G + 1) groups. Then, PLS is fit using the

variables for which m of the pairwise absolute mean differences exceed the critical score.

Here, m is treated as a tuning parameter.

4.1 Simulations for Binary Classification

We set the data generating mechanism for binary classification as follows by first generating

three latent variables H1, H2, and H3 from N (0, 52). Then, covariates were generated as

x1, · · · , x5 = H1 + N (0, 1), x6, · · · , x10 = H2 + N (0, 1), x11, · · · , x15 = H3 + N (0, 1), and

x16, · · · , xp ∼ N (0, 1). The matrix of covariates was scaled to have mean zero and variance

one. In order to generate response, we first generated p = P (Y = 1 | H1, H2, H3) =

g(3H1 − 4H2), where g is the inverse of the link function. Then, the binary response was

generated as Y ∼ Bernoulli(p). In this set-up, we observe groups of surrogates, x1−x5 and

x6 − x10, of the true covariates that affect the response.

In our comparisons, logistic regression was used as the classifier in SPLSDA and PLSDA

since GPLS and SGPLS directly utilize logistic regression. For all of these methods, number

of components K was searched over 1, 2, · · · , 5 and η was searched over 0.1, 0.2, · · · , 0.9 in

SPLSDA and SGPLS. For variable filtering in PLSDA and GPLS, we searched m over both

10%-100% with increments of 10% and 1%-100% with increments of 1%.
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Table 1: Variable selection performance and classification accuracy of PLSDA, GPLS,
SPLSDA, and SGPLS for binary classification. For PLSDA and GPLS, two versions of
variable filtering are considered. Variable filtering tuning for PLSDA-g1 and GPLS-g1 is over
10%, 20%, · · · , 100%, whereas for PLSDA-g2 and GPLS-g2, a finer grid of 1%, 2%, · · · , 100%
is used. Misclassification: number of misclassified observations among 1000 test observations.
A: number of variables selected among 1000. H: number of true variables in A. The maximum
value of H is 10. Reported are the median values across 100 simulation runs. Numbers in
parentheses are the corresponding interquantile ranges (IQRs). For PLSDA and GPLS, A
and H are always 1000 and 10, respectively, by construction.

Method K η Misclassification (1000) A (1000) H (10)
PLSDA 1 - 248 (35.25) 1000 (0) 10 (0)
GPLS 1 - 246.5 (35.25) 1000 (0) 10 (0)

PLSDA-g1 1 - 169 (36.25) 100 (0) 10 (0)
GPLS-g1 1 - 172 (44) 100 (0) 10 (0)

PLSDA-g2 2 - 51 (40.5) 10 (0) 10 (0)
GPLS-g2 2 - 52 (30.75) 10 (0) 10 (0)
SPLSDA 1 0.8 68.5 (79.5) 10 (1) 10 (1)
SGPLS 2 0.9 58 (42.75) 10 (0) 10 (0)

We simulated 100 training and test datasets and tuned all the methods by 5-fold cross-

validation for each dataset. We set n = 100 and p = 1000 for the training dataset and

n = 1000 for the test dataset. Table 1 displays results over 100 simulation runs. These

results indicate that SPLSDA and SGPLS perform similar to each other and outperform

their counterparts PLSDA and GPLS. Consistent with previous results in literature, variable

filtering improved the classification accuracy of PLSDA and GPLS and helped to capture

the true set of variables. When the variables were searched over top 10%, 20%, · · · , 100%,

SPLSDA and SGPLS still significantly outperformed PLSDA and GPLS (PLSDA-g1 and

GPLS-g1) both in classification accuracy and variable selection. When the variables were

searched over top 1%, 2%, · · · , 100%, PLSDA and GPLS (PLSDA-g2 and GPLS-g2) slightly

outperformed SPLSDA and SGPLS. This is not unexpected because the variable filter is

allowed to pick exactly the top 1% of the variables which is likely to coincide with the

true set of variables. In this sense, the classification accuracy attained by PLSDA-g2 and

GPLS-g2 might be close to the best possible accuracy for this simulation setting. However,

searching over the finer grid for m in PLSDA-g2 and GPLS-g2 increased the computational

time ten fold compared to PLSDA-g1 and GPLS-g1. In contrast, by just searching over

ten values of the tuning parameter η (η = 0.1, 0.2, · · · , 0.9), SPLSDA and SGPLS attained
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comparable classification accuracy to PLSDA-g2 and GPLS-g2 and selected only the true

set of variables most of the time.

In order to understand the variable selection properties of SPLSDA and SGPLS, we ex-

amined the resulting coefficient estimates. Table 2 displays coefficient estimates for PLSDA,

SPLSDA, GPLS, and SGPLS across three sets of covariates for 100 runs. For PLSDA and

SPLSDA, the coefficient estimates were calculated as β̂ = Ŵ β̂
LC

, where Ŵ denotes the

matrix of estimated direction vectors and β̂LC is the vector of coefficient estimates obtained

from the logistic regression. By construction, variables x1 − x10 correspond to true sig-

nals, i.e., relevant variables, and should have nonzero estimates. More specifically, variables

x1 − x5 have positive relationships with the response while variables x6 − x10 have negative

relationships. In contrast, variables x11−x1000 correspond to noise variables and should have

zero estimates. On average, all of the four methods display this trend. However, for PLSDA

and GPLS, the separation between the relevant and noise variables is much smaller com-

pared to that of SPLSDA and SGPLS. Although PLSDA and GPLS have relatively small

nonzero coefficients for the noise variables, the fact that these are not exactly zero increases

misclassification rates about four fold compared to SPLSDA and SGPLS.

Table 2: Coefficient estimates of PLSDA, SPLSDA, GPLS, and SGPLS for 100 runs of the
binary classification simulation. For PLSDA and SPLSDA, the coefficient estimates were

calculated as β̂ = Ŵ β̂
LC

, where Ŵ is the matrix of estimated direction vectors and β̂
LC

is
the vector of coefficient estimates of the latent components obtained from the logistic regres-
sion. First ten variables, corresponding to β̂1 − β̂10, represent true signals, by construction.
“True” coefficients were estimated using only the true signals and details of the estimation
procedure are provided in the text. Reported are the median values across 100 simulation
runs. Numbers in the parentheses are the corresponding IQRs.

PLSDA/SPLSDA

Method β̂1 − β̂5 β̂6 − β̂10 β̂11 − β̂1000

PLSDA 1.586 (1.160) -2.166 (1.645) -0.001 (0.447)
SPLSDA 1.962 (2.135) -2.437 (2.932) 0 (0)

GPLS/SGPLS

Method β̂1 − β̂5 β̂6 − β̂10 β̂11 − β̂1000

GPLS 0.078 (0.049) -0.100 (0.070) -0.000 (0.028)
SGPLS 0.291 (0.076) -0.386 (0.061) 0 (0)
“true” 0.377 - -0.501 - 0 -

Chun and Keleş (in press) illustrated that, in the liner regression context, PLS coefficient
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estimates are attenuated when the number of noise variables is overwhelmingly large. We

investigated whether the same phenomena occurs within the context of PLS-based classifi-

cation with GPLS. We first characterized the true values of the coefficients corresponding to

the relevant variables when we are given only these variables and do not have the variable

selection problem. Note that since the data generating process is not based on the covariates

x1, · · · , x10, “true” values of these coefficients are unknown per se. We generated n = 20, 000

observations from the same data generating distribution and fit a logistic regression using

only x1, · · · , x10. We repeated this process 500 times and took the resulting means of the

estimates as the true values. The estimated “true” coefficients are given in Table 2. Table

3 lists the ratios of squared bias, variance, and mean squared error of GPLS to SGPLS

averaged within the three covariate groups. GPLS estimates were overall smaller in mag-

nitude than the corresponding true values, confirming the attenuation effect. Furthermore,

although imposing sparsity increased variability of the estimates of the relevant covariates

compared to GPLS, the reduction in bias compensated this, leading to a smaller MSE for

SGPLS. For the irrelevant variables, SGPLS outperformed GPLS both in bias and variance.

Table 3: Squared bias, variance and mean squared error (mse) ratios of GPLS to SGPLS
across three sets of variables for binary classification.

GPLS/SGPLS of
Variables Bias2 Var mse
x1 − x5 7.76 0.33 3.36
x6 − x10 11.44 0.36 4.40
x11 − x1000 8.59 7.48 7.48

4.2 Simulations for Multicategory Classification

We considered a response with four classes in this simulation. All classes were set to have

the same number of observations: n0 = n1 = n2 = n3, where n0 + n1 + n2 + n3 = n. The

latent structure was generated as a matrix H = [H1, H2, H3], with rows corresponding to g-th

class generated from N3(µg, I), for g = 0, 1, 2, 3, where µ0 = (0, 0, 0)T ,µ1 = (4, 0, 0)T ,µ2 =

(0, 4, 0)T , and µ3 = (0, 0, 4)T . Finally, we generated covariates x1, · · · , x5 = H1 +0.5N (0, 1),

x6, · · · , x10 = H2 +0.5N (0, 1), x11, · · · , x15 = H3 +0.5N (0, 1), and x16, · · · , xp = 0.5N (0, 1).

In this set-up, x1, · · · , x5 discriminate between classes 0 and 1, x6, · · · , x10 between classes
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0 and 2, and x11, · · · , x15 between classes 0 and 3. The covariate matrix was scaled to

have mean zero and variance one. We performed 100 simulation runs and chose all the

tuning parameters by 5-fold cross-validation for each dataset. We set n = 100 and p = 1000

for the training dataset and n = 1000 for the test dataset. GPLS is excluded from this

comparison since it is computationally too slow to perform multiple simulation runs in this

high dimensional setting.

Table 4 summarizes the results. As in the binary classification case, SPLSDA and SGPLS

outperform PLSDA both in variable selection and classification accuracy. Although variable

filtering improved the classification accuracy of PLSDA, SPLSDA and SGPLS still outper-

form PLSDA in terms of classification accuracy and capturing the true variables. SPLSDA

performs only slightly worse than SGPLS in terms of classification accuracy; however, a

closer look on the results reveals some differences between the two approaches.

Table 4: Variable selection performance and classification accuracy of PLSDA (PLSDA-g
for PLSDA with variable filtering), SPLSDA, and SGPLS for multicategory classification.
Misclassification: number of misclassified observations among 1000 test observations. A:
number of variables selected among 1000. H: number of true variables in A. The maximum
value of H is 15. Reported are the median values across 100 simulation runs. Numbers in
the parentheses are the corresponding IQRs. For PLSDA, A and H are always 1000 and 15,
respectively, by construction.

Method K η Misclassification (1000) A (1000) H (15)
PLSDA 3 - 280 (37) 1000 (0) 15 (0)

PLSDA-g 3 - 104 (30.25) 36 (7) 15 (0)
SPLSDA 3 0.9 53 (22.25) 15 (1) 15 (0)
SGPLS 1 0.9 47.5 (10) 15 (0) 15 (0)

Table 5 displays the final coefficient estimates from SPLSDA (η = 0.9 and K = 3) and

SGPLS (η = 0.9 and K = 1) for one of the simulated datasets. For SPLSDA, estimates

were calculated as in the binary classification simulation. Recall that for the multicategorical

response, we have a 1000 dimensional vector of coefficients for each class compared to the

reference class. Both of the methods identify the correct set of variables, i.e., variables 1 to

15 in this set-up. The sizes of the estimates reveal an interesting difference between SPLSDA

and SGPLS. In SGPLS, variables that discriminate a given class from the baseline have non-

zero estimates whereas the other variables have exactly zero estimates in the corresponding

class coefficient vector. In contrast, for SPLSDA, variables that discriminate a given class

16



from the baseline have high coefficient estimates (in absolute value), however, the rest of the

relevant variables have non-zero, albeit relatively small, estimates in the corresponding class

coefficient vector. This observation illustrates that, compared to SPLSDA, SGPLS might

provide more insights into variables that discriminate different classes from the baseline. A

good way to visualize such information is to look at the density of the latent components

across different classes. Panels (a) to (c) in Figure 1 display the distribution of the first

latent components (one for each class by construction) across different classes for SGPLS. As

implied by Table 5, the first latent component for each class versus the baseline discriminates

the corresponding class from the baseline. Panel (d) in Figure 1 displays the scatter plot of

classes on the first and second SPLSDA latent components. This plot supports that SPLSDA

finds the set of direction vectors discriminating all classes simultaneously. Therefore, it does

not particularly highlight which variables are most important for each class.

Table 5: Coefficient estimates of SPLSDA (η = 0.9 and K = 3) and SGPLS (η = 0.9 and
K = 1) for one simulated dataset from the multicategory classification simulations. For
SPLSDA, as in the binary classification simulation, the coefficient estimates were calculated

as β̂ = Ŵ β̂
LC

, where Ŵ are estimated direction vectors and β̂
LC

is the vector of coefficient
estimates of the latent components obtained from the logistic regression. In each cell, the
minimum and maximum values of the corresponding coefficient estimates list. Empty cells
have zero coefficient estimates.

SPLSDA

class 0 vs. 1 class 0 vs. 2 class 0 vs. 3

β̂1 − β̂5 ( 2.87, 2.96 ) ( 1.11, 1.44 ) ( -0.29, -0.15 )

β̂6 − β̂10 ( -0.52, -0.24 ) ( 3.35, 4.06 ) ( -0.29, 0.26 )

β̂11 − β̂15 ( -0.29, -0.11 ) ( 0.19, 0.54 ) ( 3.44, 3.59 )

β̂16 − β̂1000

SGPLS

class 0 vs. 1 class 0 vs. 2 class 0 vs. 3

β̂1 − β̂5 ( 0.39, 0.40 )

β̂6 − β̂10 ( 0.42, 0.47 )

β̂11 − β̂15 ( 0.47, 0.49 )

β̂16 − β̂1000
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Figure 1: Panels (a) - (c) display the distribution of the first SGPLS latent components
for each of class 1 versus class 0 (baseline), class 2 versus class 0, and class 3 versus class 0,
respectively. Panel (d) is the scatter plot of classes on the first and second SPLSDA latent
components.
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4.3 Simulations for comparing SPLSDA and SGPLS in multicat-

egory classification with unbalanced classes

In the above two simulation studies, SPLSDA and SGPLS exhibit more or less similar perfor-

mances both in terms of classification accuracy and variable selection despite their structural

differences. In this section, we perform a simulation study for investigating the implications

of Theorem 1, that is, SPLSDA might be prone to missing variables that exclusively dis-

criminate classes with small sample sizes under the assumption that the effect sizes, i.e.,

coefficients of the class specific variables, are comparable across classes. In contrast, since

SGPLS finds direction vectors separately for each pair of g-th group versus the baseline

(0-th class), it might be able to detect such variables. This is an important practical is-

sue because such unbalanced class compositions often arise in real datasets. We considered

the following multicategory simulation setting. We generated a response with three classes

where one of the classes had much smaller sample size compared to others: n0 = n1 = 4.5n2

and n2 = 10. The latent structure was generated as a matrix H = [H1, H2], with rows

corresponding to the g-th class generated from N2(µg, I) for g = 0, 1, 2, where µ0 = (0, 0)T ,

µ1 = (4, 0)T , and µ2 = (0, 4)T . Finally, we generated covariates x1, · · · , x5 = H1+0.5N (0, 1),

x6, · · · , x10 = H2 + 0.5N (0, 1), and x11, · · · , xp = 0.5N (0, 1), with p = 1000. In this set-

up, x1, · · · , x5 discriminate between classes 0 and 1, and x6, · · · , x10 between classes 0 and

2. As in the previous section, we performed 100 simulation runs and chose all the tuning

parameters by 5-fold cross-validation for each dataset.

Table 6 shows the results. When n = 100, SPLSDA missed the variables discriminating

class 2 from class 0. In contrast, SGPLS picked up all of the 10 relevant variables at the

expense of a larger active set compared to SPLSDA. Specifically, SGPLS selected some false

positives for the class 0 vs. 1 comparison while it generally selected only the true signals for

the class 0 vs. 2 comparison (the median of A is 18 for the class 0 vs. 1 comparison and 11 for

the class 0 vs. 2 comparison). In other words, SGPLS sacrificed some specificity for the class

0 vs. 1 comparison in order to obtain better sensitivity for the class 0 vs. 2 comparison. The

main reason for this is that SGPLS uses a common η to control variable selection for both of

the class 0 vs. 1 and the class 0 vs. 2 comparisons. If we employ separate tuning parameters

for each of the class comparisons, the specificity of SGPLS might improve at the expense of

a significant increase in computational time required for tuning. Next, we investigated how

19



the variable selection properties of SPLSDA and SGPLS change for the unbalanced case as

the sample size increases. As Table 6 indicates, when n = 300, SPLSDA is able to choose all

of the 10 relevant variables. This is consistent with Theorem 1 since larger sample size leads

to better estimates for the discrepancy of the within- and out-of-class sample means. SGPLS

has more false positives for the class 0 vs. 1 comparison and the specificity of SGPLS is not

improved by larger sample size (the median of A is 65.5 for the class 0 vs. 1 comparison and

10.5 for the class 0 vs. 2 comparison).

Table 6: Variable selection performance and classification accuracy of SPLSDA and SG-
PLS for unbalanced multicategory classification. Two different sample sizes for the training
dataset were considered (n = 100 and n = 300), while the sample sizes of classes have the
same ratio (n0 : n1 : n2 = 9 : 9 : 2). Misclassification: number of misclassified observations
among 1000 test observations. A: number of variables selected among 1000. H: number of
true variables in A. The maximum value of H is 10. Reported are the median values across
100 simulation runs. Numbers in the parentheses are the corresponding IQRs.

n = 100;n0 = n1 = 45, n2 = 10

Method K η Misclassification (1000) A (1000) H (10)
SPLSDA 2 0.9 124 (42) 6 (8) 5 (5)
SGPLS 2 0.7 84 (24.75) 27 (34) 10 (0)

n = 300;n0 = n1 = 135, n2 = 30

Method K η Misclassification (1000) A (1000) H (10)
SPLSDA 3 0.9 42 (21.25) 13 (21.5) 10 (0)
SGPLS 2 0.5 83 (21.25) 74 (141.25) 10 (0)

5 Computational Experiments for Tumor Classifica-

tion with Microarray Gene Expression Data

In order to evaluate our proposed methods for classification with high dimensional microar-

ray data, we considered various publicly available gene expression datasets. Here, we present

detailed results for prostate (Singh et al. 2002) and lymphoma (Alizadeh et al. 2000) datasets

which involve binary and multicategorical classification, respectively. Results on five addi-

tional publicly available datasets are provided as online supplements. Both of the datasets

were pre-processed (arrays were normalized, imputed, log transformed, and standardized

to zero mean and unit variance across genes) as described in Dettling (2004) and Dettling

and Bühlmann (2002). The prostate dataset consists of 52 prostate tumor and 50 normal
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samples. As a result of pre-processing, we have expression of p = 6, 033 genes across these

n = 102 samples. The lymphoma dataset provides expression for p = 4, 026 genes across

n = 62 patients with 42 samples of diffuse large B-cell lymphoma (DLBCL), 9 samples of

follicular lymphoma (FL), and 11 samples of chronic lymphocytic leukemia (CLL).

We performed the following computational experiment on these datasets. We fitted

the classification methods using two thirds of the datasets as the training data, while the

remaining one thirds were predicted as the test data This procedure was repeated 100 times

and each method was tuned by 5-fold cross-validation using the training data from each

of these partitions. For prostate dataset, the t-statistic variable filtering method was used

by searching m over top 10, 20, 30, 40, 50, 100, 200, 500, 1000, and 1500 variables using cross-

validation. For lymphoma dataset, all pairwise t-filter was applied. In the lymphoma dataset,

DLBCL group, which is the largest class, was used as the baseline.

Results for prostate data are presented in Table 7. All of the methods basically show

similar classification accuracy by misclassifying about 3 test subjects out of 35. We note that

variable filtering did not improve the classification accuracy of PLSDA or GPLS and this

is inline with the observation of Boulesteix (2004) that, for PLS, variable selection is often

unnecessary to achieve an excellent classification accuracy for datasets with many relevant

variables and only a few thousand variables. Figure 2 provides a closer look on the variable

selection properties of SPLSDA and SGPLS for a typical partition of the dataset. For this

particular partition, SPLSDA selected 44 genes, 25 of which are among the 157 genes selected

by SGPLS. Panels (a) and (b) of Figure 2 display heatmaps of the expression data for the

selected genes of SPLSDA and SGPLS, respectively. Top 52 rows are tumor samples, denoted

by “+”, and bottom 50 rows are normal samples, denoted by “-”. Horizontal side bar on

top of each plot reflects the signs and magnitudes of the coefficient estimates. Columns

(genes) are clustered according to their expression across the 102 samples. Genes unique

to each method are indicated by “∗” on the corresponding heatmaps. We observe that,

for both of the methods, selected genes cluster nicely. This eludes to the group selection

property of SPLS, that is, genes highly correlated with each other and the response are

selected simultaneously.

Table 7 further displays the results for the lymphoma dataset. This dataset is rela-

tively easy and all methods have less than 2 misclassifications with SGPLS showing the best

classification accuracy. Here, variable filtering did not improve the classification accuracy
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Table 7: Variable selection and classification accuracy of PLSDA, GPLS, SPLSDA, and
SGPLS for the tumor classification with microarray gene expression data. PLSDA-g and
GPLS-g refer to PLSDA and GPLS with variable filtering. Misclassification: number of mis-
classified observations among test observations. A: number of variables selected. Reported
numbers are median values of 100 runs. Numbers in the parentheses are the corresponding
IQRs.

Binary response prostate dataset

Method K η Misclassification (35) A (6033)
PLSDA 4 - 3 (2) 6033 (0)
GPLS 4 - 3 (1) 6033 (0)
PLSDA-g 3 - 4 (3) 100 (482.5)
GPLS-g 3 - 3 (2) 100 (480)
SPLSDA 3 0.8 3 (2) 62.5 (242.75)
SGPLS 3 0.55 3 (2) 163 (836.5)

Multicategory response lymphoma dataset

Method K η Misclassification (21) A (4026)
PLSDA 2 - 1 (2) 4026 (0)
PLSDA-g 2 - 1 (2) 197 (1496)
SPLSDA 2 0.7 2 (2) 24.5 (38)
SGPLS 2 0.6 0 (1) 69 (133)

of PLSDA either. Figure 3 provides a closer look on the variable selection properties of

SPLSDA and SGPLS for a typical partition of the dataset. Panel (a) displays the venn

diagram comparison of the variables selected by each method. Note that, for SGPLS, we

have an active set for each of DBLCL vs. FL and DBLCL vs. CLL classes. Panels (b)-(d)

display heatmaps of the expression data for the selected genes for each method. In these

heatmaps, top 11 rows are CLL samples, denoted by “+”, middle 9 rows are FL samples,

denoted by “=”, and bottom 42 rows are DBLCL samples, denoted by “-”. The horizontal

side bars indicate the signs and magnitudes of the coefficient estimates. We observe that

these coefficient estimates cluster well with respect to the expression values. In Panel (b),

which displays the heatmap for SPLSDA, the expression values of the DBLCL group are

clearly different from those of the FL and CLL groups. However, there is almost no differ-

ence in the expression values between FL and CLL samples. This indicates that SPLSDA

mostly selected variables discriminating DBLCL group from the other two groups but it

generally missed variables discriminating FL and CLL groups. In contrast, Panels (c) and

(d) illustrate that SGPLS captured genes discriminating each of the FL and CLL classes

from the DBLCL class separately in addition to genes discriminating both of the FL and
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(b) SGPLS

Figure 2: Comparison of the variables selected by each method for the prostate dataset.
(a) Heatmap of the expression values of the genes selected by SPLSDA. Genes specific to
SPLSDA are marked by “∗”. (b) Heatmap of the expression values of the genes selected
by SGPLS. Genes specific to SGPLS are marked by “∗”. Genes are clustered according to
their expression across 50 normal (denoted by “-”) and 52 tumor (denoted by “+”) samples.
Pink/blue colored horizontal side bar displays the coefficient estimates (pink for positive,
blue for negative).

CLL classes from the DBLCL class.

6 Discussion

We proposed two approaches, SPLSDA and SGPLS, for adapting sparse partial least squares

for classification. These approaches are natural extensions of prior work on classification of

high dimensional data with PLS (Nguyen and Rocke 2002b,a; Boulesteix 2004; Ding and

Gentleman 2004) to incorporate simultaneous variable selection and dimension reduction.

We have observed that both of these approaches outperform their counterparts PLSDA and

GPLS which lack built-in variable selection. By directly incorporating SPLS into a gener-

alized linear model framework, SGPLS provides more insightful results especially for mul-

ticategory classification. Furthermore, it displays higher sensitivity in variable selection in
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(d) SGPLS (DBLCL vs. CLL)

Figure 3: Comparison of the variables selected by each method for the lymphoma dataset.
(a) Venn diagram comparison of the selected genes with SPLSDA (η = 0.7 and K = 2) and
SGPLS (η = 0.6 and K = 2). (b)-(d) Heatmaps of the expression values of the genes selected
by each method. Genes are clustered according to their expression across 42 DBLCL (denoted
by ”-”), 9 FL (denoted by “=”) and 11 CLL (denoted by “+”) samples. The horizontal side
bar displays the coefficient estimates (pink for positive, blue for negative). For SGPLS, genes
specific to DBLCL vs. FL and to DBLCL vs. CLL comparisons are denoted by “*” in their
corresponding heatmaps.
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the case of multicategory classification with small unbalanced class sizes. Although SGPLS

is a more principled approach that incorporates SPLS into generalized linear model frame-

work, the two-stage approach SPLSDA which treats categorical response as numerical for

dimension reduction performs only slightly worse in our binary class simulations, multicat-

egory simulations with balanced class sizes, and majority of the computational experiments

with real data. SPLSDA has two main advantages over SGPLS. First, it is computation-

ally faster. The run time of SGPLS (which is not yet optimized for speed), including the

tuning, is about 11 minutes for a sample size of n = 100 with p = 1000 predictors on a

64 bit machine with 3 GHz CPU. An SPLSDA run takes less than a minute for the same

dataset. Second, since SPLSDA treats dimension reduction and classification in two separate

steps, one has a wide choice of classifiers for its second stage. In the case of multicategory

classification with unbalanced class sizes, SPLSDA might miss variables that discriminate

classes with the smaller sample sizes from the rest of the classes. However, as the sample size

increases, the variable selection performance of SPLSDA improves and it captures the true

signals more accurately. As we have discussed in Section 4, current practice of PLS-based

classification often involves variable filtering before PLSDA or GPLS. However, the choice

of filtering methods and their tuning are still among open questions in high dimensional

classification with PLS. The literature on variable filtering is rich with many pros and cons

for both univariate and multivariate filtering approaches (Boulesteix et al. 2008). Boulesteix

(2004) observed that PLSDA reached best classification accuracy with more than one PLS

component and suggested that subsequent PLS components could be utilized for a better

variable filtering. In a way, adapting SPLS for both PLSDA and GPLS is a principled move

in this direction. We provide an implementation of SPLSDA and SGPLS as an R package

at http://cran.r-project.org/web/packages/spls.
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APPENDIX: PROOFS

A.1. Proof of Theorem 1

Proof. After centering, the i-th row and (g + 1)-th column of response matrix becomes

y∗i,(g+1) = −ng
n
I(yi 6= g) +

n−g
n
I(yi = g).

Then,

cTXTY ∗ = cT

 n0n−0

n


µ̂1,0 − µ̂1,−0

...

µ̂p,0 − µ̂p,−0

 , · · · , nGn−G

n


µ̂1,G − µ̂1,−G

...

µ̂p,G − µ̂p,−G




=

[
n0n−0

n

p∑
j=1

cj(µ̂j,0 − µ̂j,−0), · · · ,
nGn−G
n

p∑
j=1

cj(µ̂j,G − µ̂j,−G)

]
.

Hence,

ĉ = argmaxcc
TXTY ∗(Y ∗)TXc− λ1 ‖c‖1

= argmaxc

G∑
g=0

(ngn−g
n

)2
(

p∑
j=1

cj(µ̂j,g − µ̂j,−g)

)2

− λ1 ‖c‖1

A.2. Proof of Theorem 2

Proof. After centering, the response vector becomes

y∗i = −n1

n
I(yi = 0) +

n0

n
I(yi = 1).

Consider the first direction vector of PLS without the sparsity penalty:

ĉ = a1X
TY

∗
,
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where a1 is a positive constant. The j-th element of ĉ is then

ĉj = a1

n∑
i=1

xijy
∗
i

= a1

(
−n1

n

∑
i:yi=0

xij +
n0

n

∑
i:yi=1

xij

)
= a1

(
−n1

n
n0µ̂j,0 +

n0

n
n1µ̂j,1

)
= a1

n0n1

n
(µ̂j,1 − µ̂j,0)

= a2 (µ̂j,1 − µ̂j,0) ,

where a2 = a1n0n1/n, which is a positive constant that does not depend on j, and xij is

(i, j)-th element of X. From Section 2, we have

ĉj = (|a2(µ̂j,1 − µ̂j,0)| − λ1/2)+ sign (a2(µ̂j,1 − µ̂j,0))

= a2 (|µ̂j,1 − µ̂j,0| − λ∗1)+ sign (µ̂j,1 − µ̂j,0) ,

where λ∗1 = λ1/2a2.

For the second part of the theorem, note that

(n0 + n1 − 1)S2
j = (n0 + n1 − 2)S2

j,p + (µ̂j,1 − µ̂j,0)2n0n1/(n0 + n1),

where S2
j and S2

j,p are the overall and the pooled variances for j-th variable, respectively. If

the columns of the predictor matrix are scaled to unit variance, then S2
j = a3 and S2

j,p =

a4− a5(µ̂j,1− µ̂j,0)2 for positive constants a3, a4, and a5 that do not depend on j. Then, the

squared t-statistic for the j-th variable has the following form:

t2j =
(µ̂j,1 − µ̂j,0)2

S2
j,p(1/n0 + 1/n1)

= g((µ̂j,1 − µ̂j,0)2),

for some strictly monotone function g. Hence,

ĉj = a (f(|tj|)− λ∗1)+ sign (tj) , j = 1, · · · , p,

for some strictly monotone function f and a positive constant a.
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SUPPLEMENTAL MATERIALS

R package “spls”: R package implementing the proposed methods. The package also con-

tains the gene expression datasets used in the article. (GNU zipped tar file)

Additional datasets: Additional publicly available datasets that involve tumor classifica-

tion with high dimensional gene expression data. (GNU zipped tar file)

Additional results: Application on the additional datasets. (PDF file)
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