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Abstract: We propose a general and formal statistical framework for multiple
tests of association between known fixed features of a genome and unknown
parameters of the distribution of variable features of this genome in a popu-
lation of interest. The known gene-annotation profiles, corresponding to the
fixed features of the genome, may concern Gene Ontology (GO) annotation,
pathway membership, regulation by particular transcription factors, nucleotide
sequences, or protein sequences. The unknown gene-parameter profiles, corre-
sponding to the variable features of the genome, may be, for example, re-
gression coefficients relating possibly censored biological and clinical outcomes
to genome-wide transcript levels, DNA copy numbers, and other covariates. A
generic question of great interest in current genomic research regards the detec-
tion of associations between biological annotation metadata and genome-wide
expression measures. This biological question may be translated as the test of
multiple hypotheses concerning association measures between gene-annotation
profiles and gene-parameter profiles. A general and rigorous formulation of the
statistical inference question allows us to apply the multiple hypothesis test-
ing methodology developed in [Multiple Testing Procedures with Applications
to Genomics (2008) Springer, New York] and related articles, to control a
broad class of Type I error rates, defined as generalized tail probabilities and
expected values for arbitrary functions of the numbers of Type I errors and
rejected hypotheses. The resampling-based single-step and stepwise multiple
testing procedures of [Multiple Testing Procedures with Applications to Ge-
nomics (2008) Springer, New York] take into account the joint distribution of
the test statistics and provide Type I error control in testing problems involv-
ing general data generating distributions (with arbitrary dependence structures
among variables), null hypotheses, and test statistics.

The proposed statistical and computational methods are illustrated using
the acute lymphoblastic leukemia (ALL) microarray dataset of [Blood 103
(2004) 2771–2778], with the aim of relating GO annotation to differential gene
expression between B-cell ALL with the BCR/ABL fusion and cytogenetically
normal NEG B-cell ALL. The sensitivity of the identified lists of GO terms
to the choice of association parameter between GO annotation and differen-
tial gene expression demonstrates the importance of translating the biological
question in terms of suitable gene-annotation profiles, gene-parameter profiles,
and association measures. In particular, the results reveal the limitations of
binary gene-parameter profiles of differential expression indicators, which are
still the norm for combined GO annotation and microarray data analyses. Pro-
cedures based on such binary gene-parameter profiles tend to be conservative
and lack robustness with respect to the estimator for the set of differentially
expressed genes. Our proposed statistical framework, with general definitions
for the gene-annotation and gene-parameter profiles, allows consideration of a
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much broader class of inference problems, that extend beyond GO annotation
and microarray data analysis.
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1. Introduction

1.1. Motivation

Experimental data, such as microarray gene expression measures, gain much in rele-
vance from their association with biological annotation metadata, i.e., data on data,
such as, GenBank sequences, Gene Ontology terms, KEGG pathways, and PubMed
abstracts. A challenging and fascinating area of research for statisticians concerns
the development of methods for relating experimental data to the wealth of meta-
data available publicly on the WWW. Tasks include accessing and pre-processing
the data, making inference from these data, and summarizing and interpreting the
results.

In this context, an important class of statistical problems involves testing for
associations between known fixed features of a genome and unknown parameters of
the distribution of variable features of this genome in a population of interest. Here,
features of a genome are said to be fixed, if they remain constant among population
units. In contrast, variable features are allowed to differ among population units.
Fixed features typically consist of gene annotation metadata, that reflect current
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knowledge on gene properties, such as, nucleotide and protein sequences, regula-
tion, and function. Variable features often consist of gene expression measures,
that reflect cellular type/state/activity under particular conditions. The fixed and
variable features define, respectively, gene-annotation profiles and gene-parameter
profiles; the parameter of interest then corresponds to measures of association be-
tween known gene-annotation profiles and unknown gene-parameter profiles.

For instance, for the yeast Saccharomyces cerevisiae (in short, S. cerevisiae), one
may be interested in detecting associations between the vector of mean transcript
(i.e., mRNA) levels for all (approximately 6,500) genes under heat-shock condi-
tions and Gene Ontology (GO) annotation for these genes. The reader is referred
to the Gene Ontology Consortium website (www.geneontology.org) and to Sec-
tion 4, below, for more information on gene ontologies, and to the Saccharomyces
Genome Database (SGD) website (www.yeastgenome.org), for details on S. cere-
visiae. In this example, the population of interest may consist of all heat-shocked
cells from well-defined cultures of a particular strain of S. cerevisiae (e.g., strain
S288C). For each of the three gene ontologies (BP, CC, and MF, as described in
Section 4.1), each gene is annotated with a fixed set of GO terms (i.e., this set is
constant across population units for a given version of the GO Database). Thus,
for a given GO term, one may define a gene-annotation profile as a known, fixed
binary vector indicating for each gene whether it is annotated or not with the
particular GO term. The transcript levels, however, vary among population units
and the gene-parameter profile, i.e., the vector of genome-wide mean transcript
levels in the population of heat-shocked yeast cells, is unknown and may be esti-
mated, for example, from a microarray experiment involving a sample of yeast cells
from the population. The association parameter of interest, between GO annota-
tion and transcript levels, is then a vector of association measures (e.g., two-sample
t-statistics) between the known binary gene-annotation profiles and the unknown
continuous gene-parameter profile.

Similar inference questions arise in many other contexts and involve a variety
of definitions for the gene-annotation profiles, the gene-parameter profiles, and the
association parameters of interest. For example, in cancer microarray studies, one
may seek associations between GO gene-annotation profiles and a gene-parameter
profile of regression coefficients relating (censored) patient survival data to genome-
wide transcript levels or DNA copy numbers. Furthermore, gene-annotation profiles
need not be binary or even polychotomous, and may correspond to pathway mem-
bership, regulation by particular transcription factors, nucleotide sequences, and
protein sequences.

Note that, for the sake of illustration, we focus on gene-level features. However,
our proposed methodology is generic and may be applied to other types of features,
such as those concerning gene isoforms and proteins. For instance, as in alterna-
tive splicing microarray analysis, one may collect data at the finer level of gene
isoforms, where one gene may have multiple isoforms [10]. In this context, isoform-
parameter profiles may refer to the distribution of microarray isoform expression
measures in a well-defined population, while isoform-annotation profiles may con-
sist of exon/intron counts/lengths/nucleotide distributions. One may also consider
protein-level features, where, for example, protein-parameter profiles correspond
to antibody microarray expression measures and protein-annotation profiles refer
to protein function, domain structure, and post-translational modification (e.g.,
Swiss-Prot, www.expasy.org/sprot).
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1.2. Contrast with other approaches

Existing approaches for tests of association with biological annotation metadata fo-
cus primarily on relating microarray gene expression measures and GO annotation.
Relevant articles and software packages include: FatiGO from the BABELOMICS suite
([1, 2]; www.babelomics.org); GOstat ([4]; gostat.wehi.edu.au); Ontologizer
([22]; www.charite.de/ch/medgen/ontologizer); CSEPCT ([28]; genome3.ucsf.
edu:8080/cgi-bin/compareExp.cgi); GSEA-P ([29], [36]; www.broad.mit.edu/
gsea/doc/doc index.html); [37].

Methods proposed thus far suffer from a number of limitations, related, to a large
extent, to the absence of a clear and precise statement of the statistical inference
question. As a result, the analyses often lack statistical rigor and tend to be ad hoc
and dataset-specific.

One of our main contributions is the systematic and precise translation of a
general class of biological questions into a corresponding class of multiple hypothesis
testing problems. A key step in this process is the proper definition of the gene-
annotation profiles, gene-parameter profiles, and association parameters of interest.
This general formulation then allows us to apply the multiple hypothesis testing
methodology developed in [14] and related articles [8, 15, 16, 31–34, 39–42], to
control a broad class of Type I error rates, defined as generalized tail probabilities
(gTP), gTP (q, g) = Pr(g(Vn, Rn) > q), and generalized expected values (gEV),
gEV (g) = E[g(Vn, Rn)], for arbitrary functions g(Vn, Rn) of the numbers of false
positives Vn and rejected hypotheses Rn.

We wish to emphasize the crucial and often ignored distinction between: (i) defin-
ing a parameter of interest, measuring the association between gene-annotation and
gene-parameter profiles, i.e., the statistical formulation of the biological question;
(ii) making inferences, i.e., estimating and testing hypotheses concerning this pa-
rameter, based on a sample drawn from the population under consideration. Most
methods proposed to date focus on (ii), without providing a clear statement of the
question being answered in (i), that is, various estimation and testing procedures
are proposed for an undefined parameter of interest.

Due to its general and rigorous statistical framework, our approach to multiple
tests of association with biological annotation metadata differs in a number of
important ways from current approaches, such as those developed for inference
with Gene Ontology metadata and implemented in the software packages listed on
the Gene Ontology Tools webpage (www.geneontology.org/GO.tools.shtml).

General gene-annotation profiles. Existing approaches typically consider bi-
nary gene-annotation profiles, e.g., vectors of indicators of GO term annotation.
Our general definition of gene-annotation profiles allows consideration of arbi-
trary qualitative and quantitative fixed features of a genome, e.g., membership
of genes to any number of pathways or clusters, exon/intron counts/lengths/
nucleotide distributions, mean transcript levels.

General gene-parameter profiles. Existing approaches typically consider bi-
nary gene-parameter profiles, e.g., vectors of indicators of differential expression.
Our general definition of gene-parameter profiles allows consideration of a much
broader class of testing problems, concerning arbitrary qualitative and quanti-
tative parameters, such as, differences in mean expression levels or regression
coefficients relating expression levels to clinical outcomes.

Estimated gene-parameter profiles. Existing approaches typically assume
known gene-parameter profiles. For example, the list of differentially expressed
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genes from a microarray experiment is usually treated as known and fixed in
subsequent analyses with GO, while in fact it corresponds to an unknown and
estimated parameter. Distinguishing between the definition of a parameter and
inference concerning this parameter, as in Section 3, provides a more rigorous
and general formulation of the statistical question.

General tests of association. Common approaches to tests of association with
GO annotation are typically limited to tests of independence in 2×2 contingency
tables (e.g., based on the hypergeometric distribution, Fisher’s exact test). As
in Table 2, rows correspond to gene annotation with a given GO term (fixed
binary gene-annotation profile) and columns to a gene property of interest, such
as differential expression (treated as a fixed binary gene-parameter profile). The
approach proposed in Section 3 allows consideration of a broader class of biologi-
cal testing problems, while properly accounting for the fact that gene-parameter
profiles are usually unknown and replaced by a random (i.e., data-driven) esti-
mator.

1.3. Outline

This article proposes a general and formal statistical framework for multiple tests
of association with biological annotation metadata, using the multiple hypothesis
testing methodology developed in [14] and related articles.

Section 2 provides an introduction to multiple hypothesis testing. Section 3
presents the proposed statistical framework for multiple tests of association with
biological annotation metadata and discusses in detail the main components of
the inference problem, namely, the gene-annotation profiles, the gene-parameter
profiles, and the association parameters. Multiple testing procedures (MTP) for
tests of association between gene-annotation profiles and gene-parameter profiles
are outlined. Section 4 gives an overview of the Gene Ontology (GO) and R soft-
ware for accessing and analyzing GO annotation metadata (e.g., for assembling GO
gene-annotation profiles). The proposed statistical and computational methods are
illustrated in Section 5, using the acute lymphoblastic leukemia (ALL) microarray
dataset of [13], with the aim of relating GO annotation to differential gene expres-
sion between B-cell ALL with the BCR/ABL fusion and cytogenetically normal
NEG B-cell ALL. Finally, Section 6 summarizes our findings and outlines ongoing
work.

2. Multiple hypothesis testing

This section, based on Chapter 1 of [14], introduces a general statistical framework
for multiple hypothesis testing and summarizes in turn the main ingredients of a
multiple testing problem, including: the data generating distribution; the parame-
ters of interest; the null and alternative hypotheses; the test statistics; the rejection
regions (i.e., cut-offs) for the test statistics; errors in multiple hypothesis testing;
Type I error rate and power; adjusted p-values.

The section also provides an overview of multiple testing procedures developed
in [14, Chapters 2–7], for controlling generalized tail probability and expected value
error rates, including the key choices of a joint null distribution and rejection regions
for the test statistics.

The reader is referred to our book and articles for further detail on the multiple
testing methodology, its software implementation, and its application to a variety of
testing problems in biomedical and genomic research [5–9, 14–16, 26, 31–34, 39–42].
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2.1. Null and alternative hypotheses

Hypothesis testing is concerned with using observed data to make decisions regard-
ing properties of (i.e., hypotheses for) the unknown data generating distribution.

Let Xn ≡ {Xi : i = 1, . . . , n} denote a random sample of n independent and
identically distributed (IID) random variables from a data generating distribution
P , i.e., Xi

IID∼ P , i = 1, . . . , n. Suppose that the data generating distribution P is
an element of a particular statistical model M, i.e., a set of possibly non-parametric
distributions. Let Pn denote the empirical distribution corresponding to the sample
Xn, i.e., the distribution which places probability 1/n on each realization of X.

In order to cover a broad class of testing problems, define M pairs of null and
alternative hypotheses in terms of a collection of M submodels, M(m) ⊆ M, m =
1, . . . , M , for the data generating distribution P . Specifically, the M null hypotheses
and corresponding alternative hypotheses are defined as

(1) H0(m) ≡ I (P ∈ M(m)) and H1(m) ≡ I (P /∈ M(m)) ,

respectively.
The general submodel representation accommodates tests of means, quantiles,

covariances, correlation coefficients, and regression coefficients in linear and non-
linear models (e.g., logistic, survival, time-series models).

In many testing problems, the submodels concern parameters, i.e., functions
Ψ(P ) = ψ = (ψ(m) : m = 1, . . . ,M) ∈ R

M of the data generating distribution P ,
and each null hypothesis H0(m) refers to a single parameter, ψ(m) = Ψ(P )(m) ∈
R. One distinguishes between two types of testing problems for such parametric
hypotheses: one-sided tests,

H0(m) = I (ψ(m) ≤ ψ0(m))(2)
vs. H1(m) = I (ψ(m) > ψ0(m)) , m = 1, . . . , M,

and two-sided tests,

H0(m) = I (ψ(m) = ψ0(m))(3)
vs. H1(m) = I (ψ(m) �= ψ0(m)) , m = 1, . . . , M.

The hypothesized null values, ψ0(m), are frequently zero.
Let

(4) H0 = H0(P ) ≡ {m : H0(m) = 1} = {m : P ∈ M(m)}

denote the set of h0 ≡ |H0| true null hypotheses, where the longer notation H0(P )
emphasizes the dependence of this set on the data generating distribution P . Like-
wise, let

(5) H1 = H1(P ) ≡ {m : H1(m) = 1} = {m : P /∈ M(m)} = Hc
0(P )

be the set of h1 ≡ |H1| = M − h0 false null hypotheses.
The goal of a multiple testing procedure is to accurately estimate, i.e., reject,

the set H1, while probabilistically controlling false positives.
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2.2. Test statistics

A testing procedure is a random or data-driven rule for estimating the set of false
null hypotheses H1 = {m : H0(m) = 0} = {m : P /∈ M(m)}, i.e., for deciding which
null hypotheses should be rejected.

The decisions to reject or not the null hypotheses are based on an M -vector of test
statistics, Tn = (Tn(m) : m = 1, . . . , M), that are functions Tn(m) = T (m;Xn) =
T (m; Pn) of the data Xn, i.e., of the empirical distribution Pn. Denote the typically
unknown (finite sample) joint distribution of the test statistics Tn by Qn = Qn(P ).

As in [14, Chapter 1], for the test of single-parameter null hypotheses of the
form H0(m) = I (ψ(m) ≤ ψ0(m)) or H0(m) = I (ψ(m) = ψ0(m)), m = 1, . . . , M ,
consider two main types of test statistics, difference statistics,

(6) Tn(m) ≡ Estimator − Null value =
√

n(ψn(m) − ψ0(m)),

and t-statistics (i.e., standardized differences),

(7) Tn(m) ≡ Estimator − Null value
Standard error

=
√

n
ψn(m) − ψ0(m)

σn(m)
.

Here, Ψ̂(Pn) = ψn = (ψn(m) : m = 1, . . . , M) denotes an estimator for the parame-
ter Ψ(P ) = ψ = (ψ(m) : m = 1, . . . , M) and (σn(m)/

√
n : m = 1, . . . , M) denote

the estimated standard errors for elements ψn(m) of ψn.
Further suppose an asymptotically linear estimator ψn of the parameter ψ,

with M -dimensional vector influence curve (IC) IC(X|P ) = (IC(X|P )(m) : m =
1, . . . ,M), such that

(8) ψn(m) − ψ(m) =
1
n

n∑
i=1

IC(Xi|P )(m) + oP (1/
√

n)

and E[IC(X|P )(m)] = 0, for each m = 1, . . . , M . Let Σ(P ) = σ = (σ(m, m′) :
m, m′ = 1, . . . , M) denote the M × M covariance matrix of the vector influence
curve IC(X|P ), where σ(m, m′) ≡ E[IC(X|P )(m)IC(X|P )(m′)] and we may adopt
the shorter notation σ2(m) = σ(m, m) = E[IC2(X|P )(m)] for variances. Assume
that σ2

n(m) are consistent estimators of the IC variances σ2(m).
The influence curve of a given estimator can be derived as its mean-zero-centered

functional derivative (as a function of the empirical distribution Pn for the entire
sample of size n), applied to the empirical distribution for a sample of size one
[19, 20].

This general representation for the test statistics covers standard one-sample and
two-sample t-statistics for testing hypotheses concerning mean parameters, but also
test statistics for correlation coefficients and regression coefficients in linear and non-
linear models. Test statistics for other types of null hypotheses include F -statistics,
χ2-statistics, and likelihood ratio statistics.

2.3. Rejection regions

A multiple testing procedure (MTP) provides rejection regions Cn(m), i.e., sets of
values for each test statistic Tn(m) that lead to the decision to reject the corre-
sponding null hypothesis H0(m) and declare that P /∈ M(m), m = 1, . . . , M . In
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other words, a MTP produces a random (i.e., data-dependent) set Rn of rejected
hypotheses that estimates the set H1 of false null hypotheses,

(9) Rn = R(Tn, Q0n, α) ≡ {m : Tn(m) ∈ Cn(m)} = {m : H0(m) is rejected} ,

where Cn(m) = C(m; Tn, Q0n, α), m = 1, . . . , M , denote possibly random rejection
regions.

The long notation R(Tn, Q0n, α) and C(m; Tn, Q0n, α) emphasizes that the MTP
depends on the following three ingredients:

• the data, Xn = {Xi : i = 1, . . . , n}, through the M -vector of test statistics,
Tn = (Tn(m) : m = 1, . . . ,M) (Section 2.2);

• an (estimated) M -variate test statistics null distribution, Q0n, which replaces the
unknown true test statistics distribution Qn = Qn(P ) for the purpose of deriving
rejection regions, confidence regions, and adjusted p-values (Section 2.7);

• the nominal Type I error level α, i.e., a user-supplied upper bound for a suitably
defined Type I error rate (Section 2.5).

Given a proper test statistics null distribution Q0 (or estimator thereof, Q0n),
the main task is to specify rejection regions for each null hypothesis, so that the
resulting procedure probabilistically controls Type I errors. We consider MTPs
based on nested rejection regions, that is,

(10) C(m; Tn, Q0n, α1) ⊆ C(m; Tn, Q0n, α2), whenever α1 ≤ α2.

Rejection regions are typically defined in terms of intervals, such as, Cn(m) =
(un(m), +∞), Cn(m) = (−∞, ln(m)), or Cn(m) = (−∞, ln(m)) ∪ (un(m), +∞),
where ln(m) = l(m; Tn, Q0n, α) and un(m) = u(m; Tn, Q0n, α) are to-be-determined
lower and upper critical values, or cut-offs, computed under the null distribution
Q0n for the test statistics Tn. Two-sided rejection regions of the form Cn(m) =
(−∞, ln(m))∪(un(m), +∞) allow the use of asymmetric cut-offs for two-sided tests.

Unless specified otherwise, we assume that large values of the test statistic
Tn(m) provide evidence against the corresponding null hypothesis H0(m), that is,
we consider one-sided rejection regions of the form Cn(m) = (cn(m), +∞), where
cn(m) = c(m; Tn, Q0n, α). For two-sided tests of single-parameter null hypotheses
using difference or t-statistics, as in Equations (6) and (7), one could take absolute
values of the test statistics.

Among the different approaches for defining rejection regions, we distinguish the
following.

Marginal vs. joint multiple testing procedures. In marginal multiple test-
ing procedures, rejection regions are based solely on the marginal distributions
of the test statistics (e.g., FWER-controlling single-step Bonferroni procedure
[12]). In contrast, joint procedures take into account the dependence structure
of the test statistics (e.g., FWER-controlling single-step maxT Procedure 1).
Joint MTPs tend to be more powerful than marginal MTPs.
Note that while a procedure may be marginal, proof of Type I error control by
this MTP may require certain assumptions on the dependence structure of the
test statistics (e.g., FWER-controlling step-up Hochberg procedure [23]).

Single-step vs. stepwise multiple testing procedures. In single-step multi-
ple testing procedures, each null hypothesis H0(m) is tested using a rejection
region that is independent of the results of the tests of other hypotheses and is
not a function of the data Xn (unless these data are used to estimate the null dis-
tribution). In contrast, in stepwise procedures, the decision to reject a particular
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null hypothesis depends on the outcome of the tests of other hypotheses. That is,
the (single-step) testing procedure is applied to a sequence of successively smaller
nested random (i.e., data-dependent) subsets of null hypotheses, defined by the
ordering of the test statistics (common-cut-off MTPs) or unadjusted p-values
(common-quantile MTPs). The rejection regions are therefore allowed to depend
on the data Xn via the test statistics Tn.
Stepwise procedures are of two main types, depending on the order in which the
null hypotheses are tested. In step-down procedures, the most significant null
hypotheses (i.e., the null hypotheses with the largest test statistics for common-
cut-off MTPs or smallest unadjusted p-values for common-quantile MTPs) are
considered successively, with further tests depending on the outcome of earlier
ones. As soon as one fails to reject a null hypothesis, no further hypotheses are
rejected. In contrast, for step-up procedures, the least significant null hypotheses
are considered successively, again with further tests depending on the outcome
of earlier ones. As soon as one null hypothesis is rejected, all remaining more
significant hypotheses are rejected.
Stepwise MTPs tend to be more powerful than single-step MTPs.

Common-cut-off vs. common-quantile multiple testing procedures. In
common-cut-off multiple testing procedures, the same cut-off c0 is used for each
test statistic (e.g., FWER-controlling single-step and step-down maxT proce-
dures, based on maxima of test statistics). In contrast, in common-quantile pro-
cedures, the cut-offs are the δ0-quantiles of the marginal null distributions of the
test statistics (e.g., FWER-controlling single-step and step-down minP proce-
dures, based on minima of unadjusted p-values).
The latter p-value-based procedures place the null hypotheses on an “equal foot-
ing”, i.e., are more balanced than their common-cut-off counterparts, and may
therefore be preferable. However, this comes at the expense of increased compu-
tational complexity.

2.4. Errors in multiple hypothesis testing

In any testing problem, two types of errors can be committed. A Type I error, or
false positive, is committed by rejecting a true null hypothesis (Rn ∩ H0). A Type
II error, or false negative, is committed by failing to reject a false null hypothesis
(Rc

n ∩H1).
The situation can be summarized as in Table 1, where the number of rejected

null hypotheses is

(11) Rn ≡ |Rn| =
M∑

m=1

I (Tn(m) ∈ Cn(m)) ,

the number of Type I errors or false positives is

(12) Vn ≡ |Rn ∩H0| =
∑

m∈H0

I (Tn(m) ∈ Cn(m)) ,

the number of Type II errors or false negatives is

(13) Un ≡ |Rc
n ∩H1| =

∑
m∈H1

I (Tn(m) /∈ Cn(m)) ,
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Table 1. Type I and Type II errors in multiple hypothesis testing. This table summarizes the
different types of decisions and errors in multiple hypothesis testing. The number of rejected null
hypotheses is Rn = |Rn|, the number of Type I errors or false positives is Vn = |Rn ∩ H0|, the
number of Type II errors or false negatives is Un = |Rc

n ∩ H1|, the number of true negatives is
Wn = |Rc

n ∩ H0|, and the number of true positives is Sn = |Rn ∩ H1|. Cells corresponding to
errors are enclosed in boxes.

Null hypotheses
Non-rejected, Rc

n Rejected, Rn

True, H0 Wn = |Rc
n ∩H0| Vn = |Rn ∩H0| h0

Null hypotheses

False, H1 Un = |Rc
n ∩H1| Sn = |Rn ∩H1| h1

M − Rn Rn M

the number of true negatives is

(14) Wn ≡ |Rc
n ∩H0| =

∑
m∈H0

I (Tn(m) /∈ Cn(m)) = M − Rn − Un = h0 − Vn,

and the number of true positives is

(15) Sn ≡ |Rn ∩H1| =
∑

m∈H1

I (Tn(m) ∈ Cn(m)) = Rn − Vn = h1 − Un.

Note that Sn, Un, Vn, and Wn each depend on the unknown data generating
distribution P through the unknown set of true null hypotheses H0 = H0(P ).
Therefore, the numbers h0 = |H0| and h1 = |H1| = M − h0 of true and false
null hypotheses are unknown parameters (row margins of Table 1), the number of
rejected hypotheses Rn is an observable random variable (column margins of Table
1), and Sn, Un, Vn, and Wn are unobservable random variables (cells of Table 1).

Ideally, one would like to simultaneously minimize both the number of Type I
errors and the number of Type II errors. Unfortunately, this is not feasible and one
seeks a trade-off between the two types of errors. A standard approach is to specify
an acceptable level α for a suitably defined Type I error rate and derive testing
procedures (i.e., rejection regions) that aim to minimize a Type II error rate (i.e.,
maximize power) within the class of tests with Type I error level at most α.

2.5. Type I error rate and power

When testing multiple hypotheses, there are many possible definitions for the Type
I error rate and power of a testing procedure. Accordingly, we define a Type I error
rate as a parameter θn = Θ(FVn,Rn) of the joint distribution FVn,Rn of the numbers
of Type I errors Vn = |Rn ∩ H0| and rejected hypotheses Rn = |Rn|. Likewise, we
define power as a parameter ϑn = Θ(FUn,Rn) of the joint distribution FUn,Rn of
the numbers of Type II errors Un = |Rc

n ∩H1| and rejected hypotheses Rn = |Rn|.
We focus primarily on mappings such that θn ∈ [0, 1] and ϑn ∈ [0, 1].

This parametric representation covers a broad class of Type I error rates, includ-
ing generalized tail probability (gTP) error rates,

(16) gTP (q, g) ≡ Pr(g(Vn, Rn) > q),
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and generalized expected value (gEV) error rates,

(17) gEV (g) ≡ E[g(Vn, Rn)],

for arbitrary functions g(Vn, Rn) of the numbers of Type I errors Vn and rejected
hypotheses Rn and user-supplied bounds q.

Generalized tail probability and expected value error rates include as special
cases the following commonly-used Type I error rates.

The generalized family-wise error rate (gFWER), corresponding to g(v, r) = v and
q ∈ {0, . . . , (h0 − 1)}, is the probability of at least (q + 1) Type I errors,

(18) gFWER(q) ≡ Pr(Vn > q) = 1 − FVn(q).

When q = 0, the gFWER reduces to the usual family-wise error rate (FWER),
controlled by the classical Bonferroni procedure.

The tail probability for the proportion of false positives (TPPFP) among the rejected
hypotheses, corresponding to g(v, r) = v/r and q ∈ (0, 1), is defined as

(19) TPPFP (q) ≡ Pr
(

Vn

Rn
> q

)
= 1 − FVn/Rn

(q),

with the convention that Vn/Rn ≡ 0 if Rn = 0.
The false discovery rate (FDR), corresponding to g(v, r) = v/r, is the expected

proportion of false positives among the rejected hypotheses,

(20) FDR ≡ E
[

Vn

Rn

]
=

∫
qdFVn/Rn

(q),

again with the convention that Vn/Rn ≡ 0 if Rn = 0.

Error rates Θ(FVn/Rn
), based on the proportion of false positives (e.g., TPPFP

and FDR), are especially appealing for the large-scale testing problems encountered
in genomics, compared to error rates Θ(FVn), based on the number of false positives
(e.g., gFWER), as they do not increase exponentially with the number M of tested
hypotheses. However, error rates Θ(FVn/Rn

) tend to be more difficult to control
than error rates Θ(FVn), as they are based on the joint distribution of Vn and Rn,
rather than only the marginal distribution of Vn.

2.6. Adjusted p-values

As in the case of single hypothesis testing, one can report the results of a multiple
testing procedure in terms of the following quantities: rejection regions for the test
statistics, confidence regions for the parameters of interest, and adjusted p-values.

Adjusted p-values, for the test of multiple hypotheses, are defined as straightfor-
ward extensions of unadjusted p-values, for the test of individual hypotheses. Con-
sider any multiple testing procedure Rn(α) = R(Tn, Q0, α), with rejection regions
Cn(m; α) = C(m; Tn, Q0, α). Then, one can define an M -vector of adjusted p-values,
P̃0n = (P̃0n(m) : m = 1, . . . , M) = P̃ (Tn, Q0) = P̃ (R(Tn, Q0, α) : α ∈ [0, 1]), as

P̃0n(m) ≡ inf {α ∈ [0, 1] : Reject H0(m) at nominal MTP level α}(21)
= inf {α ∈ [0, 1] : m ∈ Rn(α)}
= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m; α)} , m = 1, . . . , M.
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That is, the adjusted p-value P̃0n(m), for null hypothesis H0(m), is the smallest
nominal Type I error level (e.g., gFWER, TPPFP, or FDR) of the multiple hypoth-
esis testing procedure at which one would reject H0(m), given Tn.

As in single hypothesis tests, the smaller the adjusted p-value P̃0n(m), the
stronger the evidence against the corresponding null hypothesis H0(m). Thus, one
rejects H0(m) for small adjusted p-values P̃0n(m).

For instance, the adjusted p-values for the classical FWER-controlling marginal
single-step common-quantile Bonferroni procedure are P̃0n(m) =
min {MP0n(m), 1}. Adjusted p-values for FWER-controlling joint single-step com-
mon-cut-off maxT Procedure 1 are given in Equation (26).

Under the nestedness assumption of Equation (10), one has two equivalent rep-
resentations for a MTP, in terms of rejection regions for the test statistics and
in terms of adjusted p-values. Specifically, the set of rejected null hypotheses at
multiple test nominal Type I error level α is

(22) Rn(α) = {m : Tn(m) ∈ Cn(m; α)} =
{

m : P̃0n(m) ≤ α
}

.

Reporting the results of a MTP in terms of adjusted p-values, as opposed to
only rejection or not of the null hypotheses, offers several advantages, including the
following.

• Adjusted p-values can be defined for any Type I error rate (e.g., gFWER, TPPFP,
or FDR).

• They reflect the strength of the evidence against each null hypothesis in terms
of the Type I error rate for the entire MTP.

• They are flexible summaries of a MTP, in the sense that results are supplied for
all Type I error levels α, i.e., the level α need not be chosen ahead of time.

• They provide convenient benchmarks to compare different MTPs, whereby smaller
adjusted p-values indicate a less conservative procedure.

• Plots of sorted adjusted p-values allow investigators to examine sets of rejected
hypotheses associated with various Type I error rates (e.g., gFWER, TPPFP, or
FDR) and nominal levels α. Such plots provide tools to decide on an appropriate
combination of the number of rejected hypotheses and tolerable false positive
rate for a particular experiment and available resources.

2.7. Test statistics null distribution

As detailed in Chapter 2 of [14], a key feature of our proposed multiple testing
procedures is the test statistics null distribution (rather than data generating null
distribution) used to obtain rejection regions for the test statistics, confidence re-
gions for the parameters of interest, and adjusted p-values. Indeed, whether testing
single or multiple hypotheses, one needs the (joint) distribution of the test statistics
in order to derive a procedure that probabilistically controls Type I errors. In prac-
tice, however, the true distribution Qn = Qn(P ) of the test statistics Tn is unknown
and replaced by a null distribution Q0. The choice of a proper null distribution is
crucial, in order to ensure that (finite sample or asymptotic) control of the Type
I error rate under the assumed null distribution does indeed provide the desired
control under the true distribution. This issue is particularly relevant for large-scale
testing problems, such as those involving biological annotation metadata, which
concern high-dimensional multivariate distributions, with complex and unknown
dependence structures among variables.
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Chapter 2 of [14] provides a general characterization of a proper test statistics
null distribution in terms of null domination conditions for the joint distribution of
the test statistics (Tn(m) : m ∈ H0) for the true null hypotheses H0 (Section 2.2).
This general characterization leads to the explicit proposal of the following two
main types of test statistics null distributions: a null shift and scale-transformed
test statistics null distribution, based on user-supplied upper bounds for the means
and variances of the test statistics for the true null hypotheses (Section 2.3), and
a null quantile-transformed test statistics null distribution, based on user-supplied
marginal test statistics null distributions (Section 2.4).

In practice, the test statistics null distribution Q0 = Q0(P ) is unknown, as it
depends on the unknown data generating distribution P . Resampling procedures
based on the bootstrap are provided to conveniently obtain consistent estimators
of the null distribution and of the corresponding test statistic cut-offs, parameter
confidence regions, and adjusted p-values [14, Sections 2.3.2, 2.4.2, 4.4, 5].

As argued in [14, Chapter 2], the following two main points distinguish our
approach from existing approaches to Type I error control and the choice of a test
statistics null distribution (e.g., [24] and [45]). Firstly, we are only concerned with
control of the Type I error rate under the true data generating distribution P , i.e.,
under the joint distribution Qn = Qn(P ), implied by P , for the test statistics Tn.
The concepts of weak and strong control of a Type I error rate and the related
restrictive assumption of subset pivotality are therefore irrelevant in our context
[45, p. 9–10, 42–43]. Secondly, we propose a null distribution for the test statistics
(Tn ∼ Q0) rather than a data generating null distribution (X ∼ P0 ∈ ∩M

m=1M(m)).
The latter practice does not necessarily provide proper Type I error control under
the true distribution P . Indeed, the test statistics assumed null distribution Qn(P0)
and their true distribution Qn(P ) may have different dependence structures for the
true null hypotheses H0 and, as a result, may violate the required null domination
conditions for Type I error control.

We stress the generality of our proposed test statistics null distributions: Type
I error control does not rely on restrictive assumptions such as subset pivotality
and holds for general data generating distributions (with arbitrary dependence
structures among variables), null hypotheses (defined in terms of submodels for
the data generating distribution), and test statistics (e.g., t-statistics, χ2-statistics,
F -statistics).

2.7.1. Null shift and scale-transformed test statistics null distribution

The first original null distribution of [16, 33, 41], is defined as the asymptotic
distribution Q0 = Q0(P ) of the M -vector Zn of null shift and scale-transformed
test statistics,

(23) Zn(m) ≡
√

min
{

1,
τ0(m)

Var[Tn(m)]

}
(Tn(m) − E[Tn(m)]) + λ0(m),

where λ0(m) and τ0(m) are, respectively, user-supplied upper bounds for the means
and variances of the H0-specific test statistics.

In this construction, the null shift values λ0(m) are chosen so that the H0-specific
statistics (Zn(m) : m ∈ H0) are asymptotically stochastically greater than the
original test statistics (Tn(m) : m ∈ H0). The resulting null distribution therefore
satisfies the required null domination conditions for Type I error control.



Multiple tests of association with biological annotation metadata 167

In contrast, the null scale values τ0(m) are not needed for Type I error control.
The purpose of τ0(m) is to avoid a degenerate null distribution and infinite cut-offs
for the false null hypotheses (m ∈ H1), an important property for power considera-
tions. This scaling is needed, in particular, for F -statistics that have asymptotically
infinite means and variances for non-local alternative hypotheses.

For a broad class of testing problems, such as the test of single-parameter
null hypotheses using t-statistics (Equation (7)), the null distribution Q0 is an
M -variate Gaussian distribution, with mean vector zero and covariance matrix
σ∗ = Σ∗(P ), that is, Q0 = N(0, σ∗). For tests where the parameter of interest is
the M -dimensional mean vector Ψ(P ) = ψ = E[X], the estimator ψn is simply the
M -vector of empirical means and σ∗ = Σ∗(P ) = Cor[X] is the correlation matrix
of X ∼ P , that is, Q0 = N(0, Cor[X]). More generally, for an asymptotically linear
estimator ψn, Σ∗(P ) is the correlation matrix of the vector influence curve. This
situation covers standard one-sample and two-sample t-statistics for tests of means,
but also test statistics for correlation coefficients and regression coefficients in linear
and non-linear models.

For testing the equality of K population mean vectors using F -statistics, an
F -statistic-specific null distribution may be defined as the joint distribution of an
M -vector of quadratic forms of Gaussian random variables.

2.7.2. Null quantile-transformed test statistics null distribution

The second and most recent proposal of [42] is defined as the asymptotic distribution
Q0 = Q0(P ) of the M -vector Z̆n of null quantile-transformed test statistics,

(24) Z̆n(m) ≡ q−1
0,mQΔ

n,m(Tn(m)),

where q0,m are user-supplied marginal test statistics null distributions that satisfy
marginal null domination conditions. According to the generalized quantile-quantile
function transformation of [46], define QΔ

n,m(z) ≡ ΔQn,m(z) + (1 − Δ)Qn,m(z−),
where Qn,m are the marginal distributions of the test statistics Tn(m) and the
random variable Δ is uniformly distributed on the interval [0, 1], independently of
the data Xn.

This latest proposal has the additional advantage that the marginal test statistics
null distributions may be set to the optimal (i.e., most powerful) null distributions
one would use in single hypothesis testing (e.g., permutation marginal null distrib-
utions, Gaussian or other parametric marginal null distributions).

2.8. Overview of multiple testing procedures

Having identified a suitable test statistics null distribution Q0 (or estimator thereof,
Q0n), there remains the main task of specifying rejection regions (i.e., cut-offs) for
the test statistics, confidence regions for the parameters of interest, and adjusted
p-values.

As detailed in [14, Chapters 3–7], we have developed resampling-based single-step
and stepwise multiple testing procedures for controlling a broad class of Type I er-
ror rates, defined as generalized tail probabilities, gTP (q, g) = Pr(g(Vn, Rn) > q),
and generalized expected values, gEV (g) = E[g(Vn, Rn)], for arbitrary functions
g(Vn, Rn) of the numbers of false positives Vn and rejected hypotheses Rn. Our
proposed procedures take into account the joint distribution of the test statistics
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and provide Type I error control in testing problems involving general data gen-
erating distributions (with arbitrary dependence structures among variables), null
hypotheses (defined in terms of submodels for the data generating distribution),
and test statistics (e.g., t-statistics, χ2-statistics, F -statistics).

An overview of available MTPs is provided in Chapter 3 of [14]. Core method-
ological Chapters 4–7 discuss the following main approaches for deriving rejection
regions.

Joint single-step common-cut-off and common-quantile procedures for controlling
general Type I error rates Θ(FVn), defined as arbitrary parameters of the dis-
tribution of the number of Type I errors Vn (Chapter 4 in [14], [16, 33]). Er-
ror rates of the form Θ(FVn) include the generalized family-wise error rate,
gFWER(q) = 1 − FVn(q) = Pr(Vn > q), i.e., the chance of at least (q + 1)
Type I errors.

Joint step-down common-cut-off (maxT) and common-quantile (minP) procedures
for controlling the family-wise error rate, FWER = gFWER(0) = 1−FVn(0) =
Pr(Vn > 0) (Chapter 5 in [14], [41]).

(Marginal/joint single-step/stepwise common-cut-off/common-quantile) augmenta-
tion multiple testing procedures (AMTP) for controlling generalized tail probabil-
ity error rates, based on an initial gFWER-controlling procedure
(Chapter 6 in [14], [15, 40]).

Joint resampling-based empirical Bayes procedures for controlling generalized tail
probability error rates (Chapter 7 in [14], [39]).

The above multiple testing procedures are implemented in the Bioconductor R
package multtest ([14, Section 13.1]; [32]; www.bioconductor.org).

2.9. FWER-controlling single-step common-cut-off maxT procedure

This section focusses on control of the family-wise error rate, using the single-
step maxT procedure, a common-cut-off procedure exploiting the joint distribution
of the test statistics. The method is summarized below; details are given in [14,
Chapter 4] and [16].

Procedure 1 [FWER-controlling single-step common-cut-off maxT
procedure].
Given an M -variate test statistics null distribution Q0, the single-step common-
cut-off maxT procedure is based on the distribution of the maximum test statistic,
maxm Z(m), for the M -vector Z = (Z(m) : m = 1, . . . ,M) ∼ Q0. For controlling
the FWER at nominal level α ∈ (0, 1), the common cut-off c(Q0, α) is defined as
the (1 − α)-quantile of the distribution of maxm Z(m), that is,

(25) c(Q0, α) ≡ inf
{

z ∈ R : PrQ0

(
max

m=1,...,M
Z(m) ≤ z

)
≥ (1 − α)

}
.

The adjusted p-value p̃0n(m) for null hypothesis H0(m) is the probability, under
Q0, that maxm Z(m) exceeds the corresponding observed test statistic tn(m), that
is,

(26) p̃0n(m) = PrQ0

(
max

m=1,...,M
Z(m) ≥ tn(m)

)
, m = 1, . . . , M.
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Procedure 1 provides proper FWER control when based on either of the two null-
transformed test statistics null distributions Q0 introduced in Section 2.7. Consis-
tent estimators Q0n of the null distribution Q0 and corresponding single-step maxT
cut-offs and adjusted p-values may be obtained using the bootstrap, as in Procedure
2.9, below, for the null shift and scale-transformed test statistics null distribution
[14, Section 4.4].

Procedure 2 [FWER-controlling bootstrap-based single-step
common-cut-off maxT procedure].

1. Let P �
n denote a bootstrap estimator of the data generating distribution P .

For the non-parametric bootstrap, P �
n is simply the empirical distribution Pn,

that is, samples of size n are drawn at random, with replacement from the
observed data Xn = {Xi : i = 1, . . . , n}. For the model-based bootstrap, P �

n

belongs to a model M for the data generating distribution P , such as a family
of multivariate Gaussian distributions.

2. Generate B bootstrap samples, X b
n ≡ {Xb

i : i = 1, . . . , n}, b = 1, . . . , B. For
the bth sample, the Xb

i , i = 1, . . . , n, are IID according to P �
n .

3. For each bootstrap sample X b
n, compute an M -vector of test statistics,

TB
n (·, b) = (TB

n (m, b) : m = 1, . . . ,M), that can be arranged in an M ×B ma-
trix, TB

n =
(
TB

n (m, b) : m = 1, . . . ,M ; b = 1, . . . , B
)
, with rows corresponding

to the M null hypotheses and columns to the B bootstrap samples.
4. Compute row means and variances of the matrix TB

n , to yield estimators of
the means, E[Tn(m)], and variances, Var[Tn(m)], of the test statistics under
the data generating distribution P .

That is, compute

E[TB
n (m, ·)] ≡ 1

B

B∑
b=1

TB
n (m, b),(27)

Var[TB
n (m, ·)] ≡ 1

B

B∑
b=1

(TB
n (m, b) − E[TB

n (m, ·)])2.

5. Obtain an M × B matrix, ZB
n =

(
ZB

n (m, b) : m = 1, . . . , M ; b = 1, . . . , B
)
,

of null shift and scale-transformed bootstrap test statistics ZB
n (m, b), by row-

shifting and scaling the matrix TB
n using the bootstrap estimators of E[Tn(m)]

and Var[Tn(m)] and the user-supplied null values λ0(m) and τ0(m). That is,
define
(28)

ZB
n (m, b) ≡

√
min

{
1,

τ0(m)
Var[TB

n (m, ·)]

}(
TB

n (m, b) − E[TB
n (m, ·)]

)
+ λ0(m).

For t-statistics as in Equation (7), the null values are λ0(m) = 0 and τ0(m) =
1.

6. The bootstrap estimator Q0n of the null shift and scale-transformed null dis-
tribution Q0 is the empirical distribution of the B columns {ZB

n (·, b) : b =
1, . . . , B} of matrix ZB

n .
7. For each column b of the matrix ZB

n (i.e., bootstrap sample b), compute the
maximum statistic, maxm ZB

n (m, b), b = 1, . . . , B.
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8. For controlling the FWER at nominal level α ∈ (0, 1), the bootstrap single-
step maxT common cut-off c(Q0n, α) is the (1 − α)-quantile of the empirical
distribution of the B maxima {maxm ZB

n (m, b) : b = 1, . . . , B}, that is,
(29)

c(Q0n, α) ≡ inf

{
z ∈ R :

1
B

B∑
b=1

I
(

max
m=1,...,M

ZB
n (m, b) ≤ z

)
≥ (1 − α)

}
.

9. The bootstrap single-step maxT adjusted p-value p̃0n(m) for null hypothesis
H0(m) is the proportion of maxima {maxm ZB

n (m, b) : b = 1, . . . , B} that
exceed the corresponding observed test statistic tn(m), that is,

(30) p̃0n(m) =
1
B

B∑
b=1

I
(

max
m=1,...,M

ZB
n (m, b) ≥ tn(m)

)
, m = 1, . . . , M.

3. Statistical framework for multiple tests of association with biological
annotation metadata

Sections 3.1–3.3 introduce the main components of our approach to multiple tests
of association with biological annotation metadata, namely, the gene-annotation
profiles A, the gene-parameter profiles λ, and the association measures ψ = ρ(A, λ)
between gene-annotation and gene-parameter profiles. We stress that the choice of a
suitable association parameter ψ is perhaps the most important and hardest aspect
of the inference problem, as this parameter represents the statistical translation of
the biological question of interest. Once the association parameter ψ is appropriately
and precisely defined, one can rely on a variety of statistical methods to estimate and
test hypotheses concerning this parameter. Section 3.4 describes how the multiple
testing methodology of [14] and related articles may be used to detect associations
between gene-annotation and gene-parameter profiles.

Note that, for the sake of illustration, we focus on gene-level features. However,
as mentioned in Section 1.1, the methodology is generic and may be applied to
other types of features, such as those concerning gene isoforms and proteins.

3.1. Gene-annotation profiles

Gene-annotation profiles refer to features of a genome that are assumed to be known
and constant among units in a population of interest. Such features typically consist
of gene annotation metadata, that reflect current knowledge on gene properties,
such as, nucleotide and protein sequences, regulation, and function.

Specifically, let A = (A(g, m) : g = 1, . . . , G; m = 1, . . . ,M) denote a G × M
gene-annotation matrix, providing data on M features for G genes in an organism of
interest. Thus, row A(g, ·) = (A(g, m) : m = 1, . . . , M) denotes an M -dimensional
gene-specific feature vector for the gth gene, g = 1, . . . , G, and column A(·, m) =
(A(g, m) : g = 1, . . . , G) denotes a G-dimensional gene-annotation profile for the
mth feature, m = 1, . . . , M .

In many applications, the element A(g, m) is a binary indicator, coding the
YES/NO answer to the mth question, among a collection of M questions one may
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ask about gene g. For example, A(g, m) could indicate whether gene g is anno-
tated with a particular GO term m, among M terms in one of the three ontologies
(BP, CC, or MF), i.e., whether gene g is an element of the node corresponding
to the mth term in the GO directed acyclic graph (DAG). Other gene-annotation
profiles of interest may refer to exon/intron counts/lengths/nucleotide distribu-
tions, gene pathway membership (e.g., from the Kyoto Encyclopedia of Genes and
Genomes, KEGG, www.genome.ad.jp/kegg), or gene regulation by particular tran-
scription factors. Regarding transcription regulation, one could use data from the
Transcription Factor DataBase (TRANSFAC, www.gene-regulation.com) to gen-
erate gene-annotation profiles as follows. For a given transcription factor binding
motif, a binary gene-annotation profile could consist of indicators for the presence
or absence of the motif in the upstream control region of each gene. A continuous
gene-annotation profile could be based on the position weight matrix of the binding
motif.

Note that the aforementioned features are only fixed in time for a given ver-
sion/release of the corresponding database(s), i.e., such biological data are con-
stantly evolving as our knowledge of the roles of genes and proteins is accumulating
and changing. The dynamic nature of biological annotation metadata is an impor-
tant issue in terms of software design (Section 4.2; [18]).

Note also that gene-annotation profiles are not restricted to be binary or even
polychotomous and, in particular, could be continuous gene-parameter profiles, suit-
ably estimated from previous studies.

The main point, regarding the formulation of the statistical inference question,
is that gene-annotation profiles are known and constant among population units.

3.2. Gene-parameter profiles

Gene-parameter profiles are generally unknown and concern the distribution of
variable features of a genome in a well-defined population. Gene-specific variables of
interest reflect cellular type/state/activity under particular conditions and include
microarray measures of transcript levels and comparative genomic hybridization
(CGH) measures of DNA copy numbers.

Specifically, let X = (X(j) : j = 1, . . . , J) be a J-dimensional random vector,
containing G gene-specific random variables (X(g) : g = 1, . . . , G). In addition
to the G gene-specific variables, X may include various biological and clinical co-
variates (e.g., age, sex, treatment, timepoint) and outcomes (e.g., survival time, re-
sponse to treatment, tumor class). Let P denote the data generating distribution for
the random J-vector X and suppose that P belongs to a (possibly non-parametric)
model M.

Let the parameter mapping Λ : M → R
G define a G-dimensional gene-parameter

profile, Λ(P ) = λ = (λ(g) : g = 1, . . . , G) ∈ R
G, where each λ(g) = Λ(P )(g) ∈ R is a

gene-specific real-valued parameter. For example, λ(g) could be the mean expression
measure E[X(g)] of gene g or a regression coefficient relating an outcome component
of X to the expression measure X(g) of gene g, g = 1, . . . , G.

While gene-annotation profiles are known and fixed, gene-parameter profiles are
typically unknown and need to be estimated, e.g., from a microarray experiment
involving a sample of population units. The sample Xn = {Xi : i = 1, . . . , n} is
assumed to consist of n independent and identically distributed (IID) copies of
X ∼ P , corresponding to n randomly sampled population units.
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3.3. Association measures for gene-annotation and gene-parameter
profiles

Let the parameter mapping Ψ : M → R
M specify an M -dimensional association

parameter vector,

(31) Ψ(P ) = ψ = (ψ(m) : m = 1, . . . , M) ≡ ρ(A, Λ(P )),

defined in terms of an association measure ρ : R
G×M × R

G → R
M , known fixed

gene-annotation profiles A, and an unknown gene-parameter profile λ = Λ(P ).
The choice of a suitable association parameter is subject matter-dependent and

requires careful consideration. For instance, for Gene Ontology annotation, it is
desirable that the association parameter reflect the structure of the GO directed
acyclic graph (Section 4.1). In principle, the dimension of the association parame-
ter vector ψ could differ from the number M of features under consideration. In
addition, one could accommodate several gene-parameter profiles λ.

The various quantities in the inference problem are summarized in Figure 1;
examples of association parameters are given next and in Section 5.

3.3.1. Univariate association measures

In the simplest case, one could define the M association parameters univariately, i.e.,
define ψ(m) based only on the mth gene-annotation profile A(·, m), m = 1, . . . , M .

Fig 1. Parameters for tests of association with biological annotation metadata. This figure rep-
resents the main ingredients involved in multiple tests of association with biological annotation
metadata: the gene-annotation profiles, the gene-parameter profile, and the association parame-
ters. (Color version on website companion.)
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Specifically, for the mth feature, let

(32) Ψ(P )(m) = ψ(m) ≡ ρm(A(·, m), Λ(P )),

where ρm : R
G × R

G → R provides a measure of association (e.g., correlation
coefficient) between the G-dimensional gene-annotation profile A(·, m) and gene-
parameter profile λ = Λ(P ). In many situations, the same association measure ρm

may be used for each of the M features.

Continuous gene-annotation profiles and continuous gene-parameter pro-
files For continuous gene-annotation and gene-parameter profiles, one may use as
association measure the Pearson correlation coefficient between two G-vectors. That
is,

(33) ψ(m) =

∑G
g=1(A(g, m) − Ā(m))(λ(g) − λ̄)√∑G

g=1(A(g, m) − Ā(m))2
√∑G

g=1(λ(g) − λ̄)2
,

where Ā(m) ≡
∑

g A(g, m)/G and λ̄ ≡
∑

g λ(g)/G denote, respectively, the aver-
ages of the G elements of the gene-annotation profile A(·, m) and gene-parameter
profile λ.

Binary gene-annotation profiles and binary gene-parameter profiles For
binary gene-annotation and gene-parameter profiles, one may build 2 × 2 contin-
gency Table 2 and use as association measure the χ2-statistic (or corresponding
p-value) for the test of independence of rows and columns. That is,

(34) ψ(m) =
G(g00(m)g11(m) − g01(m)g10(m))2

g0·(m)g·0(m)g·1(m)g1·(m)
,

where gkk′(m) ≡
∑

g I (A(g, m) = k) I (λ(g) = k′), gk·(m) ≡ gk0(m) + gk1(m) =∑
g I (A(g, m) = k), and g·k′(m) ≡ g0k′(m) + g1k′(m) =

∑
g I (λ(g) = k′), k, k′ ∈

{0, 1}. Note that in this context the χ2-statistic ψ(m) is a parameter, i.e., it is
a function of the data generating distribution P , via the gene-parameter profile
λ = Λ(P ), and is therefore unknown and constant among population units.

Table 2. Binary gene-annotation and gene-parameter profiles. Given a binary gene-annotation
profile A(·, m) and a binary gene-parameter profile λ, one may build a 2 × 2 contingency table,
with rows corresponding to the gene-annotation profile and columns to the gene-parameter profile.
Cell counts are defined as gkk′ (m) =

∑
g

I (A(g, m) = k) I (λ(g) = k′), k, k′ ∈ {0, 1}. For example,

for tests of association between GO annotation and differential gene expression, g11(m) could
correspond to the number of genes that are annotated with GO term m and differentially expressed.
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Gene-parameter profile, λ
1 0

1 g11(m) = g10(m) = A1(m) =∑G

g=1
A(g, m)λ(g)

∑G

g=1
A(g, m)(1 − λ(g))

∑G

g=1
A(g, m)

0 g01(m) = g00(m) = A0(m) =∑G

g=1
(1 − A(g, m))λ(g)

∑G

g=1
(1 − A(g, m))(1 − λ(g))

∑G

g=1
(1 − A(g, m))

Gλ̄ =
∑G

g=1
λ(g) G(1 − λ̄) =

∑G

g=1
(1 − λ(g)) G



174 S. Dudoit, S. Keleş and M. J. van der Laan

Binary gene-annotation profiles For binary gene-annotation profiles, one may
consider association parameter vectors of the form

(35) ψ = A�λ.

That is, the association parameter for the mth feature is the sum,

ψ(m) =
G∑

g=1

A(g, m)λ(g) =
G∑

g=1

I (A(g, m) = 1)λ(g),

of the parameters λ(g) for genes g that have the property of interest, i.e., such that
A(g, m) = 1. Such an association parameter is considered by [37], to relate contin-
uous microarray differential expression gene-parameter profiles to binary pathway
gene-annotation profiles.

The following standardized association parameters, corresponding to association
measures based on two-sample t-statistics, may also be considered,

(36) ψ(m) =
λ̄1(m) − λ̄0(m)√
v[λ]1(m)
A1(m) + v[λ]0(m)

A0(m)

,

where, for the mth feature, Ak(m) ≡
∑

g I (A(g, m) = k),

λ̄k(m) ≡
∑

g

I (A(g, m) = k) λ(g)/Ak(m),

and v[λ]k(m) ≡
∑

g I (A(g, m) = k) (λ(g) − λ̄k(m))2/(Ak(m) − 1) denote, respec-
tively, the numbers, averages, and variances of annotated (k = 1) and unannotated
(k = 0) gene-parameters λ(g).

In commonly-encountered combined GO annotation and microarray data analy-
ses, a binary gene-parameter profile could indicate whether genes are differentially
expressed in two populations of cells, a continuous gene-parameter profile could
consist of coefficients for the regression of a (censored) clinical outcome on gene ex-
pression measures, and binary gene-annotation profiles could denote whether genes
are annotated with particular GO terms (Section 5; [1, 2, 4, 22]).

3.3.2. Multivariate association measures

More generally, the mth association parameter could be based on the entire gene-
annotation matrix A or a subset of columns thereof, that is, Ψ(P )(m) = ψ(m) ≡
ρm(A, Λ(P )), for an association measure ρm : R

G×M × R
G → R.

Association parameters of interest include: linear combinations of association
parameters for several features, partial correlation coefficients, χ2-statistics for
higher-dimensional contingency tables (e.g., with one dimension corresponding to a
gene-parameter profile λ and other dimensions to several gene-annotation profiles
A(·, m)), and (contrasts of) regression coefficients of a gene-parameter profile λ on
several gene-annotation profiles A(·, m).

In the case of Gene Ontology annotation, the association parameter ψ should
preferably reflect the structure of the GO directed acyclic graph, by taking into
account, for instance, annotation information for ancestor (i.e., less specific) or
offspring (i.e., more specific) terms (Section 4.1). Specifically, let P(m) denote the
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set of (immediate) parents of a term m. As the genes annotated by the child term
m are subsets of the genes annotated by the parent terms P(m), then A(g, m) = 1
implies A(g, p) = 1 for p ∈ P(m).

Following the causal inference literature [38, 43], an association parameter of
interest for GO term m is the marginal causal effect parameter, defined as

(37) ψ(m) = E[E[λ|A(·, m) = 1, A(·,P(m))]] − E[E[λ|A(·, m) = 0, A(·,P(m))]],

where A(·,P(m)) denotes the submatrix of gene-annotation profiles for parent terms
P(m) and the expected values are defined with respect to the empirical distribution
of {(A(g, m), A(g,P(m)), λ(g)) : g = 1, . . . , G}.

In the special case of binary (differential expression) gene-parameter profiles,
the so-called parent-child method of [22] takes into account the structure of the
GO DAG by testing for associations between gene-annotation and gene-parameter
profiles using hypergeometric p-values computed conditionally on the annotation
status of parent terms.

One could also consider Boolean combinations of annotation indicators for mul-
tiple features, that is, a transformed gene-annotation matrix whose columns are
Boolean combinations of the columns of the original gene-annotation matrix. Such
an approach would be particularly relevant in the context of transcription regu-
lation, where individual features correspond to single transcription factor binding
motifs and Boolean combinations to binding modules for multiple transcription
factors.

3.4. Multiple hypothesis testing

3.4.1. Null and alternative hypotheses

Certain biological annotation metadata analyses may involve the two-sided test of
the M null hypotheses of no association between gene-annotation profiles A(·, m),
m = 1, . . . , M , and a gene-parameter profile λ, i.e., the test of

(38) H0(m) = I (ψ(m) = ψ0(m)) vs. H1(m) = I (ψ(m) �= ψ0(m)) .

Other analyses may call for the one-sided test of

(39) H0(m) = I (ψ(m) ≤ ψ0(m)) vs. H1(m) = I (ψ(m) > ψ0(m)) .

One-sided tests are appropriate if, for example, one is interested in determining
whether differentially expressed genes are enriched regarding GO annotation.

The M -vector ψ0 = (ψ0(m) : m = 1, . . . , M), of null values for the association
parameter ψ, is determined by the biological question. For example, if ψ(m) =
ρm(A(·, m), λ) is the Pearson correlation coefficient between the gene-annotation
profile A(·, m) and the gene-parameter profile λ, then one may set ψ0(m) = 0.

Note that in many situations, the same association measure ρm is used for each
of the M features and one only has a single, common null value ψ0(m).

3.4.2. Test statistics

As in Section 2.2, above, and Chapter 1 of [14], consider the general situation
where, given a random sample Xn from the data generating distribution P , one has
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an asymptotically linear estimator ψn = Ψ̂(Pn) of the association parameter vector
ψ = Ψ(P ), with M -dimensional vector influence curve IC(X|P ). Let Σ̂(Pn) = σn =
(σn(m, m′) : m, m′ = 1, . . . , M) denote a consistent estimator of the covariance
matrix Σ(P ) = σ = (σ(m, m′) : m, m′ = 1, . . . , M) of the vector influence curve
IC(X|P ). For example, σn could be a bootstrap-based estimator of the covariance
matrix σ or could be computed from an estimator ICn(X) of the influence curve
IC(X|P ).

A broad range of association parameters ψ and corresponding estimators ψn

satisfy the above conditions. In particular, suppose λn = Λ̂(Pn) is an asymptotically
linear estimator of the gene-parameter profile λ = Λ(P ), based on a random sample
Xn from P . Let ψn ≡ ρ(A, λn) denote the corresponding resubstitution, or plug-in,
estimator of the association parameter vector ψ = ρ(A, λ). Then, if the function
ρ(A, λ) is differentiable with respect to λ, the resubstitution estimator ψn is also
asymptotically linear.

One can therefore handle tests where the gene-parameter profiles λ are (functions
of) means, variances, correlation coefficients, and regression coefficients, and where
the association measures ρ are correlation coefficients, two-sample t-statistics, and
χ2-statistics. Examples are provided in Section 5, in the context of tests of associ-
ation between differential gene expression in ALL and GO annotation.

Each null hypothesis H0(m) may then be tested using a (unstandardized) dif-
ference statistic,

(40) Tn(m) =
√

n (ψn(m) − ψ0(m)) ,

or a (standardized) t-statistic,

(41) Tn(m) =
√

n
ψn(m) − ψ0(m)

σn(m)
,

where we adopt the shorter notation σ2
n(m) = σn(m, m) for variances.

Certain testing problems may call for other test statistics Tn, such as, F -statistics,
χ2-statistics, and likelihood ratio statistics.

Let Qn = Qn(P ) denote the typically unknown (finite sample) joint distribution
of the M -vector of test statistics Tn = (Tn(m) : m = 1, . . . , M), under the data
generating distribution P .

3.4.3. Multiple testing procedures

As mentioned in Section 2.7, above, and detailed in [14, Chapter 2], a key feature
of our proposed multiple testing procedures is the test statistics null distribution
Q0 used in place of the unknown true test statistics distribution Qn = Qn(P ), for
the purpose of obtaining rejection regions for the test statistics, confidence regions
for the parameters of interest, and adjusted p-values.

Given a suitable test statistics null distribution Q0 (or estimator thereof, Q0n),
the multiple testing procedures developed in [14] and related articles may be ap-
plied to control a broad class of Type I error rates, defined as generalized tail
probabilities, gTP (q, g) = Pr(g(Vn, Rn) > q), and generalized expected values,
gEV (g) = E[g(Vn, Rn)], for arbitrary functions g(Vn, Rn) of the numbers of false
positives Vn and rejected hypotheses Rn (Section 2.8).

For the purpose of illustration, we focus, as in Section 2.9, on control of the
family-wise error rate, using the single-step common-cut-off maxT procedure, based
on a non-parametric bootstrap estimator of the null shift and scale-transformed test
statistics null distribution (Procedures 1 and 2.9).
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4. The Gene Ontology

4.1. Overview of the Gene Ontology

The Gene Ontology (GO) Consortium (www.geneontology.org) provides ontolo-
gies, i.e., structured and controlled vocabularies, to describe gene products in terms
of their associated biological processes, cellular components, and molecular func-
tions. The ontologies specify terminologies and relationships among terms. They
are organism-independent and can be applied even as our knowledge of the roles of
genes and proteins is accumulating and changing.

The GO Consortium and other organizations supply mappings between GO
terms and genes in various organisms.

Detailed documentation is available on the Gene Ontology Documentation web-
page (www.geneontology.org/GO.contents.doc.html).

4.1.1. The three gene ontologies: BP, CC, and MF

The GO Consortium provides three ontologies, each consisting of a structured net-
work of terms describing gene products.

Biological Process (BP or P). The Biological Process ontology refers to series
of biological events that are accomplished by one or more ordered assemblies
of molecular functions. Examples of broad BP terms are cellular physiologi-
cal process (GO:0050875) and signal transduction (GO:0007165); examples of
more specific BP terms are pyrimidine base metabolism (GO:0006206) and alpha-
glucoside transport (GO:0000017).

Cellular Component (CC or C). The Cellular Component ontology refers to
subcellular structures, with the proviso that the components be part of some
larger object, which may be an anatomical structure (e.g., rough endoplasmic
reticulum (GO:0005791), nucleus (GO:0005634)) or a gene product group (e.g.,
ribosome (GO:0005840)).

Molecular Function (MF or F). The Molecular Function ontology refers to tasks
or activities performed by individual (or assembled complexes of) gene prod-
ucts. Examples of broad MF terms are catalytic activity (GO:0003824), trans-
porter activity (GO:0005215), and binding (GO:0005488); examples of more spe-
cific MF terms are adenylate cyclase activity (GO:0004016) and Toll binding
(GO:0005121).

A gene product may be used in one or more biological processes, may be associ-
ated with one or more cellular components, and may have one or more molecular
functions.
Example 1. Gene product ABL1 HUMAN. The Homo sapiens gene product
Splice Isoform IA of Proto-oncogene tyrosine-protein kinase ABL1 (ABL1 HUM
AN ) can be described by the following terms in each of the three gene ontolo-
gies (AmiGO browser, Last updated: 2006-05-25, www.godatabase.org/cgi-bin/
amigo/go.cgi?view=details&search constraint=gp&session id=6973b113903
0258&gp=P00519).

Biological Process:
regulation of progression through cell cycle (GO:0000074);
S-phase-specific transcription in mitotic cell cycle (GO:0000115);
mismatch repair (GO:0006298);
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regulation of transcription, DNA-dependent (GO:0006355);
DNA damage response, signal transduction resulting in induction of apoptosis
(GO:0008630).

Cellular Component:
nucleus (GO:0005634).

Molecular Function:
DNA binding (GO:0003677);
protein-tyrosine kinase activity (GO:0004713);
protein binding (GO:0005515).

4.1.2. GO directed acyclic graphs

For each of the three gene ontologies, GO terms are organized in a directed acyclic
graph (DAG), where a directed graph has one-way edges and an acyclic graph has
no path starting and ending at the same vertex. Each GO term is associated with a
single vertex, or node, in the DAG. The words term, node, and vertex, may therefore
be used interchangeably.

For a given GO term, an ancestor refers to a less specialized term; an offspring
refers to a more specialized term. A parent is an immediate/direct ancestor of a
term; a child is an immediate/direct offspring of a term. A root node has no parents
(i.e., no incoming edges); a leaf node has no children (i.e., no outgoing edges). In a
DAG, a child may have several parents.

GO terms must obey the so-called true path rule: if a (child) term describes a
gene product, then all its immediate parent and more distant ancestor terms must
also apply to the gene product.

The DAG structure of GO terms and corresponding true path rule are germane
to the definition of a suitable association measure between gene-annotation profiles
and gene-parameter profiles (Section 3.3). Furthermore, as discussed in Sections
4.2–4.5, in the context of Bioconductor annotation software, the true path rule is
also relevant when assembling gene-annotation matrices.

4.1.3. GO software tools

Many software tools have been developed to deal with GO annotation metadata.
The Gene Ontology Tools webpage (www.geneontology.org/GO.tools.shtml)
provides a list of consortium and non-consortium software for searching and brows-
ing the three gene ontologies, for annotating genes and gene products using GO,
and for combined GO and gene expression microarray data analysis.

For instance, the AmiGO browser (www.godatabase.org) allows: searching for
a GO term and viewing all gene products annotated with this term; searching for a
gene product and viewing all its associated GO terms; and browsing the ontologies
to view relationships among terms and gene products annotated with a given term.

The QuickGO browser (www.ebi.ac.uk/ego), developed by the European Bioin-
formatics Institute (EBI), permits searches and graphical displays of the Gene On-
tology by GO term, GO term identifier (ID), gene product, and other identifiers.

Software packages developed as part of the Bioconductor Project are discussed
in Sections 4.2–4.5.
Example 2. GO term protein-tyrosine kinase activity. To get a sense of
the information provided by the GO Consortium, consider the Molecular Func-
tion ontology and the GO term protein-tyrosine kinase activity, with GO term ID
GO:0004713.
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Go to the AmiGO browser (www.godatabase.org), enter the GO term ID
GO:0004713 in the Search GO box, select Exact Match, select Terms, and click
on the Submit Query button. There are two main options for displaying infor-
mation on a GO term: a “tree view” and a “graphical view”. Click on the small
tree-like icon (top-left corner of the table) to display the tree view with all ancestors
(i.e., less specific terms) of the GO term protein-tyrosine kinase activity. Click on
the Graphical View button to display the portion of the MF DAG correspond-
ing to the GO term. Additional information may be obtained by clicking on the
hyperlinked text protein-tyrosine kinase activity.

The GO term protein-tyrosine kinase activity has one (immediate) parent, pro-
tein kinase activity (GO:0004672), which itself has two parents, kinase activity
(GO:0016301) and phosphotransferase activity, alcohol group as acceptor
(GO:0016773). Altogether, the term protein-tyrosine kinase activity has 7 ancestors.
According to the true path rule, any gene annotated with the GO term protein-
tyrosine kinase activity should also be annotated with all of its less specific ancestor
terms.

The portion of the MF DAG for the GO term protein-tyrosine kinase activity is
displayed in Figure 2 using the QuickGO browser.

4.1.4. GO gene-annotation matrices

For each of the three gene ontologies, one may define a G × M binary gene-
annotation matrix A, indicating for each gene g whether it is annotated with each
GO term m,

A(g, m) ≡
{

1, if gene g is annotated with GO term m,
0, otherwise

(42)

g = 1, . . . , G, m = 1, . . . ,M.

Section 4.5 provides sample R code for assembling GO gene-annotation matrices
using Bioconductor annotation metadata packages.

As detailed in Section 3, detecting associations between GO annotation and other
interesting features of a genome may be viewed as the multiple test of the null
hypotheses of no association between gene-annotation profiles A(·, m) and a gene-
parameter profile λ = Λ(P ). The multiple testing methodology proposed in [14]
and related articles is well-suited to handle the complex and unknown dependence
structure among test statistics implied by the DAG structure of GO terms. The
methodology is summarized in Section 2 and illustrated in Section 5, for tests of
association between differential gene expression in ALL and GO annotation.

4.2. Overview of R and Bioconductor software for GO annotation
metadata analysis

As discussed in [18], the Bioconductor Project provides R packages for accessing and
performing statistical inference with GO annotation metadata (www.bioconductor.
org; www.r-project.org). The packages include:

• a general annotation software package: annotate;
• packages for graph theoretical analyses: e.g., graph, Rgraphviz;
• a GO-specific metadata package for navigating the three GO DAGs: GO;
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Fig 2. DAG for MF GO term GO:0004713, QuickGO. Portion of the directed acyclic graph for
the GO term protein-tyrosine kinase activity (GO:0004713), in the Molecular Function ontology.
This display, obtained using the EBI QuickGO browser (Last updated 2001-03-30 04:29:44.0,
www.ebi.ac.uk/ego), shows the nodes corresponding to all (less specific) ancestors of the term
protein-tyrosine kinase activity. (Higher-resolution color version on website companion.)

• an Entrez Gene1-specific metadata package, providing bi-directional mappings
between Entrez Gene IDs and GO term IDs: humanLLMappings (www.ncbi.
nlm.nih.gov/entrez/query.fcgi?db=gene);

1N.B. The NCBI LocusLink database has been superseded by the Entrez Gene database.
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• various Affymetrix chip-specific metadata packages, providing bi-directional map-
pings between Affymetrix probe2 IDs and GO term IDs: e.g., hgu95av2, hu6800
(www.affymetrix.com);

• a package for annotating and generating HTML reports for Affymetrix chip data:
annaffy.

Bioconductor metadata packages are updated regularly to reflect the evolv-
ing nature of biological annotation metadata; it is therefore crucial to keep track
of version numbers. For information on Bioconductor software, please consult [17]
and the Documentation (www.bioconductor.org/docs) and Workshops
(www.bioconductor.org/workshops) sections of the Bioconductor Project web-
site, in addition to the standard R help facilities (e.g., help function, manuals,
etc.).

The remainder of this section provides sample R code demonstrating Bioconduc-
tor software (results reported for R Release 2.2.1 and Bioconductor Release 1.7).
In order to run through the examples, one needs to install and load the Biocon-
ductor packages annotate, GO, and hgu95av2. The annotation metadata used in the
examples correspond to the following package versions.

> library(annotate)

> library(GO)

> library(hgu95av2)

>

> packageDescription("annotate")$Version

[1] "1.8.0"

> packageDescription("GO")$Version

[1] "1.10.0"

> packageDescription("hgu95av2")$Version

[1] "1.10.0"

Accessing and analyzing annotation metadata from databases such as GenBank
(www.ncbi.nlm.nih.gov/Genbank), GO (www.geneontology.org), and PubMed
(www.pubmed.gov), presupposes the ability to perform the following essential book-
keeping task: mapping between different identifiers (ID) for a given gene/probe.
Bioconductor annotation metadata packages consist of environment objects that
provide key-value mappings between different sets of gene/probe identifiers.

For instance, in the annotation metadata package hgu95av2, for the Affymetrix
chip series HG-U95Av2, the hgu95av2PMID environment provides mappings from
Affymetrix probe IDs (keys) to PubMed IDs (values); similarly, the hgu95av2GO
environment provides mappings from Affymetrix probe IDs (keys) to GO term IDs
(values).
Example 3. Affymetrix probe ID 1635 at.As of Version 1.10.0 of the hgu95av2
package, the Affymetrix probe with ID 1635 at corresponds to the gene with
symbol ABL1 and long name v-abl Abelson murine leukemia viral oncogene
homolog 1, located on the long arm of chromosome 9. This probe maps to one
GenBank accession number, one Entrez Gene ID, 14 distinct GO term IDs, and
160 distinct PubMed IDs.

> probe <- "1635 at"

2N.B. In the context of Affymetrix oligonucleotide chips, we use the shorter term probe to refer
to a probe-pair-set, i.e., a collection of perfect match (PM) and mismatch (MM) probe-pairs that
map to a particular gene.
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> get(probe, env=hgu95av2SYMBOL)

[1] "ABL1"

> get(probe, env=hgu95av2GENENAME)

[1] "v-abl Abelson murine leukemia viral oncogene homolog 1"

> get(probe, env=hgu95av2MAP)

[1] "9q34.1"

> get(probe, env=hgu95av2ACCNUM)

[1] "U07563"

> get(probe, env=hgu95av2LOCUSID )

[1] 25

> unique(names(get(probe, env=hgu95av2GO)))

[1] "GO:0000074" "GO:0000115" "GO:0000166" "GO:0003677"

[5] "GO:0004713" "GO:0005515" "GO:0005524" "GO:0005634"

[9] "GO:0006298" "GO:0006355" "GO:0006468" "GO:0007242"

[13] "GO:0008630" "GO:0016740"

> length(get(probe, env=hgu95av2PMID))

[1] 160

The remainder of this section gives a brief overview of two main types of Bio-
conductor annotation metadata packages: the GO package (Section 4.3) and the
hgu95av2 package for the Affymetrix chip series HG-U95Av2 (Section 4.4). Sec-
tion 4.5 illustrates how these two packages may be used to assemble a GO gene-
annotation matrix.

4.3. The annotation metadata package GO

The GO package provides environment objects containing key-value pairs for map-
pings between GO term IDs, GO terms, GO term ancestors, GO term parents, GO
term children, GO term offspring, and Entrez Gene IDs. The GO() command lists
all environments available in the GO package.

> GO()

Quality control information for GO

Date built: Created: Fri Sep 30 03:02:24 2005

Mappings found for non-probe based rda files:

GOALLLOCUSID found 9556

GOBPANCESTOR found 9888

GOBPCHILDREN found 4989

GOBPOFFSPRING found 4989

GOBPPARENTS found 9888

GOCCANCESTOR found 1612

GOCCCHILDREN found 578

GOCCOFFSPRING found 578

GOCCPARENTS found 1612

GOLOCUSID2GO found 70818

GOLOCUSID found 8017

GOMFANCESTOR found 7334

GOMFCHILDREN found 1403

GOMFOFFSPRING found 1403

GOMFPARENTS found 7334
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GOOBSOLETE found 1032

GOTERM found 18834

For information on any of the GO environments, use the help function, e.g.,
help(GOTERM) or ?GOBPPARENTS. For instance, the environment GOTERM provides
mappings from GO term IDs (keys) to GO terms (values); the environments
GOBPPARENTS, GOCCPARENTS, and GOMFPARENTS, provide ontology-specific mappings
from GO term IDs (keys) to GO term parent IDs (values). The environments
GOALLLOCUSID, GOLOCUSID2GO, and GOLOCUSID, provide mappings between GO
term IDs and Entrez Gene IDs and are used in Section 4.5, below, to assemble
an Entrez Gene ID-by-GO term ID gene-annotation matrix for the MF gene ontol-
ogy.
Example 4. GO term ID GO:0004713. Let us use the GO package to obtain
information on (all) ancestors, (immediate) parents, (immediate) children, and (all)
offspring of the term corresponding to the GO term ID GO:0004713.

> ## List all GO IDs

> GOID <- ls(env = GOTERM)

> length(GOID)

[1] 18834

> GOID[1:10]

[1] "GO:0000001" "GO:0000002" "GO:0000003" "GO:0000004"

[5] "GO:0000006" "GO:0000007" "GO:0000009" "GO:0000010"

[9] "GO:0000011" "GO:0000012"

>

> ## Get information on GO term corresponding to GO ID

> ## GO:0004713

> GOID <- "GO:0004713"

> term <- get(GOID,env=GOTERM)

> class(term)

[1] "GOTerms"

attr(,"package")

[1] "annotate"

> slotNames(term)

[1] "GOID" "Term" "Synonym" "Secondary"

[5] "Definition" "Ontology"

> term

GOID = GO:0004713

Term = protein-tyrosine kinase activity

Synonym = protein tyrosine kinase activity

Definition = Catalysis of the reaction: ATP + a protein

tyrosine = ADP + protein tyrosine phosphate.

Ontology = MF

>

> ## Get GO IDs of parents

> parents <- get(GOID,env=GOMFPARENTS)

> parents

isa

"GO:0004672"

> mget(parents,env=GOTERM)

$"GO:0004672"

GOID = GO:0004672
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Term = protein kinase activity

Definition = Catalysis of the transfer of a phosphate

group, usually from ATP, to a protein substrate.

Ontology = MF

>

> ## Get GO IDs of ancestors

> ancestors <- get(GOID,env=GOMFANCESTOR)

> ancestors

[1] "all" "GO:0003674" "GO:0003824" "GO:0016740"

[5] "GO:0016772" "GO:0016773" "GO:0016301" "GO:0004672"

>

> ## Get GO IDs of children

> children <- get(GOID,env=GOMFCHILDREN)

> children

[1] "GO:0004714" "GO:0004715" "GO:0004716"

>

> ## Get GO IDs of offspring

> offspring <- get(GOID,env=GOMFOFFSPRING)

> offspring

[1] "GO:0004714" "GO:0004715" "GO:0004716" "GO:0005020"

[5] "GO:0005021" "GO:0005023" "GO:0005010" "GO:0005011"

[9] "GO:0005017" "GO:0005003" "GO:0005006" "GO:0005007"

[13] "GO:0005008" "GO:0005009" "GO:0008288" "GO:0005018"

[17] "GO:0005019" "GO:0005004" "GO:0005005" "GO:0008313"

[21] "GO:0004718"

As already noted in Example 2 and Figure 2, the term corresponding to the GO
term ID GO:0004713 is protein-tyrosine kinase activity, in the Molecular Function
ontology. It has one (immediate) parent term, protein kinase activity.

4.4. Affymetrix chip-specific annotation metadata packages: The
hgu95av2 package

The Bioconductor Project provides Affymetrix chip-specific annotation metadata
packages for the main chip series for the human, mouse, rat, and other genomes
(e.g., HG-U133, HG-U95, HU-6800, MG-U74, and RG-U34 series). These packages,
built using the infrastructure package AnnBuilder, contain environment objects for
mappings between Affymetrix probe IDs and other types of gene/probe identifiers.

Note that analogous packages are not supplied for two-color spotted microarrays,
as there is no standard microarray design for this type of platform and specialized
annotation metadata packages may have to be created for each microarray facility
(e.g., using AnnBuilder). Once annotation metadata packages are available to pro-
vide mappings between different sets of gene/probe identifiers, the tools in annotate
and related packages may be used in a similar manner for any type of microarray
platform.

Consider the hgu95av2 package, for the Affymetrix chip series HG-U95Av2. This
package provides the following environments.

> ? hgu95av2



Multiple tests of association with biological annotation metadata 185

> hgu95av2()

Quality control information for hgu95av2

Date built: Created: Tue Oct 4 21:31:35 2005

Number of probes: 12625

Probe number missmatch: None

Probe missmatch: None

Mappings found for probe based rda files:

hgu95av2ACCNUM found 12625 of 12625

hgu95av2CHRLOC found 11673 of 12625

hgu95av2CHR found 12145 of 12625

hgu95av2ENZYME found 1886 of 12625

hgu95av2GENENAME found 11418 of 12625

hgu95av2GO found 9942 of 12625

hgu95av2LOCUSID found 12203 of 12625

hgu95av2MAP found 12109 of 12625

hgu95av2OMIM found 9881 of 12625

hgu95av2PATH found 3928 of 12625

hgu95av2PMID found 12086 of 12625

hgu95av2REFSEQ found 12008 of 12625

hgu95av2SUMFUNC found 0 of 12625

hgu95av2SYMBOL found 12159 of 12625

hgu95av2UNIGENE found 12118 of 12625

Mappings found for non-probe based rda files:

hgu95av2CHRLENGTHS found 25

hgu95av2ENZYME2PROBE found 643

hgu95av2GO2ALLPROBES found 5480

hgu95av2GO2PROBE found 3890

hgu95av2ORGANISM found 1

hgu95av2PATH2PROBE found 155

hgu95av2PFAM found 10439

hgu95av2PMID2PROBE found 98214

hgu95av2PROSITE found 8249

For information on any of these environments, use the help function, e.g.,
help(hgu95av2GO) or ?hgu95av2GO. We focus on the three environments related
to GO: hgu95av2GO, hgu95av2GO2ALLPROBES, and hgu95av2GO2PROBE.

The HG-U95Av2 chip contains 12,625 probes (corresponding to the keys in the
hgu95av2GO environment), with the first 10 Affymetrix probe IDs listed below.

> ## List all Affymetrix IDs

> AffyID <- ls(env = hgu95av2GO)

> length(AffyID)

[1] 12625

> AffyID[1:10]

[1] "1000 at" "1001 at" "1002 f at" "1003 s at" "1004 at"

[6] "1005 at" "1006 at" "1007 s at" "1008 f at" "1009 at"
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4.4.1. Probes-to-most specific GO terms mappings: The hgu95av2GO environment

The hgu95av2GO environment provides key-value pairs for the mappings from Affy-
metrix probe IDs (keys) to GO term IDs (values). Each Affymetrix probe ID is
mapped to a list of one or more elements, where each element corresponds to a
particular GO term and is itself a list with the following three elements.

• "GOID": A GO term ID corresponding to the Affymetrix probe ID (key).
• "Evidence": A code for the evidence supporting the association of the GO term

to the Affymetrix probe.
• "Ontology": An abbreviation for the name of the ontology to which the GO term

belongs: BP (Biological Process), CC (Cellular Component), or MF (Molecular
Function).

Note that only the directly associated terms or most specific terms (i.e., not
their less specific ancestor terms) a probe is annotated with are returned as values
in hgu95av2GO. The GO package may be used to obtain more information on the
GO term IDs, e.g., GO term, (all) ancestors, (immediate) parents, (immediate)
children, and (all) offspring (Section 4.3).
Example 5. GO terms directly associated with Affymetrix probe ID
1635 at. Let us obtain GO annotation information for the probe with Affymetrix
ID 1635 at, corresponding to the ABL1 gene. The code below shows that probe
1635 at is directly annotated with 14 distinct GO terms (the same GO term ID
may be returned multiple times with a different evidence code). As already noted
in Example 1, one of these terms, with GO term ID GO:0004713, is protein-tyrosine
kinase activity, in the Molecular Function ontology.

> probe <- "1635 at"

> probe2GO <- get(probe, env = hgu95av2GO)

> length(probe2GO)

[1] 14

> unique(names(probe2GO))

[1] "GO:0000074" "GO:0000115" "GO:0000166" "GO:0003677"

[5] "GO:0004713" "GO:0005515" "GO:0005524" "GO:0005634"

[9] "GO:0006298" "GO:0006355" "GO:0006468" "GO:0007242"

[13] "GO:0008630" "GO:0016740"

> probe2GO[[5]]

$GOID

[1] "GO:0004713"

$Evidence

[1] "TAS"

$Ontology

[1] "MF"

> get(probe2GO[[5]]$GOID, env=GOTERM)

GOID = GO:0004713

Term = protein-tyrosine kinase activity

Synonym = protein tyrosine kinase activity

Definition = Catalysis of the reaction: ATP + a protein

tyrosine = ADP + protein tyrosine phosphate.

Ontology = MF
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The hgu95av2GO environment (and analogous environments for other chip series)
may be used to assemble an Affymetrix probe ID-by-GO term ID gene-annotation
matrix, row by row. This may entail, however, a number of data processing steps.
Firstly, only the most specific terms a probe is annotated with are returned as
values in hgu95av2GO. One therefore needs to add all (less specific) ancestor terms
in order to comply with the true path rule. Secondly, several probes may correspond
to the same gene, i.e., several Affymetrix probe IDs may map to the same Entrez
Gene ID according to the environment hgu95av2LOCUSID. Thirdly, the hgu95av2GO
environment returns GO terms for all three gene ontologies at once. One may need
to separate terms according to membership in the BP, CC, and MF ontologies (e.g.,
using the GOTERM environment from the GO package).

Alternately, one may assemble an Affymetrix probe ID-by-GO term ID gene-
annotation matrix, column by column, using the hgu95av2GO2ALLPROBES environ-
ment described below.

4.4.2. GO terms-to-directly annotated probes mappings:
The hgu95av2GO2PROBE environment

The hgu95av2GO2PROBE environment provides key-value pairs for the mappings
from GO term IDs (keys) to Affymetrix probe IDs (values). Values are vectors of
length one or greater depending on whether a given GO term ID is mapped to one
or more Affymetrix probe IDs. The value names are evidence codes for the GO
term IDs.

Note that the probes a particular GO term is mapped to are only those associated
directly with the GO term (vs. indirectly via its immediate children or more distant
offspring). For a list of all probes associated directly or indirectly with a particular
GO term, one may use the hgu95av2GO2ALLPROBES environment.
Example 6. Affymetrix probes directly associated with GO term ID
GO:0004713. In the following example, 205 distinct Affymetrix probe IDs are as-
sociated directly with the GO term protein-tyrosine kinase activity (GO:0004713).
The Affymetrix probe IDs include 1635 at, corresponding to the ABL1 gene.

> GOID <- "GO:0004713"

> GO2Probes <- get(GOID, env = hgu95av2GO2PROBE)

> length(unique(GO2Probes))

[1] 205

> GO2Probes[1:10]

<NA> <NA> <NA> <NA> <NA>

"1635 at" "1636 g at" "1656 s at" "2040 s at" "2041 i at"

TAS IEA IEA IEA TAS

"39730 at" "1084 at" "35162 s at" "1564 at" "854 at"

> is.element("1635 at", GO2Probes)

[1] TRUE

4.4.3. GO terms-to-all annotated probes mappings:
The hgu95av2GO2ALLPROBES environment

The hgu95av2GO2ALLPROBES environment provides key-value pairs for the mappings
from GO term IDs (keys) to Affymetrix probe IDs (values). Values are vectors of
length one or greater depending on whether a given GO term ID is mapped to one
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or more Affymetrix probe IDs. The value names are evidence codes for the GO
term IDs.

Note that, in accordance with the true path rule, the probes a particular GO term
is mapped to are associated either directly with the GO term or indirectly via any of
its immediate children or more distant offspring. The main difference between the
hgu95av2GO2PROBE and hgu95av2GO2ALLPROBES environments is that the former
considers only the GO term itself, whereas the latter considers the GO term and
any of its offspring. Thus, the Affymetrix probe IDs returned by hgu95av2GO2PROBE
are a subset of the probe IDs returned by hgu95av2GO2ALLPROBES.
Example 7. Affymetrix probes directly or indirectly associated with GO
term ID GO:0004713. In the following example, 319 distinct Affymetrix probe
IDs (some with multiple evidence codes) are associated either directly or indirectly
with the GO term protein-tyrosine kinase activity (GO:0004713). This list of 319
Affymetrix probe IDs indeed includes the list of 205 probe IDs associated directly
with the GO term ID GO:0004713.

> GOID <- "GO:0004713"

> GO2AllProbes <- get(GOID, env = hgu95av2GO2ALLPROBES)

> length(GO2AllProbes)

[1] 370

> length(unique(GO2AllProbes))

[1] 319

> sum(is.element(GO2Probes,GO2AllProbes))

[1] 205

The hgu95av2GO2ALLPROBES environment immediately yields an Affymetrix
probe ID-by-GO term ID gene-annotation matrix, column by column. However,
as with the hgu95av2GO environment, a number of data processing steps may be
required, concerning, for example, uniqueness of Entrez Gene IDs and membership
in the BP, CC, and MF ontologies.

4.5. Assembling a GO gene-annotation matrix

This section provides R code for assembling an Entrez Gene ID-by-GO term ID
gene-annotation matrix A, column by column. Specifically, rows correspond to
(unique) Entrez Gene IDs mapping to probes on the HG-U95Av2 chip and columns
to terms in the Molecular Function ontology mapping directly or indirectly to at
least 10 Entrez Gene IDs for the HG-U95Av2 chip.

In practice, it may not be desirable to build the full G × M gene-annotation
matrix, as this matrix could potentially be very large and sparse (padded with
zeros). Rather, we assemble a (smaller) gene-annotation list, that provides, for each
GO term ID, a list of Entrez Gene IDs annotated with the GO term.
Example 8. Entrez Gene ID-by-GO term ID gene-annotation matrix for
MF ontology.

> ## List all Affymetrix IDs for HG-U95Av2 chip

> AffyID <- ls(env=hgu95av2GO)

> length(AffyID)

[1] 12625

>

> ## Get all unique Entrez Gene IDs for HG-U95Av2 chip

> LLID <- as.character(unique(unlist(mget(AffyID,
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+ env=hgu95av2LOCUSID))))

> length(LLID)

[1] 9085

>

> ## Get MF GO IDs

> GOID <- ls(env=GOTERM)

> O <- unlist(lapply(mget(GOID, env=GOTERM),

+ function(z) z@Ontology))

> table(O)

O

BP CC MF

9888 1612 7334

> MFID <- GOID[O=="MF"]

>

> ## For each MF GO ID, get all Entrez Gene IDs for genes

> ## annotated directly or indirectly with the GO term

> allMFLLID <- mget(MFID, env=GOALLLOCUSID)

>

> ## For each MF GO ID, get HG-U95Av2-specific Entrez Gene IDs

> ## for genes annotated directly or indirectly with the GO term

> MFLLID <- lapply(allMFLLID, function(z) intersect(z, LLID))

> numMFLLID <- unlist(lapply(MFLLID, length))

> summary(numMFLLID)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 1.000 1.000 9.539 1.000 6762.000

>

> ## Retain only MF GO IDs that map to at least 10

> ## Entrez Gene IDs for the HG-U95Av2 chip

> MFAnnotList <- MFLLID[numMFLLID > 9]

> length(MFAnnotList)

[1] 466

> summary(unlist(lapply(MFAnnotList, length)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.0 16.0 27.5 132.2 70.0 6762.0

> MFAnnotList[1]

$"GO:0000146"

[1] "4620" "4621" "4624" "4625" "4640" "4643" "4644"

[8] "4646" "4647" "4650" "58498"

>

> ## Get Entrez Gene IDs for probes annotated with GO ID

> ## GO:0004713

> is.element("GO:0004713",names(MFAnnotList))

[1] TRUE

> length(MFAnnotList["GO:0004713"][[1]])

[1] 180
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5. Tests of association between GO annotation and differential gene
expression in ALL

5.1. Acute lymphoblastic leukemia study of Chiaretti et al. [13]

Our proposed approach to tests of association with biological annotation metadata
is illustrated using the acute lymphoblastic leukemia (ALL) microarray dataset of
[13] and Gene Ontology (GO) annotation metadata.

5.1.1. Bioconductor experimental data R package ALL

The ALL dataset is available in the Bioconductor experimental data R package
ALL (Version 1.0.2, Bioconductor Release 1.7). The main object in this package
is ALL, an instance of the class exprSet. The exprs slot of ALL provides a matrix
of 12,625 microarray expression measures (Affymetrix chip series HG-U95Av2) for
each of 128 ALL cell samples. The phenoData slot contains 21 phenotypes (i.e.,
covariates and outcomes) for each of the 128 cell samples. Phenotypes of interest
include: ALL$BT, the type and stage of the cancer (i.e., B-cell ALL or T-cell ALL,
of stage 1, 2, 3, or 4), and ALL$mol.biol, the molecular class of the cancer (i.e.,
BCR/ABL, NEG, ALL1/AF4, E2A/PBX1, p15/p16, or NUP-98).

The expression measures have been obtained using the three-step robust multi-
chip average (RMA) pre-processing method, implemented in the Bioconductor R
package affy [11], and have been subjected to a base 2 logarithmic transformation.

For greater detail on the ALL dataset, please consult the ALL package documen-
tation.

5.1.2. The BCR/ABL fusion

A number of recent articles have investigated the prognostic relevance of the BCR/
ABL fusion in adult ALL of the B-cell lineage [21].

The BCR/ABL fusion is the molecular analogue of the Philadelphia chromo-
some, one of the most frequent cytogenetic abnormalities in human leukemias. This
t(9;22) translocation leads to a head-to-tail fusion of the v-abl Abelson murine
leukemia viral oncogene homolog 1 (ABL1) from chromosome 9 with the 5’ half
of the breakpoint cluster region (BCR) on chromosome 22 (Figure 3). The ABL1
proto-oncogene encodes a cytoplasmic and nuclear protein tyrosine kinase that has
been implicated in processes of cell differentiation, cell division, cell adhesion, and
stress response. Although the BCR/ABL fusion protein, encoded by sequences from
both the ABL1 and BCR genes, has been extensively studied, the function of the nor-
mal product of the BCR gene is not clear. The BCR/ABL proto-oncogene has been
found to be highly expressed in chronic myeloid leukemia (CML) and acute myeloid
leukemia (AML) cells [30].

An interesting question is therefore the identification of genes that are differen-
tially expressed between B-cell ALL with the BCR/ABL fusion and cytogenetically
normal NEG B-cell ALL.

In order to address this question, we consider gene expression measures for the
n = 79 B-cell ALL cell samples (ALL$BT equal to B, B1, B2, B3, or B4), of the
BCR/ABL or NEG molecular types (ALL$mol.biol equal to BCR/ABL or NEG).
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Fig 3. The Philadelphia chromosome and the BCR/ABL fusion. The BCR/ABL fu-
sion is the molecular analogue of the Philadelphia chromosome. This t(9;22) transloca-
tion leads to a head-to-tail fusion of the v-abl Abelson murine leukemia viral oncogene

homolog 1 (ABL1) from chromosome 9 with the 5’ half of the breakpoint cluster region

(BCR) on chromosome 22. Figure obtained from the National Cancer Institute website
(www.cancer.gov/Templates/db alpha.aspx?CdrID=44179). (Color version on website compan-
ion.)

5.1.3. Gene filtering

Many of the genes represented by the 12,625 probes are not expressed in B-cell
lymphocytes. Accordingly, as in [44], we only retain the 2,391 probes that meet
the following two criteria: (i) fluorescence intensities greater than 100 (absolute
scale) for at least 25% of the 79 cell samples; (ii) interquartile range (IQR) of the
fluorescence intensities for the 79 cell samples greater than 0.5 (log base 2 scale).

Furthermore, different probes may correspond to the same gene, i.e., map to the
same Entrez Gene ID, according to the environment hgu95av2LOCUSID from the
hgu95av2 package. In order to obtain one expression measure per gene, we choose
to average the expression measures of multiple probes mapping to the same gene.

These various pre-processing steps lead to G = 2, 071 genes with unique Entrez
Gene IDs.

5.1.4. Reduced ALL dataset: Genotypes and phenotypes of interest

The combined genotypic and phenotypic data for the n = 79 B-cell ALL cell
samples of the BCR/ABL and NEG molecular types may be summarized by the
set XYn ≡ {(Xi, Yi) : i = 1, . . . , n}, of n pairs of G-dimensional gene expres-
sion profiles Xi = (Xi(g) : g = 1, . . . , G), G = 2, 071, and cancer class labels
Yi ∈ {NEG, BCR/ABL}. Among the n = 79 B-cell ALL cell samples, there
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are nBCR/ABL ≡
∑

i I (Yi = BCR/ABL) = 37 BCR/ABL samples and nNEG ≡∑
i I (Yi = NEG) = 42 NEG samples.

5.2. Multiple hypothesis testing framework

Our primary question of interest is the identification of genes that are differentially
expressed (DE) between BCR/ABL and NEG B-cell ALL. A subsequent question
involves relating differential gene expression to GO annotation.

As detailed below, GO annotation metadata for the filtered list of G = 2, 071
unique genes from the HG-U95Av2 chip may be summarized by binary gene-
annotation profiles.

The gene-parameter profiles of interest concern differential gene expression be-
tween BCR/ABL and NEG B-cell ALL, i.e., the association between microarray
gene expression measures and cancer class. Continuous gene-parameter profiles of
unstandardized and standardized measures of differential expression are estimated,
respectively, by (unstandardized) differences of empirical means and (standardized)
two-sample t-statistics. Binary gene-parameter profiles, indicating whether genes
are differentially expressed, are estimated by imposing cut-off rules on two-sample
t-statistics or adjusted p-values.

The following association measures between GO gene-annotation profiles and
DE gene-parameter profiles are considered: two-sample t-statistics for tests of as-
sociation between binary GO gene-annotation profiles and continuous DE gene-
parameter profiles; χ2-statistics for tests of association between binary GO gene-
annotation profiles and binary DE gene-parameter profiles.

Significant associations between differential gene expression and GO annotation
are identified by applying FWER-controlling single-step maxT Procedure 1, based
on the non-parametric bootstrap null shift and scale-transformed test statistics null
distribution of Procedure 2.

5.2.1. Gene-annotation profiles

Gene Ontology annotation metadata for the HG-U95Av2 chip series are obtained as
described in Sections 4.2–4.5, from the following Bioconductor R packages: the GO-
specific metadata package GO (Version 1.10.0, Bioconductor Release 1.7) and the
Affymetrix chip-specific metadata package hgu95av2 (Version 1.10.0, Bioconductor
Release 1.7).

For each of the three gene ontologies, binary gene-annotation matrices ABP ,
ACC , and AMF , are assembled for the GO terms annotating at least 10 of the
G = 2, 071 filtered genes (sample R code provided in Section 4.5). Specifically, for
gene ontology o ∈ {BP, CC, MF}, Ao = (Ao(g, m) : g = 1, . . . , G; m = 1, . . . , Mo)
is a G×Mo matrix, with element Ao(g, m) indicating whether gene g is annotated by
GO term m and such that

∑
g Ao(g, m) ≥ 10 for each term m. The numbers of terms

considered in each gene ontology are MBP = 367, MCC = 81, and MMF = 185.

5.2.2. Gene-parameter profiles

Definition of gene-parameter profiles Consider a data structure (X, Y ) ∼ P ,
where X = (X(g) : g = 1, . . . , G) is a G = 2, 071-dimensional vector of mi-
croarray gene expression measures and Y ∈ {NEG, BCR/ABL} is a binary can-
cer class label. Let ηk ≡ Pr(Y = k) denote the proportion of cancers of class



Multiple tests of association with biological annotation metadata 193

k ∈ {NEG, BCR/ABL}. Define conditional G-dimensional mean vectors and G×G
covariance matrices for the expression measures of class k ∈ {NEG, BCR/ABL}
cancers by

(43) μk ≡ E[X|Y = k] and σk ≡ Cov[X|Y = k],

respectively.
Gene-parameter profiles, concerning differential gene expression between BCR/

ABL and NEG B-cell ALL, may be specified in various ways. Continuous DE gene-
parameter profiles may be defined in terms of the following unstandardized and
standardized measures of differential gene expression between BCR/ABL and NEG
B-cell ALL,

λd(g) ≡ μBCR/ABL(g) − μNEG(g)(44)

and

λt(g) ≡ μBCR/ABL(g) − μNEG(g)√
σBCR/ABL(g,g)

ηBCR/ABL
+ σNEG(g,g)

ηNEG

.

Absolute values of λd(g) and λt(g) may be used for measuring two-sided differential
expression, i.e., either over- or under-expression in BCR/ABL compared to NEG
B-cell ALL.

Binary DE gene-parameter profiles may be defined in terms of indicators for
two-sided and one-sided differential expression.

λ �=(g) ≡ I (μBCR/ABL(g) �= μNEG(g))(45)
= I

(
λd(g) �= 0

)
= I

(
λt(g) �= 0

)
,

λ+(g) ≡ I (μBCR/ABL(g) > μNEG(g))
= I

(
λd(g) > 0

)
= I

(
λt(g) > 0

)
,

λ−(g) ≡ I (μBCR/ABL(g) < μNEG(g))
= I

(
λd(g) < 0

)
= I

(
λt(g) < 0

)
.

Estimation of gene-parameter profiles The above DE gene-parameter pro-
files may be estimated as follows, based on the sample XYn of gene expression
measures for the n = 79 B-cell ALL cell samples of the BCR/ABL and NEG mole-
cular types.

The resubstitution estimators of the continuous gene-parameter profiles of Equa-
tion (44) are based, respectively, on differences of empirical means and two-sample
Welch t-statistics (up to the multiplier 1/

√
n). That is,

λd
n(g) ≡ μBCR/ABL,n(g) − μNEG,n(g)(46)

and

λt
n(g) ≡ 1√

n

μBCR/ABL,n(g) − μNEG,n(g)√
σBCR/ABL,n(g,g)

nBCR/ABL
+ σNEG,n(g,g)

nNEG

,

where μk,n(g) ≡
∑

i I (Yi = k) Xi(g)/nk and σk,n(g, g) ≡
∑

i I (Yi = k) (Xi(g) −
μk,n(g))2/(nk − 1) denote, respectively, the empirical means and variances of the
gene expression measures for cancers of class k ∈ {NEG, BCR/ABL}.



194 S. Dudoit, S. Keleş and M. J. van der Laan

Estimating the two-sided binary gene-parameter profile λ �= of Equation (45)
involves the two-sided test of the G null hypotheses H0(g) = I (μBCR/ABL(g) =
μNEG(g)), of no differences in mean gene expression measures between BCR/ABL
and NEG B-cell ALL. Likewise, estimating the one-sided binary gene-parameter
profiles λ+ and λ− involves, respectively, the one-sided test of the G null hy-
potheses of no over-expression (H0(g) = I (μBCR/ABL(g) ≤ μNEG(g))) and no under-
expression (H0(g) = I (μBCR/ABL(g) ≥ μNEG(g))) in BCR/ABL compared to NEG
B-cell ALL. For single-step common-cut-off maxT Procedure 1, adjusted p-values
produce the same gene ranking as the test statistics defined in Equation (46). Sim-
ple and naive estimators of the three sets of differentially expressed genes (i.e.,
false null hypotheses), represented by the gene-parameter profiles λ �=, λ+, and λ−,
are therefore given, respectively, by the sets of genes with the largest γG values of
|λt

n(g)|, λt
n(g), and −λt

n(g). That is,

λ �=
n,γG(g) ≡ I

⎛⎝ G∑
g′=1

I
(
|λt

n(g)| ≥ |λt
n(g′)|

)
> (1 − γ)G

⎞⎠ ,(47)

λ+
n,γG(g) ≡ I

⎛⎝ G∑
g′=1

I
(
λt

n(g) ≥ λt
n(g′)

)
> (1 − γ)G

⎞⎠ ,

λ−
n,γG(g) ≡ I

⎛⎝ G∑
g′=1

I
(
−λt

n(g) ≥ −λt
n(g′)

)
> (1 − γ)G

⎞⎠ .

Analogous estimators may also be based on other test statistics, such as unstan-
dardized difference statistics λd

n.
More sophisticated estimators, that translate the proportion γ of rejected null

hypotheses into a Type I error rate such as the gFWER, TPPFP, or FDR, could
be based on adjusted p-values for the multiple test of the G null hypotheses H0(g).
For example, one could estimate λ �= by

(48) λ �=
n,α(g) ≡ I

(
P̃ �=

0n(g) ≤ α
)

,

where P̃ �=
0n(g) are adjusted p-values for a suitably chosen multiple testing procedure,

such as, FWER-controlling single-step maxT Procedure 1 or a TPPFP-controlling
augmentation multiple testing procedure (Chapter 6 in [14], [40]). One-sided binary
gene-parameter profiles λ+ and λ− could be estimated likewise.

5.2.3. Association measures for gene-annotation and gene-parameter profiles

The association between continuous DE gene-parameter profiles, as in Equation
(44), and binary GO gene-annotation profiles may be measured by two-sample
Welch t-statistics (or corresponding p-values). Specifically, given a continuous G-
vector x and a binary G-vector y, define the following association measure,

(49) ρt(x, y) ≡ x̄1 − x̄0√
v[x]1
y1

+ v[x]0
y0

,

where yk ≡
∑

g I (y(g) = k), x̄k ≡
∑

g I (y(g) = k) x(g)/yk, and
v[x]k ≡

∑
g I (y(g) = k) (x(g) − x̄k)2/(yk − 1), k ∈ {0, 1}.
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The association between binary DE gene-parameter profiles, as in Equation (45),
and binary GO gene-annotation profiles may be measured by χ2-statistics (or cor-
responding p-values) for the test of independence of rows and columns in a 2 × 2
contingency table, such as Table 2. Specifically, given binary G-vectors x and y,
define the following association measure,

(50) ρχ(x, y) ≡ G(g00g11 − g01g10)2

(g00 + g01)(g00 + g10)(g11 + g01)(g11 + g10)
,

where gkk′ ≡
∑

g I (x(g) = k) I (y(g) = k′), k, k′ ∈ {0, 1}.
Given an association measure3 ρ : R

G×M × R
G → R

M , a G × M GO gene-
annotation matrix A, and a G-dimensional DE gene-parameter profile λ = Λ(P ),
the M -dimensional association parameter vector ψ = Ψ(P ) of primary interest is
defined as

(51) ψ ≡ ρ(A, λ).

The corresponding resubstitution estimator ψn = Ψ̂(Pn) is simply obtained by
replacing the gene-parameter profile λ by an estimator thereof λn = Λ̂(Pn), that is,

(52) ψn ≡ ρ(A, λn).

5.2.4. Null and alternative hypotheses

For the t-statistic-based association measure ρt of Equation (49), the identifica-
tion of GO terms m that are significantly (positively or negatively) associated with
BCR/ABL vs. NEG differential gene expression involves the two-sided test of the
M null hypotheses H0(m) = I (ψ(m) = ψ0(m)) against the alternative hypothe-
ses H1(m) = I (ψ(m) �= ψ0(m)), with null values ψ0(m) = 0. In some contexts,
one may be interested in identifying positive (negative) associations, i.e., in the
one-sided test of the M null hypotheses H0(m) = I (ψ(m) ≤ ψ0(m)) (H0(m) =
I (ψ(m) ≥ ψ0(m))) against the alternative hypotheses H1(m) = I (ψ(m) > ψ0(m))
(H1(m) = I (ψ(m) < ψ0(m))).

For the χ2-statistic-based association measure ρχ of Equation (50), the identi-
fication of GO terms m that are significantly (positively or negatively) associated
with BCR/ABL vs. NEG differential gene expression involves the one-sided test of
the M null hypotheses H0(m) = I (ψ(m) ≤ ψ0(m)) against the alternative hypothe-
ses H1(m) = I (ψ(m) > ψ0(m)). A natural choice for the null values is the mean of
the χ2(1)-distribution, ψ0(m) = 1.

5.2.5. Test statistics

One-sided and two-sided tests of null hypotheses concerning any of the association
parameters defined above may be based on (unstandardized) difference statistics
Tn(m), defined as in Equation (40).

For one-sided tests, large values of the test statistics Tn(m) provide evidence
against the corresponding null hypotheses H0(m), that is, rejection regions are of
the form Cn(m) = (cn(m), +∞). For two-sided tests, large values of the absolute
test statistics |Tn(m)| provide evidence against the corresponding null hypotheses
H0(m).

3N.B. For ease of notation, ρt and ρχ, defined in Equations (49) and (50) as real-valued
association measures, may also refer loosely to RM -valued association measures, defined as
ρt(X, y) ≡ (ρt(X(·, m), y) : m = 1, . . . , M) and ρχ(X, y) ≡ (ρχ(X(·, m), y) : m = 1, . . . , M)
for X ∈ RG×M and y ∈ RG.



196 S. Dudoit, S. Keleş and M. J. van der Laan

5.2.6. Multiple testing procedures

For the purpose of illustration, we focus on control of the family-wise error rate,
using single-step maxT Procedure 2.9, based on the non-parametric bootstrap null
shift-transformed test statistics null distribution of Procedure 2.9 (null shift values
λ0(m) = 0 and no scaling).

Let On(m) denote indices for the ordered adjusted p-values, so that P̃0n(On(1)) ≤
· · · ≤ P̃0n(On(M)). GO terms with adjusted p-values less than or equal to α are
declared significantly associated with differential gene expression at nominal FWER
level α. That is, the list of GO terms found to be associated with differential gene
expression is

(53) Rn(α) ≡
{

m : P̃0n(m) ≤ α
}

= {On(1), . . . , On(Rn(α))} ,

where Rn(α) ≡ |Rn(α)| denotes the number of identified GO terms.

5.2.7. Summary of testing scenarios

This section summarizes our approach for identifying GO terms associated with
BCR/ABL vs. NEG differential gene expression. For each of the three gene ontolo-
gies (i.e., BP, CC, and MF), we consider the following three types of testing sce-
narios, each corresponding to a different association parameter ψ = ρ(A, λ) for GO
annotation and BCR/ABL vs. NEG differential gene expression. Scenarios MT[t, t]
and MT[d, t] are very similar and correspond, respectively, to continuous gene-
parameter profiles of standardized and unstandardized measures of differential gene
expression. In contrast, Scenario MT[�=, χ] corresponds to a binary gene-parameter
profile of differential gene expression indicators.

Scenario MT[t, t]: Association parameter ψt,t = ρt(A, |λt|), for standard-
ized continuous DE gene-parameter profile λt. Consider the two-sided
test of

Ht,t
0 (m) ≡ I

(
ψt,t(m) = ψt,t

0 (m)
)

vs.

Ht,t
1 (m) ≡ I

(
ψt,t(m) �= ψt,t

0 (m)
)
,

where the association parameter vector of interest is defined as

ψt,t ≡ ρt(A, |λt|),

based on Equations (44) and (49), and the null values are ψt,t
0 (m) ≡ 0. The

continuous DE gene-parameter profile λt is estimated by λt
n, as in Equation

(46), and the association parameter ψt,t is estimated by the resubstitution esti-
mator ψt,t

n ≡ ρt(A, |λt
n|), as in Equation (52). The test statistics are defined as

(unstandardized) difference statistics,

T t,t
n (m) ≡

√
n(ψt,t

n (m) − ψt,t
0 (m)),

and the null hypotheses Ht,t
0 (m) are rejected for large absolute values of T t,t

n (m).
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Scenario MT[d, t]: Association parameter ψd,t = ρt(A, |λd|), for unstan-
dardized continuous DE gene-parameter profile λd. Consider the two-
sided test of

Hd,t
0 (m) ≡ I

(
ψd,t(m) = ψd,t

0 (m)
)

vs.

Hd,t
1 (m) ≡ I

(
ψd,t(m) �= ψd,t

0 (m)
)

,

where the association parameter vector of interest is defined as

ψd,t ≡ ρt(A, |λd|),

based on Equations (44) and (49), and the null values are ψd,t
0 (m) ≡ 0. The

continuous DE gene-parameter profile λd is estimated by λd
n, as in Equation

(46), and the association parameter ψd,t is estimated by the resubstitution esti-
mator ψd,t

n ≡ ρt(A, |λd
n|), as in Equation (52). The test statistics are defined as

(unstandardized) difference statistics,

T d,t
n (m) ≡

√
n(ψd,t

n (m) − ψd,t
0 (m)),

and the null hypotheses Hd,t
0 (m) are rejected for large absolute values of T d,t

n (m).
Scenario MT[ �=, χ]: Association parameter ψ �=,χ = ρχ(A, λ �=), for binary

DE gene-parameter profile λ �=. Consider the one-sided test of

H �=,χ
0 (m) ≡ I

(
ψ �=,χ(m) ≤ ψ �=,χ

0 (m)
)

vs.

H �=,χ
1 (m) ≡ I

(
ψ �=,χ(m) > ψ �=,χ

0 (m)
)

,

where the association parameter vector of interest is defined as

ψ �=,χ ≡ ρχ(A, λ �=),

based on Equations (45) and (50), and the null values are ψ �=,χ
0 (m) ≡ 1 (the

mean of the χ2(1)-distribution). The following two types of estimators λ �=
n are

considered for the binary DE gene-parameter profile λ �=: λ �=
n,γG, with numbers of

DE genes γG = 20, 50, 100 (Equation (47)); λ �=
n,α, defined in terms of adjusted

p-values for FWER-controlling permutation-based single-step maxT Procedure
2.9 (B = 1, 000 permutations of the cancer class labels) and nominal FWER
level α = 0.05 (Equation (48)). Given an estimator λ �=

n of λ �=, the association
parameter ψ �=,χ is estimated by the resubstitution estimator ψ �=,χ

n ≡ ρχ(A, λ �=
n ),

as in Equation (52). The test statistics are defined as (unstandardized) difference
statistics,

T �=,χ
n (m) ≡

√
n(ψ �=,χ

n (m) − ψ �=,χ
0 (m)),

and the null hypotheses H �=,χ
0 (m) are rejected for large values of T �=,χ

n (m).

For each of the three testing scenarios, the null shift-transformed test statistics
null distribution Q0 is estimated as in Procedure 2, with B = 5, 000 non-parametric
bootstrap samples of the data XYn and ZB

n (m, b) = TB
n (m, b) − E[TB

n (m, ·)] (i.e.,
null shift values λ0(m) = 0 and no scaling). For one-sided testing Scenario MT[�=, χ],
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bootstrap-based single-step maxT adjusted p-values P̃0n(m) are computed as in
Procedure 2. For two-sided testing Scenarios MT[t, t] and MT[d, t], adjusted p-values
are computed based on absolute values of ZB

n (m, b) and Tn(m).
In what follows, the G-dimensional gene-parameter profiles λ correspond to the

G = 2, 071 genes with unique Entrez Gene IDs, obtained as described in Section
5.1. For each of the three gene ontologies, binary gene-annotation matrices are
assembled for the GO terms annotating at least 10 of the G = 2, 071 genes of
interest: G = 2, 071×MBP = 367 gene-annotation matrix ABP for the BP ontology,
G = 2, 071 × MCC = 81 gene-annotation matrix ACC for the CC ontology, and
G = 2, 071 × MMF = 185 gene-annotation matrix AMF for the MF ontology.

5.3. Results

5.3.1. Differentially expressed genes between BCR/ABL and NEG B-cell ALL

In order to identify differentially expressed genes between BCR/ABL and NEG
B-cell ALL, two-sided tests of the G null hypotheses

H0(g) = I (μBCR/ABL(g) = μNEG(g))

are performed using the two-sample t-statistics λt
n(g) of Equation (46) and FWER-

controlling bootstrap-based single-step maxT Procedure 2. Adjusted p-values P̃ �=
0n(g)

are obtained using the MTP function from the multtest package (Version 1.8.0, Bio-
conductor Release 1.7), with B = 5, 000 non-parametric bootstrap samples and
other arguments set to their default values.

Figure 4 displays a normal quantile-quantile plot of the test statistics λt
n(g)

(Panel (a)) and a plot of the sorted bootstrap-based single-step maxT adjusted
p-values P̃ �=

0n(g) (Panel (b)). A handful of genes stand out in terms of their large
absolute test statistics and small adjusted p-values.

For control of the FWER at nominal level α = 0.05, Procedure 2.9 identifies
16 differentially expressed genes, i.e., 16 genes with P̃ �=

0n(g) ≤ α. Table 3 provides

Fig 4. Differentially expressed genes between BCR/ABL and NEG B-cell ALL. Panel (a): Normal
quantile-quantile plot of two-sample t-statistics λt

n(g). Panel (b): Plot of sorted bootstrap-based

single-step maxT adjusted p-values P̃ �=
0n(g).
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Table 3. Differentially expressed genes between BCR/ABL and NEG B-cell ALL. This table
provides the Affymetrix probe IDs, Entrez Gene IDs (hgu95av2LOCUSID environment in hgu95av2
package), gene symbols (hgu95av2SYMBOL environment), gene names (hgu95av2GENENAME environ-

ment), test statistics λt
n(g) (Equation (46)), and adjusted p-values P̃ �=

0n(g), for the 16 genes found
to be significantly differentially expressed between BCR/ABL and NEG B-cell ALL, at nomi-
nal FWER level α = 0.05, according to the bootstrap-based single-step maxT procedure, with
two-sample t-statistics λt

n(g) and B = 5, 000 bootstrap samples. A more detailed hyperlinked
table, including information on gene function, chromosomal location, links to GenBank, Entrez
Gene, NCBI Map Viewer, UniGene, PubMed, AmiGO, and KEGG, is provided on the website
companion (Supplementary Table 10.1).

Probe ID Entrez Gene ID Symbol λt
n(g) P̃

�=
0n(g)

1635 at 25 ABL1 8.44 0.0e+00
v-abl Abelson murine leukemia viral oncogene homolog 1

40202 at 687 KLF9 6.33 0.0e+00
Kruppel-like factor 9

37027 at 79026 AHNAK 5.71 1.4e-03
AHNAK nucleoprotein (desmoyokin)

39837 s at 168544 ZNF467 5.45 3.4e-03
zinc finger protein 467

33774 at 841 CASP8 5.29 4.2e-03
caspase 8, apoptosis-related cysteine peptidase

37014 at 4599 MX1 −5.23 5.0e-03
myxovirus (influenza virus) resistance 1,

interferon-inducible protein p78 (mouse)

2039 s at 2534 FYN 5.21 5.0e-03
FYN oncogene related to SRC, FGR, YES

39329 at 87 ACTN1 4.97 9.6e-03
actinin, alpha 1

32542 at 2273 FHL1 4.96 1.0e-02
four and a half LIM domains 1

40051 at 9697 TRAM2 4.59 2.7e-02
translocation associated membrane protein 2

38032 at 9900 SV2A 4.54 3.1e-02
synaptic vesicle glycoprotein 2A

39319 at 3937 LCP2 4.50 3.5e-02
lymphocyte cytosolic protein 2

(SH2 domain containing leukocyte protein of 76 kDa)

33232 at 1396 CRIP1 4.46 3.7e-02
cysteine-rich protein 1 (intestinal)

36591 at 7277 TUBA1 4.37 4.4e-02
tubulin, alpha 1 (testis specific)

38994 at 8835 SOCS2 4.35 4.7e-02
suppressor of cytokine signaling 2

40076 at 7165 TPD52L2 −4.33 4.8e-02
tumor protein D52-like 2

the test statistics, adjusted p-values, and various identifiers for these 16 genes. A
more detailed hyperlinked table is posted on the website companion (Supplementary
Table 10.1; www.stat.berkeley.edu/~sandrine/MTBook/BAM/BAM.html).

Only 2 of the 16 identified genes have a negative test statistic (MX1 and TPD52L2),
suggesting that most DE genes tend to be over-expressed in cell samples with the
BCR/ABL fusion.

Unsurprisingly, the gene showing the most over-expression in BCR/ABL cell
samples, as measured by the t-statistics λt

n, is the ABL1 gene (v-abl Abelson
murine leukemia viral oncogene homolog 1), located on the long arm of chro-
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mosome 9 (9q34.1). As mentioned in Section 5.1, the BCR/ABL phenotype is indeed
defined in terms of the ABL1 gene.

Furthermore, many of the DE genes seem to be related to apoptosis or oncogene-
sis. For example, the Kruppel-like factor 9 (KLF9) gene encodes a transcription
factor that binds GC-box elements in gene promoter regions. The Krüppel-like
factor (KLF) family is comprised of highly related zinc-finger proteins, that are im-
portant components of the eukaryotic cellular transcriptional machinery and that
take part in a wide range of cellular functions (e.g., cell proliferation, apoptosis, dif-
ferentiation, and neoplastic transformation). In particular, KLFs have been linked
to various cancers [25]. The intron-less gene AHNAK nucleoprotein (desmoyokin)
(AHNAK), located on the long arm of chromosome 11 (11q12.2), encodes an un-
usually large protein (� 700 kiloDalton (kDa)) that is typically repressed in cell
lines derived from human neuroblastomas and several other types of tumors [35].
Yet another example, the caspase 8, apoptosis-related cysteine peptidase
(CASP8) gene, encodes a key enzyme at the top of the apoptotic cascade and has
been linked to neuroblastoma [3]. Likewise, other genes listed in Table 3, including
MX1, FYN, ACTN1, FHL1, and TRAM2, appear to be related to the molecular biology
of cancer.

Our results are in general agreement with those of [44], slight differences being
due, most likely, to our preliminary gene filtering, which involves averaging the
expression measures of multiple probes mapping to the same Entrez Gene ID.

For greater detail, the interested reader is invited to consult Supplementary Table
10.1 on the website companion and follow links to PubMed and other databases.
Further exploration of the DE genes may be performed in R using the Bioconductor
packages annotate and annaffy.

5.3.2. GO terms associated with differential gene expression between BCR/ABL
and NEG B-cell ALL

Figure 5 displays, for each of the three gene ontologies and each of the three testing
scenarios, plots of the sorted adjusted p-values, P̃0n(On(1)) ≤ · · · ≤ P̃0n(On(M)),
for FWER-controlling bootstrap-based single-step maxT Procedure 2 (B = 5, 000
bootstrap samples). The smaller the adjusted p-values, the less conservative the
procedure, and the longer the list Rn(α) = {m : P̃0n(m) ≤ α} of identified GO
terms at any given nominal Type I error level α.

Table 4 summarizes the results in terms of the numbers Rn(α) = |Rn(α)| of
GO terms found to be significantly associated with BCR/ABL vs. NEG differential
gene expression for different nominal FWER levels α.

In general, adjusted p-values tend to be quite large, with only a handful of GO
terms identified as being significantly associated with BCR/ABL vs. NEG differ-
ential gene expression for nominal FWER level α ∈ {0.05, 0.10, 0.20}. The ad-
justed p-values for Scenarios MT[t, t] and MT[d, t] (red and blue plotting symbols),
corresponding, respectively, to standardized and unstandardized continuous DE
gene-parameter profiles, are similar. For the BP and MF gene ontologies, Scenario
MT[t, t] seems to be slightly more conservative than Scenario MT[d, t]; however, this
does not hold for the CC ontology. Scenario MT[�=, χ], with four different estimators
of the binary DE gene-parameter profile λ �=, tends to be more conservative than ei-
ther Scenario MT[t, t] or MT[d, t]. Furthermore, the choice of parameter γG, for the
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Fig 5. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, adjusted p-values. Plots of sorted bootstrap-based single-step maxT adjusted p-values

P̃0n(m), for each of the three gene ontologies and each of the three testing scenarios.

Table 4. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL. This table reports, for each of the three gene ontologies and each of the three testing
scenarios, the numbers Rn(α) = |Rn(α)| of GO terms found to be significantly associated with
BCR/ABL vs. NEG differential gene expression for different nominal FWER levels α.

Nominal FWER level, α
0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

MT[t, t] 2 6 14 3 4 5 1 1 3

MT[d, t] 1 5 16 3 5 7 1 2 4

MT[ �=, χ : α = 0.05] 0 3 5 0 0 0 1 1 1
MT[ �=, χ : γG = 20] 0 0 0 0 0 0 1 1 1
MT[ �=, χ : γG = 50] 0 0 1 2 2 2 0 0 0

MT[ �=, χ : γG = 100] 0 0 2 1 1 2 0 0 0

BP CC MF

number of genes called differentially expressed, can have a substantial impact on
the adjusted p-values for Scenario MT[�=, χ : γG]. There are some indications, espe-
cially for the CC ontology, that greater values of the parameter γG lead to greater
numbers of identified GO terms. Note that for Scenario MT[�=, χ], the p-value-based
estimator λ �=

n,α, with α = 0.05, and the naive estimator λ �=
n,γG, with γG = 20, yield

very similar results (green and purple plotting symbols). Indeed, when applied to
the entire dataset for the n = 79 cell samples, permutation-based single-step maxT
Procedure 1 identifies 20 genes as being differentially expressed between BCR/ABL
and NEG B-cell ALL at nominal FWER level α = 0.05. In other words, λ �=

n,0.05 and
λ �=

n,20 yield the same estimate of the binary gene-parameter profile λ �= for the set of
DE genes. Minor discrepancies between the results of Scenarios MT[�=, χ : α = 0.05]
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Fig 6. GO terms associated with differential gene expression between BCR/ABL and NEG B-cell
ALL, common terms between testing scenarios. Plots of numbers of common GO terms among
sets of ordered GO terms On(r) of various cardinality r for pairs of testing scenarios. Scenario
MT[t, t] is used as the baseline in the top panels and Scenario MT[ �=, χ : α = 0.05], with adjusted

p-value-based estimator λ�=
n,α, α = 0.05, for the binary DE gene-parameter profile λ�=, is used

as the baseline in the bottom panels. For example, the blue curve in the top-left panel is a plot

of
∣∣Od,t

n (r) ∩ Ot,t
n (r)

∣∣ vs. r for the MF gene ontology, i.e., of the overlap between the r most

significant MF GO terms according to Scenarios MT[d, t] and MT[t, t].

and MT[�=, χ : γG = 20] are due to the fact that while the estimators λ �=
n,0.05 and

λ �=
n,20 coincide on the original sample, they may differ on bootstrap samples of these

data.
Next, the three testing scenarios are compared in terms of the contents of the lists

Rn(α) of identified GO terms. Specifically, let On(r) ≡ {On(1), . . . , On(r)} denote
the set of indices corresponding to the r smallest adjusted p-values for a given gene
ontology and testing scenario. Measures of agreement between testing scenarios
are provided by the numbers of common GO terms among sets of ordered GO
terms On(r) of various cardinality r, i.e., by the cardinality of intersections of sets
On(r) for different testing scenarios. Figure 6 displays plots of numbers of common
GO terms for pairs of testing scenarios. As expected, there is substantial overlap
between the GO terms identified by Scenarios MT[t, t] and MT[d, t] for continuous
DE gene-parameter profiles (blue plotting symbols in top panels). This suggests
that, for the ALL dataset, standardized (λt) and unstandardized (λd) continuous
measures of differential gene expression have similar properties. In contrast, there is
much less overlap between the GO terms identified by Scenario MT[�=, χ], for binary
DE gene-parameter profiles, and either Scenario MT[t, t] or MT[d, t]. For example,
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Fig 7. GO terms associated with differential gene expression between BCR/ABL and NEG B-cell
ALL, conditional distribution of λt

n given A. Conditional boxplots of the estimated continuous
DE gene-parameter profile λt

n given the gene-annotation profiles A(·, m) for the top two GO terms
m ∈ {On(1), On(2)} identified according to each of the three testing scenarios. Rows correspond
to gene ontologies and columns to testing scenarios. In each panel, the white and gray boxplots
correspond, respectively, to the GO terms with the smallest and second smallest adjusted p-values;
boxplots for unannotated and annotated estimated gene-parameter profiles, (λt

n(g) : A(g, m) =
0) and (λt

n(g) : A(g, m) = 1), are labeled as 0 and 1, respectively. Non-overlapping notches
(informally) represent large differences in medians.

for the MF gene ontology, among the top 10 GO terms On(10) identified by each
testing scenario, 6 are common to Scenarios MT[t, t] and MT[d, t], whereas at most
3 are common to Scenarios MT[t, t] and MT[�=, χ]. Again, note the near perfect
agreement between Scenarios MT[�=, χ : α = 0.05] and MT[�=, χ : γG = 20] (purple
plotting symbols in lower panels). Figure 6 again illustrates the lack of robustness
of Scenario MT[�=, χ : γG] to the choice of parameter γG.

Moreover, examine graphical summaries of the joint distributions of the esti-
mated continuous DE gene-parameter profile λt

n and the gene-annotation profiles
A(·, m) for the top two GO terms m ∈ {On(1), On(2)} identified according to each
testing scenario. Figure 7 displays conditional boxplots of λt

n given A(·, m), that
is, boxplots of the unannotated and annotated estimated gene-parameter profiles,
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(λt
n(g) : A(g, m) = 0) and (λt

n(g) : A(g, m) = 1), respectively. Although the box-
plots reveal clear differences (non-overlapping notches) between unannotated and
annotated profiles for some of the GO terms (e.g., MF term GO:0003735), the differ-
ences can be subtle for other terms (e.g., MF term GO:0003924). Not surprisingly,
the most extreme differences are seen for Scenarios MT[t, t] and MT[d, t], and, to a
lesser extent, for Scenario MT[�=, χ : α = 0.05] for the CC ontology. The boxplots
again illustrate differences between Scenario MT[�=, χ] and either Scenario MT[t, t]
or MT[d, t].

Tables 5, 6, and 7 report various p-value-based measures of association between
the estimated DE gene-parameter profiles λt

n and λ �=
n,α and the gene-annotation

profiles A(·, m) for the top two GO terms m ∈ {On(1), On(2)} identified according
to each testing scenario, in the BP, CC, and MF gene ontologies, respectively. The
transformation to the [0, 1] p-value scale allows a more direct comparison of the var-
ious testing scenarios. The tables again highlight the differences between Scenario
MT[�=, χ], for binary DE gene-parameter profiles, and either Scenario MT[t, t] or
MT[d, t], for continuous DE gene-parameter profiles. As expected, Scenarios MT[t, t]
and MT[d, t] tend to identify GO terms with small p-values P t,t

0n (m) for t-tests of
association between estimated continuous gene-parameter profiles λt

n and gene-
annotation profiles A(·, m). In contrast, and also as expected, Scenario MT[�=, χ]

tends to identify GO terms with small p-values P �=,χ
0n (m) for χ2-tests of associa-

tion between estimated binary gene-parameter profiles λ �=
n,α and gene-annotation

profiles A(·, m). Furthermore, the tables corroborate our earlier observation that
Scenario MT[�=, χ] tends to be more conservative than either Scenario MT[t, t] or
MT[d, t]. Indeed, some of the GO terms with small p-values P t,t

0n (m) for continuous

Table 5. GO terms associated with differential gene expression between BCR/ABL and NEG B-
cell ALL, top two BP GO terms. This table provides association measures between the estimated

DE gene-parameter profiles λt
n and λ�=

n,α and the gene-annotation profiles A(·, m) for the top two
BP GO terms m ∈ {On(1), On(2)} identified according to each of the three testing scenarios.
A1(m) =

∑
g

A(g, m): Number of genes directly or indirectly annotated with GO term m (out

of G = 2, 071 genes, GOALLLOCUSID environment in GO package). P t,t
0n (m): Nominal unadjusted

p-value for the two-sample t-test comparing the unannotated and annotated estimated continuous
DE gene-parameter profiles, (λt

n(g) : A(g, m) = 0) and (λt
n(g) : A(g, m) = 1), respectively (t.test

function from the R package stats, with default argument values). P �=,χ
0n (m): Unadjusted p-value

for the χ2-test of independence between the estimated binary DE gene-parameter profile λ�=
n,α,

α = 0.05, and the gene-annotation profile A(·, m) (chisq.test function from the R package stats,

with arguments simulate.p.value = TRUE, correct=FALSE). P̃0n(m): Bootstrap-based single-step
maxT adjusted p-value, according to which the top two GO terms are identified for each testing
scenario.

BP

Scenario GO term A1(m) P t,t
0n (m) P �=,χ

0n (m) P̃0n(m)
MT[t, t] GO:0008152 1076 2.5e-09 1.7e-01 2.6e-02

GO:0044237 1045 3.8e-08 1.8e-01 4.3e-02
MT[d, t] GO:0006091 98 5.2e-06 6.3e-01 3.7e-02

GO:0000226 14 1.8e-03 1.0e+00 5.8e-02
MT[ �=, χ : α = 0.05] GO:0008361 27 5.5e-02 3.5e-03 8.3e-02

GO:0016049 27 5.5e-02 1.5e-03 8.3e-02
MT[ �=, χ : γG = 20] GO:0008361 27 5.5e-02 4.0e-03 2.1e-01

GO:0016049 27 5.5e-02 1.5e-03 2.1e-01
MT[ �=, χ : γG = 50] GO:0048522 87 3.6e-02 6.5e-03 1.9e-01

GO:0048518 96 4.4e-02 1.3e-02 2.3e-01
MT[ �=, χ : γG = 100] GO:0050793 24 8.5e-02 1.7e-02 1.5e-01

GO:0007155 59 5.9e-04 1.2e-01 2.0e-01
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Table 6. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, top two CC GO terms. Details in Table 5 caption.

CC

Scenario GO term A1(m) P t,t
0n (m) P �=,χ

0n (m) P̃0n(m)
MT[t, t] GO:0005840 25 1.3e-08 1.0e+00 5.6e-03

GO:0030529 77 3.1e-10 6.4e-01 1.4e-02
MT[d, t] GO:0005840 25 1.3e-08 1.0e+00 4.0e-03

GO:0005830 11 2.8e-05 1.0e+00 5.2e-03
MT[ �=, χ : α = 0.05] GO:0005578 10 1.7e-02 1.0e-01 4.9e-01

GO:0031012 10 1.7e-02 1.1e-01 4.9e-01
MT[ �=, χ : γG = 20] GO:0005578 10 1.7e-02 1.0e-01 3.5e-01

GO:0031012 10 1.7e-02 9.2e-02 3.5e-01
MT[ �=, χ : γG = 50] GO:0005576 54 9.1e-04 1.0e+00 7.8e-03

GO:0005615 31 4.8e-02 2.4e-01 7.8e-03
MT[ �=, χ : γG = 100] GO:0005576 54 9.1e-04 1.0e+00 4.9e-02

GO:0005615 31 4.8e-02 2.6e-01 1.3e-01

Table 7. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, top two MF GO terms. Details in Table 5 caption.

MF

Scenario GO term A1(m) P t,t
0n (m) P �=,χ

0n (m) P̃0n(m)
MT[t, t] GO:0003735 24 1.1e-09 1.0e+00 2.4e-03

GO:0003723 143 1.5e-06 4.1e-01 1.2e-01
MT[d, t] GO:0003735 24 1.1e-09 1.0e+00 2.2e-03

GO:0003723 143 1.5e-06 3.8e-01 7.8e-02
MT[ �=, χ : α = 0.05] GO:0004930 10 2.2e-01 3.0e-03 3.7e-02

GO:0003924 34 6.5e-01 3.9e-02 7.0e-01
MT[ �=, χ : γG = 20] GO:0004930 10 2.2e-01 3.0e-03 1.7e-02

GO:0003924 34 6.5e-01 3.8e-02 6.2e-01
MT[ �=, χ : γG = 50] GO:0004930 10 2.2e-01 3.5e-03 4.1e-01

GO:0030246 22 8.6e-01 2.0e-01 4.8e-01
MT[ �=, χ : γG = 100] GO:0005509 69 3.8e-04 1.3e-01 3.1e-01

GO:0004930 10 2.2e-01 1.5e-03 3.3e-01

gene-parameter profiles have very large p-values P �=,χ
0n (m) for binary gene-parameter

profiles (e.g., MF term GO:0003735 in Table 7). Such terms are likely to be identified
by Scenarios MT[t, t] and MT[d, t], but missed by Scenario MT[�=, χ]. The converse
phenomenon is not as striking. However, one should keep in mind that Scenario
MT[�=, χ] depends on the choice of estimator for the binary DE gene-parameter
profile λ �=, i.e., on parameters such as α and γG. In particular, with certain values
of α (or γG), binary Scenario MT[�=, χ] may become more similar to either con-
tinuous Scenario MT[t, t] or MT[d, t]. Column A1(m) in Tables 5–7 suggests that,
compared to Scenario MT[�=, χ], Scenarios MT[t, t] and MT[d, t] tend to identify
GO terms annotating a greater number of genes (this observation also holds for the
top 20 terms identified according to each testing scenario; data not shown).

Figure 8 displays a scatterplot matrix of the 50 smallest adjusted p-values, based
on Scenario MT[t, t], for each of the three gene ontologies. The plots indicate that
more terms tend to be identified in the BP ontology compared to either the CC or
MF ontologies, and fewer terms tend to be identified in the MF ontology compared
to either the BP or CC ontologies. Note that comparisons based on adjusted p-values
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Fig 8. GO terms associated with differential gene expression between BCR/ABL and NEG B-cell
ALL, comparison of adjusted p-values for the three gene ontologies. Scatterplot matrix of the 50
smallest adjusted p-values for each of the three gene ontologies, based on Scenario MT[t, t]. The
identity line is drawn for reference.

take into account differences in the numbers of tested hypotheses, MBP = 367,
MCC = 81, and MMF = 185, for each ontology.

Tables 8, 9, and 10 list the 20 GO terms with the smallest adjusted p-values
for Scenario MT[t, t], applied to the BP, CC, and MF gene ontologies, respec-
tively. Figures 9, 10, and 11 display portions of the directed acyclic graphs for
the top 20 GO terms in each ontology. The figures suggest that GO terms asso-
ciated with BCR/ABL vs. NEG differential gene expression tend to concentrate
in certain branches of the DAGs, i.e., differential expression is associated with re-
lated properties of gene products. Although it is known that many of the effects of
the BCR/ABL fusion are mediated by tyrosine kinase activity, the MF GO term
protein-tyrosine kinase activity (GO:0004713) does not appear to be significantly
associated with differential gene expression between BCR/ABL and NEG B-cell
ALL (adjusted p-value of 0.8890 for Scenario MT[t, t]).

For illustration purposes, we further investigate two of the GO terms from Ta-
bles 8 and 10: GO term anti-apoptosis (GO:0006916), with ninth smallest adjusted
p-value for Scenario MT[t, t] applied to the BP gene ontology, and GO term struc-
tural constituent of ribosome (GO:0003735), with the smallest adjusted p-value for
Scenario MT[t, t] applied to the MF gene ontology. Tables 11 and 12 list genes
directly or indirectly annotated with GO terms GO:0006916 and GO:0003735, re-
spectively. Figure 12 displays mean-difference plots of the average expression mea-
sures in BCR/ABL and NEG cell samples for genes annotated with GO terms
GO:0006916 and GO:0003735.
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Table 8. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, top 20 BP GO terms. This table lists the 20 GO terms with the smallest adjusted
p-values for Scenario MT[t, t] applied to the BP gene ontology. A1(m) =

∑
g

A(g, m): Number of

genes directly or indirectly annotated with GO term m (out of G = 2, 071 genes, GOALLLOCUSID

environment in GO package). P̃0n(m): Bootstrap-based single-step maxT adjusted p-value for
Scenario MT[t, t].

BP, Scenario MT[t, t]

GO term ID GO term A1(m) P̃0n(m)

GO:008152 metabolism 1076 2.6e-02
GO:044237 cellular metabolism 1045 4.3e-02
GO:009058 biosynthesis 187 7.5e-02
GO:044238 primary metabolism 1002 7.5e-02
GO:044249 cellular biosynthesis 169 8.6e-02
GO:006091 generation of precursor metabolites and energy 98 9.3e-02
GO:019882 antigen presentation 15 1.1e-01
GO:030333 antigen processing 14 1.4e-01
GO:006916 anti-apoptosis 21 1.6e-01
GO:043066 negative regulation of apoptosis 26 1.7e-01
GO:043069 negative regulation of programmed cell death 26 1.7e-01
GO:007154 cell communication 390 1.8e-01
GO:006457 protein folding 52 1.9e-01
GO:007165 signal transduction 351 1.9e-01
GO:000226 microtubule cytoskeleton organization and biogenesis 14 2.3e-01
GO:006082 organic acid metabolism 65 2.5e-01
GO:006163 purine nucleotide metabolism 29 2.8e-01
GO:007155 cell adhesion 59 2.8e-01
GO:007028 cytoplasm organization and biogenesis 10 3.0e-01
GO:019752 carboxylic acid metabolism 63 3.1e-01

Table 9. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, top 20 CC GO terms. Details in Table 8 caption.

CC, Scenario MT[t, t]

GO term ID GO term A1(m) P̃0n(m)

GO:0005840 ribosome 25 5.6e-03
GO:0030529 ribonucleoprotein complex 77 1.4e-02
GO:0005830 cytosolic ribosome (sensu Eukaryota) 11 1.4e-02
GO:0043234 protein complex 334 7.8e-02
GO:0005886 plasma membrane 200 1.3e-01
GO:0005829 cytosol 78 2.2e-01
GO:0005737 cytoplasm 578 2.3e-01
GO:0005887 integral to plasma membrane 125 2.3e-01
GO:0031226 intrinsic to plasma membrane 125 2.3e-01
GO:0019866 inner membrane 37 2.6e-01
GO:0005743 mitochondrial inner membrane 28 2.6e-01
GO:0005746 mitochondrial electron transport chain 11 2.7e-01
GO:0000502 proteasome complex (sensu Eukaryota) 26 2.7e-01
GO:0000323 lytic vacuole 28 2.9e-01
GO:0005764 lysosome 28 2.9e-01
GO:0005576 extracellular region 54 3.1e-01
GO:0005773 vacuole 29 3.2e-01
GO:0005622 intracellular 1152 3.4e-01
GO:0043228 non-membrane-bound organelle 218 3.5e-01
GO:0043232 intracellular non-membrane-bound organelle 218 3.5e-01
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Table 10. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, top 20 MF GO terms. Details in Table 8 caption.

MF, Scenario MT[t, t]

GO term ID GO term A1(m) P̃0n(m)

GO:0003735 structural constituent of ribosome 24 2.4e-03
GO:0003723 RNA binding 143 1.2e-01
GO:0048037 cofactor binding 11 1.5e-01
GO:0051082 unfolded protein binding 47 2.2e-01
GO:0016853 isomerase activity 28 2.3e-01
GO:0016491 oxidoreductase activity 89 3.5e-01
GO:0005509 calcium ion binding 69 3.5e-01
GO:0015399 primary active transporter activity 57 4.3e-01
GO:0004872 receptor activity 101 4.5e-01
GO:0004871 signal transducer activity 242 4.6e-01
GO:0016765 transferase activity, transferring alkyl or aryl (other than

methyl) groups
10 4.6e-01

GO:0016860 intramolecular oxidoreductase activity 13 4.6e-01
GO:0016614 oxidoreductase activity, acting on CH-OH group of

donors
18 4.7e-01

GO:0016616 oxidoreductase activity, acting on the CH-OH group of
donors, NAD or NADP as acceptor

18 4.7e-01

GO:0043169 cation binding 230 5.0e-01
GO:0005489 electron transporter activity 47 5.4e-01
GO:0005386 carrier activity 73 5.5e-01
GO:0004888 transmembrane receptor activity 59 5.7e-01
GO:0003824 catalytic activity 635 5.8e-01
GO:0003676 nucleic acid binding 449 6.7e-01

Panel (a) in Figure 12 indicates that genes annotated with BP GO term anti-
apoptosis (GO:0006916) tend to be over-expressed in BCR/ABL compared to NEG
cell samples. Among these 21 genes, only SOCS2 is significantly differentially ex-
pressed between BCR/ABL and NEG B-cell ALL (nominal FWER level α = 0.05,
Table 3). However, a brief survey of the literature reveals that several of the genes in
Table 11 interact with the BCR/ABL proto-oncogene. For instance, [27] investigate
mechanisms for the BCR/ABL-mediated activation of the transcription factor NF-
κB/Rel encoded by the NFKB1 gene. Their findings suggest that NF-κB/Rel may
be a potential target for molecular therapies of leukemia. [30] demonstrate that
ectopic expression of BCR/ABL interferes with the tumor necrosis factor (TNF)
signaling pathway through the down-regulation of TNF receptors. The TNF gene
encodes a multifunctional proinflammatory cytokine involved in the regulation of
a wide spectrum of biological processes, including cell proliferation, differentiation,
apoptosis, lipid metabolism, and coagulation. The TNF gene has been implicated in
a variety of diseases, including autoimmune diseases, insulin resistance, and can-
cer.

As seen in Table 12, 22 of the 24 genes annotated with MF GO term structural
constituent of ribosome (GO:0003735) code for ribosomal proteins. Although none
of the 24 annotated genes is identified as being significantly differentially expressed
between BCR/ABL and NEG B-cell ALL (nominal FWER level α = 0.05, Table
3), Panel (b) in Figure 12 suggests that these genes tend to be under-expressed in
BCR/ABL cell samples.
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Fig 9. GO terms associated with differential gene expression between BCR/ABL and NEG B-cell
ALL, DAG for top 20 BP GO terms. Portion of the directed acyclic graph for the 20 GO terms
with the smallest adjusted p-values for Scenario MT[t, t] applied to the BP gene ontology. Nodes
for the top 20 terms are shaded in lavender; black and red edges indicate, respectively, “is a”
and “part of a” relationships among terms. The figure was produced using the QuickGO browser.
According to QuickGO, the GO term IDs GO:019882 and GO:0030333 listed in Table 8 correspond
to the same term, antigen processing and presentation. (Higher-resolution color version on website
companion.)

6. Discussion

We have proposed a general and formal statistical framework for multiple tests of
association with biological annotation metadata. A key component of our approach
is the systematic and precise translation of a generic biological question into a cor-
responding multiple hypothesis testing problem, concerning association measures
between known gene-annotation profiles and unknown gene-parameter profiles. This
general and rigorous formulation of the statistical inference question allows us to
apply the multiple hypothesis testing methodology developed in [14] and related
articles, to control a broad class of Type I error rates, in testing problems involving
general data generating distributions (with arbitrary dependence structures among
variables), null hypotheses, and test statistics.

The flexibility of our approach was illustrated using the ALL microarray dataset
of [13], with the aim of relating GO annotation to differential gene expression be-
tween BCR/ABL and NEG B-cell ALL. This analysis demonstrates the impor-
tance of selecting a suitable DE gene-parameter profile λ and measure ρ for the
association between this gene-parameter profile and GO gene-annotation profiles
A. Indeed, for the ALL dataset, the choice of gene-parameter profile for measur-
ing differential expression between BCR/ABL and NEG B-cell ALL has a large
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Fig 10. GO terms associated with differential gene expression between BCR/ABL and NEG B-
cell ALL, DAG for top 20 CC GO terms. Portion of the directed acyclic graph for the 20 GO
terms with the smallest adjusted p-values for Scenario MT[t, t] applied to the CC gene ontology.
Nodes for the top 20 terms are shaded in lavender; black and red edges indicate, respectively,
“is a” and “part of a” relationships among terms. The figure was produced using the QuickGO
browser. (Higher-resolution color version on website companion.)

impact on the list of identified GO terms. Testing scenarios based on binary DE
gene-parameter profiles (Scenario MT[�=, χ]) tended to be more conservative than
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Fig 11. GO terms associated with differential gene expression between BCR/ABL and NEG B-
cell ALL, DAG for top 20 MF GO terms. Portion of the directed acyclic graph for the 20 GO
terms with the smallest adjusted p-values for Scenario MT[t, t] applied to the MF gene ontology.
Nodes for the top 20 terms are shaded in lavender; black and red edges indicate, respectively,
“is a” and “part of a” relationships among terms. The figure was produced using the QuickGO
browser. (Higher-resolution color version on website companion.)

Fig 12. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, BP GO term GO:0006916 and MF GO term GO:0003735. This figure displays mean-
difference plots of average expression measures in BCR/ABL and NEG cell samples, i.e., plots of
μBCR/ABL,n(g)−μNEG,n(g) vs. (μBCR/ABL,n(g)+μNEG,n(g))/2, for genes directly or indirectly
annotated with GO terms GO:0006916 (Panel (a)) and GO:0003735 (Panel (b)). The term anti-
apoptosis (GO:0006916) has the ninth smallest adjusted p-value for Scenario MT[t, t] applied to the
BP gene ontology (Tables 8 and 11) and the term structural constituent of ribosome (GO:0003735)
has the smallest adjusted p-value for Scenario MT[t, t] applied to the MF gene ontology (Tables
10 and 12).

scenarios based on continuous DE gene-parameter profiles (Scenarios MT[t, t] and
MT[d, t]), with little overlap between the lists of identified GO terms. Furthermore,
testing scenarios based on binary gene-parameter profiles were sensitive to the some-
what arbitrary DE/non-DE gene dichotomization, that is, Scenario MT[�=, χ : γG]
lacked robustness with respect to the choice of parameter γG for the number of
genes called differentially expressed according to the estimator λ �=

n,γG. In contrast,
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Table 11. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, BP GO term GO:0006916. This table lists genes directly or indirectly annotated with
GO term anti-apoptosis (out of G = 2, 071 genes, GOALLLOCUSID environment in GO package). The
term anti-apoptosis (GO:0006916) has the ninth smallest adjusted p-value for Scenario MT[t, t]
applied to the BP gene ontology (Table 8).

BP GO:0006916

Probe ID Symbol Name
1237 at IER3 immediate early response 3

1295 at RELA v-rel reticuloendotheliosis viral oncogene homolog A,

nuclear factor of kappa light polypeptide gene enhancer

in B-cells 3, p65 (avian)

1377 at NFKB1 nuclear factor of kappa light polypeptide gene enhancer

in B-cells 1 (p105)

1564 at AKT1 v-akt murine thymoma viral oncogene homolog 1

1830 s at TGFB1 transforming growth factor, beta 1

(Camurati-Engelmann disease)

1852 at TNF tumor necrosis factor (TNF superfamily, member 2)

1997 s at BAX BCL2-associated X protein

277 at MCL1 myeloid cell leukemia sequence 1 (BCL2-related)

31536 at RTN4 reticulon 4

32060 at BNIP2 BCL2/adenovirus E1B 19 kDa interacting protein 2

33284 at MPO myeloperoxidase

36578 at BIRC2 baculoviral IAP repeat-containing 2

38578 at TNFRSF7 tumor necrosis factor receptor superfamily, member 7

38771 at HDAC1 histone deacetylase 1

38994 at SOCS2 suppressor of cytokine signaling 2

39097 at SON SON DNA binding protein

39378 at BECN1 beclin 1 (coiled-coil, myosin-like BCL2 interacting protein)

39436 at BNIP3L BCL2/adenovirus E1B 19 kDa interacting protein 3-like

40570 at FOXO1A forkhead box O1A (rhabdomyosarcoma)

595 at TNFAIP3 tumor necrosis factor, alpha-induced protein 3

641 at PSEN1 presenilin 1 (Alzheimer disease 3)

continuous gene-parameter profiles based on standardized and unstandardized mea-
sures of differential gene expression lead to very similar results (Scenarios MT[t, t]
and MT[d, t]).

Our analysis of the ALL microarray dataset clearly shows the limitations of bi-
nary gene-parameter profiles of differential expression indicators, which are still
the norm for combined GO annotation and microarray data analyses. Our pro-
posed statistical framework, with general definitions for the gene-annotation and
gene-parameter profiles, allows consideration of a much broader class of inference
problems, that extend beyond GO annotation and microarray data analysis. Gene-
annotation profiles may be continuous or polychotomous and may correspond,
for example, to exon/intron counts/lengths/nucleotide distributions, gene pathway
membership, or gene regulation by particular transcription factors. Likewise, gene-
parameter profiles may be continuous or polychotomous and may correspond, for
example, to regression coefficients relating possibly censored biological and clinical
outcomes to genome-wide transcript levels, DNA copy numbers, and other covari-
ates.

This first application of our proposed methodology only considered control of
the family-wise error rate using single-step common-cut-off maxT Procedure 1,
based on the non-parametric bootstrap null shift and scale-transformed test statis-
tics null distribution of Procedure 2. Adjusted p-values tended to be quite large,
with only a handful of GO terms identified as being significantly associated with
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Table 12. GO terms associated with differential gene expression between BCR/ABL and NEG
B-cell ALL, MF GO term GO:0003735. This table lists genes directly or indirectly annotated with
GO term structural constituent of ribosome (out of G = 2, 071 genes, GOALLLOCUSID environment in
GO package). The term structural constituent of ribosome (GO:0003735) has the smallest adjusted
p-value for Scenario MT[t, t] applied to the MF gene ontology (Table 10).

MF GO:0003735

Probe ID Symbol Name
2016 s at RPL10 ribosomal protein L10

31511 at RPS9 ribosomal protein S9

31546 at RPL18 ribosomal protein L18

31955 at FAU Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)

ubiquitously expressed (fox derived)

32221 at MRPS18B mitochondrial ribosomal protein S18B

32315 at RPS24 ribosomal protein S24

32394 s at RPL23 ribosomal protein L23

32433 at RPL15 ribosomal protein L15

32437 at RPS5 ribosomal protein S5

33117 r at RPS12 ribosomal protein S12

33485 at RPL4 ribosomal protein L4

33614 at RPL18A ribosomal protein L18a

33661 at RPL5 ribosomal protein L5

33668 at RPL12 ribosomal protein L12

33674 at RPL29 ribosomal protein L29

34316 at RPS15A ribosomal protein S15a

36358 at RPL9 ribosomal protein L9

36572 r at ARL6IP ADP-ribosylation factor-like 6 interacting protein

36786 at RPL10A ribosomal protein L10a

39856 at RPL36AL ribosomal protein L36a-like

39916 r at RPS15 ribosomal protein S15

41152 f at RPL36A ribosomal protein L36a

41214 at RPS4Y1 ribosomal protein S4, Y-linked 1

41746 at NHP2L1 NHP2 non-histone chromosome protein 2-like 1

(S. cerevisiae)

BCR/ABL vs. NEG differential gene expression. Joint augmentation and empirical
Bayes procedures could be used for control of a broader and more biologically rele-
vant class of Type I error rates, defined as generalized tail probabilities, gTP (q, g) =
Pr(g(Vn, Rn) > q), and generalized expected values, gEV (g) = E[g(Vn, Rn)], for
arbitrary functions g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn (Chapters 6 and 7 in [14], [15, 39, 40]). Error rates based on the
proportion Vn/Rn of false positives (e.g., TPPFP and FDR) are especially appeal-
ing for large-scale testing problems, compared to error rates based on the number
Vn of false positives (e.g., gFWER), as they do not increase exponentially with
the number M of tested hypotheses. More powerful analyses may also be achieved
with the new null quantile-transformed test statistics null distribution of [42]. The
multiple testing methodology developed in [14] and related articles is particularly
well-suited to handle the variety of parameters of interest and the complex and
unknown dependence structures among test statistics (e.g., implied by the DAG
structure of GO terms) that are likely to be encountered in high-dimensional infer-
ence problems in biomedical and genomic research.

Note that for asymptotic results, such as consistency or asymptotic linearity,
the sample size n refers to the number of observational units sampled from the
population of interest to estimate the gene-parameter profiles, e.g., the number of
patients in a cancer microarray study. While the sample size n is typically much



214 S. Dudoit, S. Keleş and M. J. van der Laan

smaller than the dimension J of the data structure X, sample sizes have consider-
ably increased in recent genomic applications. In addition, simulation studies have
indicated that our proposed MTPs have good finite sample properties in terms of
both Type I error control and power.

Ongoing efforts include consideration of more general and biologically pertinent
multivariate association measures ρ. For instance, for GO annotation metadata, the
association parameter for a given GO term could take into account the structure of
the DAG by considering the gene-annotation profiles of offspring or ancestor terms.
We are also interested in developing better numerical and graphical approaches
for representing and interpreting the multiple testing results, e.g., the lists of GO
terms and associated adjusted p-values. Finally, we are planning on implementing
the proposed methods in an R package to be released as part of the Bioconductor
Project.

Software and website companion

The multiple testing procedures proposed in [14] and related articles [8, 15, 16,
31–34, 39–42] are implemented in the R package multtest, released as part of the
Bioconductor Project, an open-source software project for the analysis of biomedical
and genomic data ([14, Section 13.1]; [32]; www.bioconductor.org).

The experimental data (ALL) and annotation metadata (annaffy, annotate, GO,
hgu95av2) packages used in the analysis of Section 5 may also be obtained from the
Bioconductor Project website.

The website companion to [14] provides additional tables, figures, code, and
references: www.stat.berkeley.edu/~sandrine/MTBook.
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218 S. Dudoit, S. Keleş and M. J. van der Laan

[46] Yu, Z. and van der Laan, M. J. (2002). Construction of counterfactuals and
the G-computation formula. Technical Report 122, Division of Biostatistics,
Univ. California, Berkeley, Berkeley, CA 94720-7360.


